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1 Introduction
This thesis is an exhaustive answer to the last five lines of a paper on the convergence of gradi-
ent methods on low-rank matrix varieties. The original paper "Convergence results for projected
line-search methods on varieties of low-rank matrices via Łojasiewicz inequality" [1] describes an
iterative method for non-linear optimization where each iterate lies on the variety of matrices of
some bounded rank. The next iterate is computed by going along a gradient-related direction on
the variety. [1] proves, that if the series of iterates possesses a cluster point, it is the limit and
concludes in the following lines:

It would be important and interesting to extend the results to tensor varieties of bounded subspace
ranks, e.g., bounded Tucker ranks, hierarchical Tucker ranks or tensor train ranks. As these

varieties take the form of intersections of low-rank matrices, the results in this paper can likely be
generalized in this direction.

We confirm the intuition of the authors, that the result is indeed generalizable to all the suggested
tensor formats: tensor train, Tucker and hierarchical. For the Tucker and hierarchical format we
only sketch the proof ideas. We acknowledge the value of a possible future rigorous formulation of
the proof for these two formats.

With great foresight [1] has created an abstract convergence result (see Lemma 6.1 in this thesis),
that we can use in the generalization. This abstract convergence result encapsulates everything
dealing with Łojasiewicz’ inequality saving us from touching it, despite it being an interesting
theory (see the beautiful 100 page original work in French [2]).

Of the three missing lemmata, that we are going to provide, the central one is the parametrization
of the tangent cone of singular points of the tensor varieties. Chapter 3 will be concerned with
getting a general overview of the existing theory and algorithmic methods related to tangent cones.
It will enable us to compute the two smallest special cases. Chapter 4 will prove the general case,
the proof technique being a rather technical application of the pythagorean theorem.

In Chapter 5 the new parametrization of the tangent cone is used to show, that it is possible
to choose a sufficiently gradient-related (satisfying an angle condition) direction. This proof is
facilitated by using tensor diagrams and we do not know how notation would be possible without
it.

In Chapter 6 everything is being put together, including the last of the three lemmata, which
shows the openness of the parametrization.

Wherever we saw the chance for a small detour or corollary, we have taken it. For example we
try to visualize the smallest example of a matrix variety. We show that if a tensor variety is the
intersection of matrix varieties, then the tangent cone of a tensor variety is the intersection of the
tangent cones of the matrix varieties. Every tangent vector of a tensor variety is the first derivative
of an analytic curve. We thank the anonymous referee for demanding Chapter 4.2, which inspects
the main result from a different angle. The viewpoint as a global optimality condition is covered
in Section 4.3. In Chapter 6.1.4 we cover the practical aspects of implementing a low-rank method
that takes full advantage of the memory-efficiency of the covered tensor factorizations.
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2 Introduction to tensors
In this chapter we introduce the notions of the tensor product of vectors and of vector spaces along
with many examples. A matricization is a certain grouping and reordering of the indices of a tensor.
The matricization allows to generalize the matrix product to tensors to produce the new notion of
contraction. When working with contractions tensor diagrams simplify notation.

2.1 Informal introduction to the tensor product
We want to start with an example. Let K be one of the fields C or R. Consider the two vectors

u :=

⎛⎝ a
b
c

⎞⎠ and v :=

⎛⎝ x
y
z

⎞⎠
both from K3. Then the tensor product of the two vectors is the tensor (or in this case: the matrix)
in K3×3 ⎛⎝ a

b
c

⎞⎠⊗

⎛⎝ x
y
z

⎞⎠ :=

⎛⎝ ax ay az
bx by bz
cx cy cz

⎞⎠ (1)

which in this example is equal to the matrix product of u and vT⎛⎝ a
b
c

⎞⎠ (
x y z

)
.

The entries of the tensor are the products of all possible combinations of an entry from u and
an entry from v. We can extend this idea for example to the tensor product of a matrix with a
vector. This is shown in Figure 1. The ordering of the result into a cube (or into a matrix as in the

Figure 1: tensor product of matrix with vector

A⊗ v =

⎛⎝ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠⊗

⎛⎝ v1
v2
v3

⎞⎠ =

v3A

v2A

v1A

previous example) is essential as we will see soon. We can write all the resulting coefficients in one
very long vector, thus identifying Kn×m and Kn·m. The number of coefficients of the result is the
product of the numbers of the coefficients of the two factors.

One question arising from looking at equation 1 is: What is the difference between the pair
(u, v) and the tensor product u⊗ v? Or what is the difference between the set of pairs K3×K3 and
the set of tensors (in this example: the set of matrices) K3×3? First of all, the tensor product

⊗ : K3 ×K3 → K3×3

4



Figure 2: tensor product defined bijectively

set V × V of pairs (u, v)

equivalence classes (u, v) = (αu, 1
αv)

⊗

set of tensors in V ⊗ V

img⊗

assigns a unique tensor w to every pair (u, v). But not every tensor w is the tensor product of two
vectors. A counterexample is ⎛⎝ 1 0 0

0 1 0
0 0 0

⎞⎠ .

In other words, the tensor product ⊗ is not surjective.
So are there essentially more tensors than there are pairs? To highlight the significance of this

question, consider the example of the tensor product ⊗ : K2 ×K2 → K2×2 where the pairs consist
of 4 values and the matrices, too. Here the image of ⊗ is also less than the full matrix space.
However, is ⊗ at least injective, so that we could construct the bijection K2 × K2 → img⊗? The
answer is no, because u⊗ v = (αu)⊗ ( 1

αv) for all α ∈ K. Fortunately in this example these are the
only pairs mapping to the same tensor. To get an overview we can draw Figure 2. Defining the
equivalence relation

(u, v) ∼ (u′, v′) ⇔ ∃α ∈ K : u′ = αu and v = αv′

we can define the injective tensor product

⊗ : K3 ×K3/∼ → K3×3

or the bijection
⊗ : K3 ×K3/∼ → img⊗

But what are all the other tensors, which are not in the image of ⊗? As we have quietly defined
the codomain of ⊗ to be a vector space, every finite sum of tensors from the image of ⊗ must be
included. More formally, the tensor space must contain the closure of ⊗ under addition. In fact we
can define a basis of the tensor space that consists only of elements from img⊗. Given bases of Kn

and Km the tensor product of all possible pairs of one basis element each is a basis of Kn×m.
Already in the case of the example above, the image under ⊗ can be parametrized by only 6

numbers. Much less than the 9 numbers needed for the whole tensor space. The methods described
in this thesis will make extensive use of the fact that img⊗ is much smaller than Kn×m. The image
of ⊗ is also called the set of tensors of rank at most 1. A tensor that can be written as a sum of no
more than r rank-1 tensors is said to have rank r.

5



2.2 Formal introduction to tensor spaces
2.2.1 Order 2 tensor spaces and tensor product

As we have already noted in the informal introduction, Kn·m without any additional structure is
not sufficient as definition of a tensor space. How can one define⎛⎝1 ... 1

⎞⎠
to have rank 1 but ⎛⎜⎜⎝

1 0 ... ... 0
0 1 0 ... 0
...
0 ... ... 0 1

⎞⎟⎟⎠
to have rank n without regarding the ordering of the indices? The first matrix has as many ones
as the second matrix. It contains the same entries, just permuted. A common way to fix this
ambiguity is to include the map

⊗Kn ×Km → Kn ⊗Km : (x, y) ↦→ z

with zij := xi · yj in the definition of the tensor space Kn ⊗Km of Kn and Km.

2.2.2 Lexicographic order

Sometimes - for example when implementing an algorithm - it is important to define an order of
the multi-indices. One popular way is to order them lexicographically. Having an order on I and
on J we can identify I with {1, 2, ...n1} and J with {1, 2, ...n2}. Then the multi-indices from I × J
can be lexicographically ordered as

(1, 1), (1, 2), ..., (1, n2), (2, 1), ..., (2, n2), ..., (n1, n2)

just as the ordering of words in a non-digital dictionary or the phone book. Compare with Section
3.4.1.

2.2.3 Formal definitions

The tensor product of finite-dimensional vector spaces Kn can be defined in the following way:

Definition 2.1. Let Kn1 , ..., Knd be vector spaces over the field K. Defining In := {1, ..., n}, we
can define Kn := {In → K} as a set of functions from the index set In to K. For v ∈ Kn we
introduce the notation vi := v(i). Then define the tensor product as

Kn1×...×nd := Kn1 ⊗ ...⊗Knd := {In1
× ...× Ind

→ K}.

The notation for accessing elements of the tensor T ∈ Kn1×...×nd is

Ti1,...,id := T (i1, ..., id).

6



Define the map
⊗ : Kn1 × ...×Knd → Kn1×...×nd

by
v1 ⊗ ...⊗ vd : (i1, ..., id) ↦→ v1(i1)...vd(id)

using the notation v1 ⊗ ...⊗ vd := ⊗(v1, ..., vd).

When considering bilinear maps
φ : V ×W → X

the tensor product V ⊗W is the biggest possible image of any of these maps. This is formalized in
the following definition, which works for infinite-dimensional vector spaces as well.

Definition 2.2. Let V and W be any two vector spaces over the same field. Then T is called the
tensor product of V and W if there is a bilinear map ⊗ : V ×W → T , such that any bilinear map
φ : V ×W → X into any vector space X can be written as a composition φ = ψ ◦ ⊗.

Defining the tensor product this way also works for infinite dimensional vector spaces V and W .

Figure 3: abstract definition of the tensor product
V ×W

T

X

⊗

∃ψ

∀ bilinear φ

2.2.4 Higher order tensor spaces

Figure 4: tensor product of 3 vectors

⎛⎝ a
b
c

⎞⎠⊗

⎛⎝ x
y
z

⎞⎠⊗

⎛⎝ α
β
γ

⎞⎠ =

⎛⎝ ax ay az
bx by bz
cx cy cz

⎞⎠⊗

⎛⎝ α
β
γ

⎞⎠ =

γax γay γaz

αbx αby γbz

αcx αcy γcz

βax βay βaz

αbx αby βbz

αcx αcy βcz

αax αay αaz

αbx αby αbz

αcx αcy αcz

What we have described so far was the special case of order 2 tensors, also called matrices and
well known to the reader. Applying the tensor product iteratively can produce tensor spaces of
higher order - the subject of this thesis.
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Example 2.1. See Figure 4 for a picture of a 3× 3× 3 tensor product.

The tensor product is associative. Not even the (lexicographic) order is affected when multiply-
ing in a different order.

Definition 2.3. We can write

Kn1 ⊗ ...⊗Knd = Kn1×...×nd

for the set of order d tensors of dimensions n1,...,nd.

2.3 Examples of tensors appearing in applications
2.3.1 Polynomials as tensors

In this section, we will show three examples, of how sets of polynomial basis functions can be
represented as tensors. To fully use the potential of these examples to parametrize the set of multi-
dimensional polynomials, we will need the chapters 2.5 and 2.6 about matricization and contraction
of tensors. We will come back to the examples in these chapters.

Example 2.2. The monomial basis of the set of homogeneous polynomials of degree d in the
variables x and y can be represented as the tensor(

x
y

)
⊗ ...⊗

(
x
y

)
  

d times

.

In this example the tensor product multiplies modules over commutative polynomial rings rather
than vector spaces. The tensor product of modules is defined in exactly the same way as the tensor
product of vector spaces. In the special case of degree 3 polynomials the above product equals((

x3 x2y
x2y xy2

)
,

(
x2y xy2

xy2 y3

))
.

Note the redundancy. The terms x2y and xy2 appear 3 times each. And in general there are only
d+1 of these monomials. Thus this tensor product enlarges the number of parameters rather than
reducing it.

The next example has the advantage of not containing any redundant terms and including all
lower degree polynomials.

Example 2.3. A basis for the set of polynomials of degree bounded by n in each variable can be
written as the matrix ⎛⎜⎜⎜⎜⎜⎝

1
x
x2

...
xn

⎞⎟⎟⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎝
1
y
y2

...
yn

⎞⎟⎟⎟⎟⎟⎠ .

8



for maximum degree 2 this reduces to⎛⎝ 1 y y2

x xy xy2

x2 x2y x2y2

⎞⎠ .

The upper left triangle of this matrix is a basis for the polynomials of total degree bounded by 2.

The next example somewhat combines the two previous ones. It succeeds in including exactly
the polynomials of bounded total degree, but for the price of redundancy.

Example 2.4. A basis for the set of polynomials in n variables of total degree at most d is given
(redundantly) by the tensor ⎛⎜⎜⎜⎜⎜⎝

1
x1
x2
...
xn

⎞⎟⎟⎟⎟⎟⎠⊗ ...⊗

⎛⎜⎜⎜⎜⎜⎝
1
x1
x2
...
xn

⎞⎟⎟⎟⎟⎟⎠
  

d times

.

For polynomials of maximum degree 2 in x and y this reduces to⎛⎝ 1 x y
x x2 xy
y xy y2

⎞⎠ .

The upper right triangle already contains all the information.

The last example is motivated by the work of Sharir, Shashua and Cohen [3] on arithmetic
circuits with applications in artificial intelligence. They map small patches (e.g. patches of 5 × 5
pixels in size) of a photograph to vectors by some function recognizing low-level features such as
edges. So to each patch i they assign a vector (xi,1, ..., xi,n). Then they construct a monomial basis
for a polynomial in all the variables xi,j in the following way.

Example 2.5. The tensor ⎛⎜⎜⎜⎜⎜⎝
1
x11
x12
...
x1n

⎞⎟⎟⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎝
1
x21
x22
...
x2n

⎞⎟⎟⎟⎟⎟⎠⊗ ...

contains the monomials
1, x11, x21, x11x21, ...

but for example not the monomial
x11x12.

In [3] small patches of the original image are mapped to the vectors (1, x11, x12, ...)
T in a way

that produces sparse vectors. Each of the xij represents a feature (e.g. a horizontal edge, vertical
edge, color, ...). One tries to not identify a horizontal edge and a vertical edge in the same patch,

9



thus the sparsity. The monomials missing in the tensor of the example are the ones that become
0 if the vectors are maximally sparse, that is if they contain only one non-zero element apart from
the leading 1. The goal of Shashua and Cohens work is, to find coefficients of this polynomial,
such that when the polynomial is evaluated at the transformed patches of a photograph, the value
indicates the content of the photograph.

2.3.2 Approximating multivariate functions

Figure 5: tensor product of functions

gf

y•

(x, y)

(f ⊗ g)(x, y) = f(x)g(y)

f(x)
•

x

g(y)•

Considering functions as elements in an infinite-dimensional vector space we can define the tensor
product of functions by narrowing Definition 2.2 or by the following construction: Let f : R → R
and g : R → R be two one-dimensional functions. The tensor product f ⊗ g of f and g is the
two-dimensional function

h : R2 → R : (x, y) ↦→ f(x)g(y).

Prooving the equivalence of the two definitions is rather involved. That this makes sense as a
tensor product could also be motivated by discretizing f and g on the grids x1, ..., xn and y1, ..., yn
respectively. See Figure 5 for an illustration. Define the vectors

F :=

⎛⎜⎝ f(x1)
...

f(xn)

⎞⎟⎠ , and G :=

⎛⎜⎝ g(y1)
...

g(yn)

⎞⎟⎠
as the discretizations of f and g. Then the discretization of h := f ⊗ g is exactly the (finite
dimensional) tensor product F ⊗G of the discretizations.

In Example 2.3 of the previous section we have already seen a finite dimensional tensor space
of functions. Other prominent tensor function spaces are the space of multivariate Gauss functions
or the space of multivariate trigonometric polynomials. The latter is for example used in [4] to
show that the solution (function f : R3N → C in 3N variables if N particles are involved!) of
the electronic Schrödinger equation can be well approximated by a sum of tensor products of 1-
dimensional functions. However here we want to give another interesting example, that has recently
attracted much attention, because of its importance in constructing fusion reactors. Building a
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reactor is very expensive (more than one billion Euro for the Wendelstein 7X) and takes a very long
time (25 years for the same). Knowing in advance how the plasma is likely to behave is essential.
One of the open questions - that if solved would significantly reduce the cost of fusion reactors,
according to [5] - is how to avoid turbulence in a plasma.

Example 2.6. (Vlasov Equation) The Vlasov equation models a plasma of charged particles. A
plasma differs from a fluid in the way, that the forces acting on the particles are caused by their
electric and magnetic fields. Furthermore the Vlasov equation permits non-Boltzmann distributions
of speed of the particles. The state space of the plasma is a real valued function f : R3 × R3 → R.
The first three dimensions define a position in physical space. The latter three dimensions define
a velocity. The value of the function at a certain pair of position and velocity (p, v) defines the
amount of particles, that have exactly these parameters.

Before even starting to solve such an equation, we need a way of representing the solution
functions in computer memory. The usual approach is to write the solution as a sum of tensor
products of one-dimensional functions. If the basis chosen for the one-dimensional space has n
elements, then the basis of the tensor product function space has nd elements if the function to be
represented is d-dimensional. Classical approaches optimize over the whole nd-dimensional function
vector space. We will investigate methods that optimize only over a subset of this high-dimensional
vector space. Kormann has used tensor decomposition methods in [6] to solve the Vlasov equation.

Example 2.7. (parametric PDEs)

Figure 6: parametric PDE

x

c

probability distribution for c

solution to ∆f(x) = c

Parametric partial differential equations are another application, where high-dimensional func-
tions come into play. Consider for example the Poisson equation

∆f(x) = c

for some parameter c. Now assume that c is not exactly known, but a probability distribution φ
is known, that gives the probabilities that c attains a certain value. That means, c is a random
variable. Then the question is: For fixed x, what is the probability, that f(x) is inside some interval?
Another question might be: What is the average value for f(x)? In Figure 6 we have drawn the
case, where f is one-dimensional. We have drawn some solutions fc for different values of c. The
solutions to all possible c can be seen as a function F in x and the parameter c. Now for example
the average of f(x) would be ∫ ∞

−∞
F (x, c)φ(c)dc.
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This example is a two-dimensional problem. However if the random variable c is also dependent on
the position x, the dimensionality increases. The Karhunen-Loeve expansion also known as infinite
dimensional PCA/SVD decomposes c into an infinite sum of independent random variables, each
of which is a product of a scalar random variable and a real function of x. Each of the scalar
random variables introduces a new variable into the equation, thus increasing the dimensionality
of the problem. The Karhunen-Loève theorem allows to approximate by considering only finitely
many terms of the decomposition. The number of terms of this decomposition plus the dimensions
of x determine the order of the tensor space. See the Phd thesis [7] for details on this topic.

2.4 Frobenius scalar product and norm
To define approximation problems we need to measure distances between tensors. And for many
proofs - especially the one of our main result - a notion of orthogonality is essential. Therefore we
need to introduce a scalar product.

Definition 2.4. Given two tensors A and B from the same tensor space Rn1×...×nd , we define
their scalar product as the standard scalar product on the vector space Rn1×...×nd . This means
multiplying element ai1,...,id with element bi1,...,id and summing over all these products

⟨A,B⟩ :=
∑

i1,...,id

ai1,...,idbi1,...,id .

We will see, why this definition is particularly elegant. It can be written in terms of matriciza-
tions or contractions, the topic of the following two chapters.

2.5 Matricization and Tensorization
It is often easier to work with matricizations. Especially because common notation for matrix
multiplication can be used. For example we will be able to write

⟨A,B⟩ = trace(A(n1n2)×n3

(
B(n1n2)×n3

)T
).

The matricization joins several indices into one by ordering the multi-index lexicographically.

Definition 2.5. Let A ∈ Kn1×...×nd be a tensor. Then define the matricization

Anj1 ·...·njl
×njl+1

·...·njd

to be a matrix in Knj1
·...·njl

×njl+1
·...·njd such that

Anj1
·...·njl

×njl+1
·...·njd (njl · ... ·nj2 · (ij1 −1)+ ...+ ijl , njd · ... ·njl−2

(ijl−1
−1)+ ...+ ijd) = A(i1, ..., id)

In the same way we want to define the tensorization by(
Anj1

·...·njl
×njl+1

·...·njd
)n1×...×nd

:= A

This notation is ambiguous for vectorizations of matrices as the superscript can be interpreted
as a power. Therefore we recommend using some notation like A(1:...:l×l+1:...:d) := An1...nl×nl+1...nd

for any future work. We will give several examples to illustrate the notion of matricization.
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Example 2.8. If A ∈ Rn1×n2×n3 then we can write

An2n3×n1(n3(i2 − 1) + i3, i1) = A(i1, i2, i3)

Example 2.9. Consider a tensor A ∈ Kn1×n2×n3 with n1 = n2 = n3 = 3. This tensor contains the
9 elements

a111, a112, a113, a121, ...a333.

There are six obvious ways to represent A as a vector by ordering its indices in lexicographic order

An1n2n3 :=

⎛⎜⎜⎜⎜⎜⎝
a111
a112
a113
a121

...

⎞⎟⎟⎟⎟⎟⎠ , An1n3n2 :=

⎛⎜⎜⎜⎜⎜⎝
a111
a121
a131
a112

...

⎞⎟⎟⎟⎟⎟⎠ , An3n2n1 :=

⎛⎜⎜⎜⎜⎜⎝
a111
a211
a311
a121

...

⎞⎟⎟⎟⎟⎟⎠ , An3n1n2 :=

⎛⎜⎜⎜⎜⎜⎝
a111
a121
a131
a211

...

⎞⎟⎟⎟⎟⎟⎠ , ...

where we use the order of the exponentiated dimensions as an indication of how to sort. We can
also rewrite A as a matrix

A(n2n3)×n1 :=

⎛⎜⎜⎜⎜⎜⎜⎝

a111 a211 a311

a112
...

a113
a121

...

⎞⎟⎟⎟⎟⎟⎟⎠
again with the exponent of A indicating the ordering.

2.6 Contraction
Definition 2.6. The contraction of two tensors A ∈ Kn1×...×nl×m and B ∈ Km×nl+1×...×nd with
respect to the (l + 1)th index of A and the first index of B is defined as the tensor C ∈ Kn1×...×nd

containing the entries

Ci1,...,id :=

m∑
j=1

Ai1,...,j ·Bj,...,id .

We can view the contraction in two ways. The first one needs the notion of fibers. An illustration
is shown in Figure 7. A fiber is the vector containing all entries of a tensor when all but one indices
are fixed, so for example ⎛⎜⎜⎜⎝

Ai1,...il,1

Ai1,...,il,2

...
Ai1,...,il,m

⎞⎟⎟⎟⎠ .

Now the idea is to take all fibers of A with respect to the (l + 1)th index. These are n1 · ... · nl
fibers. Also take all nl+1 · ... · nd fibers of B with respect to the first index. Take scalar products of
all n1 · ... · nd combinations of one fiber from A and one fiber from B and construct the new tensor
from the results.

Another way of seeing the contraction is as the sum of m tensor products of hyperslices, depicted
in Figure 8. Hyperslices are the dual notion of fibers. They are constructed by fixing only one index.
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Figure 7: contraction seen one way

i

j

cijkl = ⟨aij , bkl⟩

Figure 8: contraction seen a different way

C =
∑
Ai ⊗Bi

2.7 Tensor diagrams
A very important tool for working with contractions are tensor diagrams. A paper making extensive
use of them and including many beautiful diagrams is [8]. In diagrammatic notation every tensor
is represented as a dot. Every index (or mode) of the tensor is represented by a line starting at the
dot. The positioning of the dot and the direction of the lines can be chosen freely. Thus a tensor
of order 3 can look like in Figure 9.

Figure 9: Tensor of order 3

n1

n2

n3

We label the lines with the dimensions of the indices they represent. We can represent a
contraction by connecting the lines of the corresponding indices. Figures 7 and 8 would look like
in Figure 10 as a tensor diagram.

Figure 11 shows, how we can represent the scalar product by a tensor diagram.
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Figure 10: diagram of a contraction

Figure 11: scalar product of two tensors

Further examples are depicted in Figure 12: a tensor of order d as in Definition 2.3 (a); a tensor
of order 0 i.e. a scalar (b); of order 1 i.e. a vector (c) and of order 2 i.e. a matrix (d).

Figure 12: tensors in diagram notation

n2 n1

ndn3
...

• • •

n

•

n1

n2

(a) (b) (c) (d)

Example 2.10. (evaluation of polynomials)
We want to express the polynomial

P : (x, y) ↦→ a+ bx+ cy + dz + exy + fxz + gyz + hxyz

as a tensor. From Example 2.2 we know, that the elements of the monomial basis appear in the
tensor

(
1
x

)
⊗
(

1
y

)
⊗
(

1
z

)
=

=

z xz

yz xyz
1 x

y xy

Defining the coefficient tensor for example as

K = =

d f
0 d

a b
c e

K
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we can write the polynomial as the contraction of three copies of (x, y) with the coefficient tensor
K

P : ↦→ K

This is also equivalent to taking the Frobenius scalar product of K and the triple tensor product(
1
x

)
⊗
(

1
y

)
⊗
(

1
z

)
.

Remark 2.1. In algebraic statistics the dual graphs are used and also often contractions with more
than two factors (being thus able to encode canonical/CP-like decompositions as well). See [9].
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3 Introduction to algebraic geometry
Algebraic geometry studies systems of polynomial equations. Interesting for us is the fact that the
set of bounded-rank matrices can be defined by polynomial equations. See example 3.4. Also the
sets of low-rank tensors defined in Section 3.3.7 are of this kind. As we want to do local optimization
on these sets we are interested in the following questions: How can we parametrize the set? Being
at some point on the set, how can we find all possible directions that are tangential to the set? And
finally, how can we parametrize the set of tangents? About half of this section is an overview over
basic algebraic geometry, that is covered in [10]. It is included here to ensure self-containedness.
The other half are applications to matrix and tensor varieties.

3.1 Varieties
We have to start with some definitions, which are almost identical copies from [10]. Monomials in
the variables x1, ..., xd are products of the form

xα1
1 · ... · xαd

d

with αi ∈ N0 which can also be written in multi-index notation as

xα

where x := (x1, ..., xd) and α = (α1, ..., αd). Monomials are usually viewed as functions

(x1, ..., xd) ↦→ xα1
1 · ... · xαd

d .

Polynomials are finite linear combinations∑
α

aαx
α, aα ∈ K

of monomials where usually the coefficients aα are elements of some field or ring. An algebraic
variety is the set of solutions to a system of polynomial equations.

Definition 3.1. Let f1, ..., fk : Kn → Km be polynomials. Then

V (f1, ..., fk) := {x ∈ Kn : fi(x) = 0 ∀i}

is the algebraic variety defined by f1, ..., fk.

Most of this section can be done over any field. Only when it comes to tangent cones we will
have to cite a result that is only known for the field C.

Let us have a look at some examples.

Example 3.1. (unit circle) Let

f : R2 → R :

(
x
y

)
↦→ x2 + y2 − 1.

Then V (f) is the unit circle
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x

y

The next example illustrates, why algebraic varieties are not necessarily submanifolds.

Example 3.2. (crossing lines) Let

f : R2 → R :

(
x
y

)
↦→ (x+ y)(x− y).

Then V (f) is the union of the two diagonals.

x

y

In contrast to manifolds, algebraic varieties are allowed to have crossings. All points that have
a neighborhood that is a submanifold are called smooth points. All other points are called singular
points and their union the singular locus.

Example 3.3. The algebaic variety
V (xz, yz) ⊂ R3

is the union of the xy-plane and the z-axis:

•

See [10, p.7] for more examples with three-dimensional pictures of algebraic varieties. The
following example is the important one for our work.

Example 3.4. (matrix varieties) The set of n × n-matrices of rank at most n − 1 is the set of
singular matrices. They are precisely those with vanishing determinant

Mn×n
≤(n−1) :=

{
A ∈ Kn×n : det(A) = 0

}
.
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3.2 Ideals
This section is not strictly necessary to understand the main contribution of this thesis. But for
the curious reader we want to provide an overview of current algorithmic tools for manipulating
algebraic varieties.

Just as varieties, ideals can also be defined by a set of generating polynomials. There are obvious
and far less obvious connections to varieties as we will see. For a motivation consider an algebraic
variety V defined by the polynomials f and g. This means V is the set of all points where f and g
vanish. Now taking any other polynomial h and x ∈ V we see by

(hf)(x) = h(x)f(x) = h(x) · 0 = 0

that hf also vanishes on V . Furthermore f + g also vanishes on V . To match this phenomenon the
notion of an ideal is defined as:

Definition 3.2. An ideal is a subset of polynomials

I ⊂ K[x1, ..., xn]

satisfying
0 ∈ I,

f, g ∈ I ⇒ f + g ∈ I and

f ∈ I, h ∈ K[x1, ..., xn] ⇒ hf ∈ I.

We can define an ideal as the set of all polynomials that can be obtained from the generators f
and g by multiplication with another polynomials or by addition.

Definition 3.3. [10] Let f1, ..., fk : Kn → Km be polynomials. Then

⟨f1, ..., fk⟩ :=

{
k∑

i=1

hifi : all hi polynomial in x1, ..., xn

}

is the ideal generated by f1, ..., fk.

Unfortunately the ideal generated by f1, ..., fk does not necessarily need to be the set of all
polynomials vanishing on the variety defined by the same fi. A counter example is f : x ↦→ x2 in
C. The ideal generated by x2 does not contain x. However x vanishes whenever x2 vanishes. More
on resolving this issue for algebraically closed fields using the notion of radical ideals can be found
in [10, p.175].

3.3 Tensor varieties
3.3.1 Segre varieties

In this chapter we define the two important building blocks for low-rank tensor varieties of any
flavour. The Segre variety is the variety of rank-1 tensors, whereas the Secant variety is the closure
of the (Minkowski) sum of several varieties.

We have already encountered the Segre variety in Chapter 2. The setting for defining it is the
following: Start with a set of vector spaces V1, ..., Vd.
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Definition 3.4. Then the image of the tensor product

⊗ : V1 × ...× Vd → V1 ⊗ ...⊗ Vd

is called the Segre variety
Seg(V1, ..., Vd).

It is equivalently called the set of tensors of (canonical) rank at most 1.

Let us try to visualize the simplest possible Segre variety, the set of rank-1 matrices in R2×2.

Example 3.5. M2×2
≤1 := Seg(R2,R2) is an algebraic variety. However, removing the origin it

becomes a smooth manifold. Furthermore it is projective in the sense that if A ∈ Seg(R2,R2) so is
αA for every α ∈ R. We know thus that Seg(R2,R2)\{0} is topologically some manifold M times
an open interval (0,∞). The manifold M can be defined as Seg(R2,R2) ∩ S3, i.e. the set of all
rank-1 matrices (

a b
c d

)
of unit norm

a2 + b2 + c2 + d2 = 1.

Now, we need to visualize this subset of S3 := {(a, b, c, d) ∈ R4 : a2 + b2 + c2 + d2 = 1}. Just as
from the sphere S2 we can remove one point and flatten the rest to a disk, we can remove one point
of S3 and flatten the rest to a solid sphere D3. We can think of the boundary of this solid sphere
as the point we have removed. So the whole boundary is identified to one point, let us say to(

−1 0
0 0

)
.

Then Seg(R2,R2) ∩ S3 would contain the matrices - and convex combinations between any two of
them - depicted in Figure 13. The lines connecting matrices correspond to linear combinations of
the matrices at the endpoints, which are also of rank 1.

The matrices
(
1 0
0 0

)
and

(
0 1
0 0

)
are connected by a line in the diagram. This line is the set

of all matrices of the form
1

a2 + b2

(
a b
0 0

)
with a and b from [0, 1], i.e. the convex combinations between the two matrices.

There is no line between
(
1 0
0 0

)
and

(
0 0
0 1

)
because the convex combinations would have

rank 2 and are thus not contained in M2×2
≤1 .

In Figure 13 you can see, that the dashed loop and the fat loop are linked. In Figure 14 we have
drawn the torus untwisted to better see the surface and see that it is indeed topologically a torus.
Having seen all this, we can write it as

M2×2
≤1 ∩ S3 ∼= T2
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Figure 13: Topology of rank-1 matrices ...

(
1 0
0 0

) (
0 1
0 0

) (
−1 0
0 0

)(
0 −1
0 0

)(
−1 0
0 0

)

(
0 0
0 1

)

(
−1 0
0 0

)

(
0 0
0 −1

)

(
−1 0
0 0

)

(
0 0
1 0

)

(
−1 0
0 0

)

(
0 0
−1 0

)

(
−1 0
0 0

)
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Figure 14: ... is a torus

(
1 0
0 0

)

(
−1 0
0 0

)(
0 1
0 0

) (
0 −1
0 0

)

(
0 0
0 −1

)

(
0 0
−1 0

)

(
0 0
1 0

) (
0 0
0 1

)

(
1 0
0 0

)

(
−1 0
0 0

)(
0 −1
0 0

) (
0 1
0 0

)

•
(
−0.5 0.5
−0.5 0.5

)
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where ∼= shall mean homeomorphic (but not ambient isotopic because of the linked circles). To
obtain the projective variety we identify matrix A with −A, thus identifying left and right half of
the torus in Figure 14 by a point reflection along the vertical central axis. It remains that

P
(
M2×2

≤1

)
∼= T2.

Analogously we see that in general the topology of Segre varieties can be characterized by

P
(
Mn1×...×nd

≤1

)
∼= Mn1×...×nd

≤1 ∩ Sn1·...·nd ∼= Sn1−1 × ...× Snd−1.

This result can be found in [11]. Note the compatibility of the fibre product and the product
topology.

3.3.2 Secant varieties

Any tensor of rank 2 or less is by definition of the rank the sum of at most two tensors of rank 1.
The Segre veriety generalizes this construction allowing not only rank-1 tensors to be added but
elements from arbitrary varieties. Even though in the current work we are only interested in the
Segre case, we want the reader to be aware of the general definition.

Definition 3.5. (Zariski closure and secant variety) Given any subset M of Kn, the Zariski closure
M is defined to be the smallest algebraic variety containing the whole set M .

Let X1, ..., Xr be r algebraic (sub-)varieties of Ks. Then the Zariski closure of the sum of the
Xi

Sec (X1, ..., Xr) :=

{
z ∈ Ks : ∃xi ∈ Xi, αi ∈ K : z =

r∑
i=1

αixi

}
is called the Secant variety of (X1, ..., Xr). Define the shorthand form

Seck(X) := Sec (X, ...,X)  
k times

.

Remark 3.1. We have to take the Zariski closure as the sum alone might not be an algebraic variety.
See the following example.

Example 3.6. Consider V (y3 − x2). The union of its secants is R2\
{(

0
y

)
: y < 0

}
. The Zariski

closure is the whole plane R2.

Now we have the necessary tools to define all tensor subvarieties that are of interest to this
work.

3.3.3 Rank one tensors

Tensors of rank 1 play a special role and have the amazing property of being of rank 1 in no matter
which of our tensor formats - CP, TT, HT, Tucker (CP and TT will be defined on following page).
Furthermore the set of all rank 1 tensors is a variety which cannot be said about CP tensors of
higher ranks.

Definition 3.6. (rank 1 tensors) The set of tensors of rank at most 1 (rank 1 tensors and the zero
tensor) is

Mn1×...×nd

≤1 := Seg (Rn1 , ...,Rnd) := img (⊗) ⊂ Rn1×...×nd .
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3.3.4 Matrices of bounded rank

The set of matrices of rank bounded by r

Mn×m
≤r := Sec (Seg (Rn,Rm) , ..., Seg (Rn,Rm))  

r times

is an algebraic variety because it is defined by the determinants of all (r+1)× (r+1) submatrices.

3.3.5 Canonically decomposed (CP) tensors

The frequently used abbreviation CP now commonly stands for canonical polyadic [12]. It denotes
the decomposition in which a tensor is written as a sum of elementary (rank 1) tensors. The
minimum number of summands is called the rank r of the tensor. A formal definition is:

Definition 3.7. (CP tensors) The set of tensors of canonical (CP) rank bounded by r is defined
as

Mn1×...×nd

≤r :=
{
A ∈ Rn1×...×nd : ∃ A1, ..., Ar ∈ Rn1×...×nd : rank(Ai) ≤ 1 and A = A1 + ...+Ar

}
.

Remark 3.2. The secant variety

Sec (Seg (Rn1 , ...,Rnd) , ..., Seg (Rn1 , ...,Rnd))  
r times

includes in general also some tensors of rank greater than r because we have taken the Zariski
closure in the definition of secant varieties. More on this problem can be found in [11, p. 37, 118].
Optimization on this set is investigated in [13].

3.3.6 Tensor trains

Recall the diagrammatic notation from the introduction to tensors in chapter 2.7. TT tensors can
thus be written as:

...• • •

Definition 3.8. The variety of TT tensors of rank bounded by k := (k1, ..., kd−1) can be defined
as

Mn1×...×nd

≤(k1,...,kd−1)
:=

d−1⋂
i=1

Secki

(
Seg

(
Rn1×...×ni ,Rni+1×...×nd

))
.

Matricizing the elements of

Secki

(
Seg

(
Rn1×...×ni ,Rni+1×...×nd

))
produces the variety of matrices of bounded rank

Secki (Seg (Rn1·...·ni ,Rni+1·...·nd))

which is a subset of
Rn1·...·ni ⊗ Rni+1·...·nd .
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3.3.7 Hierarchical tensors

The variety of hierarchical tensors can be defined analogously to the variety of tensor trains. The
notation however neccessitates the use of trees.

Definition 3.9. Let v1, ..., vd be the leaves and w1, ..., wD be the inner nodes of a tree T . Edges
are (unordered) pairs of nodes. Let e1, ..., eD−1 be the edges not connected to a leaf. Removing
an edge ei cuts the tree in two parts, one with leaves v(ji)1 , ..., v(ji)l and the other with leaves
v(ji)l+1

, ..., v(ji)d .

The variety of HT tensors of rank bounded by k := (k1, ..., kD−1) can then be defined as

M(T )n1×...×nd

≤(k1,...,kD−1)
:=

D−1⋂
i=1

Secki

(
Seg

(
Rn(ji)1

×...×n(ji)l ,Rn(ji)l+1
×...×n(ji)d

))
.

See [14] for an alternative definition of an object, that is slightly different, but would work for
our purposes equally well.

3.4 Gröbner bases for the parametrization of tangent cones
In subsequent chapters we will see the derivation of a parametrization of the tangent cones to tensor
train varieties. This derivation will work entirely without the Gröbner basis machinery. However
when we were still lacking a proof and being unsure about the structure of the parametrization,
computing small examples gave hope and the right direction. Therefore we want to include in this
thesis also a reference to the existing (symbolic) computational methods of algebraic geometry.
These methods are able to determine the tangent cone of a given variety at a given point. They
are also capable of verifying a guessed parametrization. The only drawback of these methods we
know of is their enormous computational complexity making it only feasible to investigate the very
smallest examples of TT varieties.

The methods described in this chapter are almost entirely discussed in [10]. Our contribution
amounts to applying them to TT varieties.

3.4.1 Lexicographic ordering

For all that follows we need to define an ordering on the monomials. As is important later for
implicitizing a parametrization, a good choice for our purposes will be a lexicographic ordering
induced by an ordering of the variables. For example

x1 > x2 > x3

would imply
x1x3 > x1x2

and
x1x3 > x2x1x3

just like the ordering of words in an English dictionary.

Definition 3.10. [10] Given two multi indices α = (α1, ..., αn) and β = (β1, ..., βn), we say xα > xβ

in lexicographic order if the leftmost nonzero entry of α− β is positive.
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Having defined an ordering, we can talk of the leading term of a polynomial as the one monomial
that is greatest with respect to the monomial ordering. When writing down polynomials, we usually
order the monomials accordingly.

3.4.2 Division algorithm

The calculation of Gröbner bases is based on the division algorithm for multivariate polynomials.
Given a polynomial f and s polynomials f1, ..., fs to be divided by, we want to write f as

f = a1f1 + ...+ asfs + r

such that all monomials in r are not divisible by any of the leading terms of the fi.
The division algorithm works as follows. Take the leading monomial of f . If there is a leading

monomial of any of the fi dividing it, then do a division step. If not, then add it to the remainder.
See [10] for details.

Example 3.7. Using the ordering x1 > x2 we want to divide f = x1 + x22 by f1 = x21 and f2 = x22.
The first term of f is not divisible by any of the leading terms of the fi so it goes into the

remainder. The second term of f is divisible by f2 and we end up with

f = 1 · f2 + x1.

3.4.3 Buchberger’s algorithm

Buchberger’s algorithm is for polynomial systems of equations what Gauß elimination is for linear
systems. The input is a finite set of polynomials f1, ..., fs. The output (a Gröbner basis) is another
set of polynomials with the same set of solutions and the property that it can (in principle) be
solved using backward substitution. Furtheremore the Gröbner basis can be made unique (reduced
basis) [10, p. 92] to be able to compare the solution sets of two polynomial systems.

In contrast to linear systems the number of polynomials in the Gröbner basis returned by
Buchberger’s algorithm is in general rather large. Here we want to copy the definition of Gröbner
basis from [10].

Definition 3.11. (Gröbner basis) A finite subset G = {g1, ..., gt} of an ideal I is said to be a
Gröbner basis if

⟨LT(g1), ...,LT(gt)⟩ = ⟨LT(I)⟩

where LT(gi) denotes the leading term of gi and LT(I) is the ideal generated by the leading terms
of all polynomials in I.

For the calculation of Gröbner bases we need the so called S-polynomials. Given two polynomials
p1 =

∑
αix

αi and p2 =
∑
βix

βi (in multi-index notation), the S-polynomial of p1 and p2 is a sum

h1p1 + h2p2

such that the leading terms cancel and are both the least common multiple of LT(p1) and LT(p2).
See the example.

26



Example 3.8. We use lexicographic order.

p1 := x1x
2
2 + x1x3

p2 := x21x2x3 + x5

Then we have

S(p1, p2) = x1x3p1 − x2p2 = x21x
2
2x3 − x21x

2
2x3 + x21x

2
3 − x2x5 = x21x

2
3 − x2x5.

Though conceptionally seamingly straight forward, Buchberger’s algorithm was not described
until 1985 in [15] . The starting point is a set of polynomials S = {f1, ..., fs}. They define an ideal
(and thus also an algebraic variety). The goal is to find a Gröbner basis defining the same ideal.
Buchberger’s algorithms works as follows:

Theorem 3.1. (Buchberger’s algorithm) Calculate the S-polynomials of all pairs (fi, fj) for fi, fj ∈
S and divide each of them by all fi ∈ S (The result will be polynomials that are also part of the ideal,
though are hopefully smaller in terms of the monomial order). Add any non-vanishing remainder
to S. Do this process while there are still non-vanishing remainders. The result will be a Gröbner
basis of ⟨f1, ..., fs⟩.

Example 3.9. (Gröbner basis of M3×3
≤1 ) The set of 3× 3-matrices of rank at most 1 is defined by

the 2× 2-minors of the matrix. For

R3×3 ∋ A =

⎛⎝x1 y1 z1
x2 y2 z2
x3 y3 z3

⎞⎠
the defining polynomials are

f1 = x1y2 − x2y1, f2 = x1y3 − x3y1, f3 = x2y3 − x3y2, ...

They already form a Gröbner basis, because all S-polynomials have remainder 0 after division by
all fi. See exemplarily that

S(f1, f2) = f1y3 − f2y2 = −x2y1y3 + x3y1y2 = −y1(x2y3 − x3y2) = −y1f3.

There are more advanced algorithms (notably F4 and F5 [16]) for calculating Gröbner bases that
enable the solution of problems that would be intractible with Buchberger’s algorithms. Faugère’s
algorithms are famous for breaking the HFE challenge 1 and the cyclic 10 problem.

3.4.4 Comparing varieties

Given two sets of generators of the same variety, their Gröbner bases are in general different. This
can have two causes:

1. The sets of generators must not define the same ideal. For example {x} and {x2} definde
the same variety but two different ideals. They are both Gröbner bases. The solution to this
problem is an algorithm from [17] (implemented in Macaulay 2) that computes a Gröbner
basis of the radical (in easy words the simplest ideal defining the same variety) of an ideal.

2. Gröbner bases are not unique. However so called reduced Gröbner bases are. Since [10, p. 92,
Prop. 6] contains a constructive proof for the uniqueness, this problem is also solved.
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3.4.5 Parametrization

The essential idea of tensor decomposition methods is to parametrize a low-dimensional subvariety
/ subset of the tensor space. Thus we are naturally interested in parametrizing whatever subset we
get our hands on. In this chapter we will recall the algebraic geometric notion of a parametrization
and the corresponding algorithmic possibilities.

Example 3.10. The easiest example of a low-rank decomposition is the set

V :=

{(
a b
c d

)
: ad− bc = 0

}
of 2× 2-matrices of rank at most 1. The function

f : (x, y, u, v) ↦→
(
xu yu
xv yv

)
defines a parametrization of V . Note that f is not injective, as

f

(
αx, αy,

1

α
u,

1

α
v

)
= f (x, y, u, v) .

The following will be a running example.

Example 3.11. Consider the variety

V :=

{(
x
y

)
: x2 = y3

}
.

See Figure 16 for a picture. It is the image of the function

f : t ↦→
(
t3

t2

)
.

We call f a parametrization of V .

In algebraic geometry the definition of a parametrization is taylored to suit a theorem that states
how to obtain an implicit description of a variety given a parametrization. All of what follows is
also subject of and heavily influenced by [10, Chapter 3].

Definition 3.12. A rational function

f : (t1, ..., tr) ↦→

⎛⎜⎝f1(t1, ..., tr)...
fn(t1, ..., tr)

⎞⎟⎠
is called a parametrization of a variety

V = {(x1, ..., xn) : gi(x1, ..., xn) = 0 ∀i = 1, ...,m}

if the image of f is contained in V but is not contained in any proper subvariety of V . Rational
means, that the fi are quotients of polynomials.

Remark 3.3. For parametrizing TT, HT and Tucker varieties polynomial parametrizations suffice
and for everything in this work we do not need rational but only polynomial parametrizations.
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3.4.6 Parametrization of TT varieties

As in Definition 2.5, we write A(n1...ni)×(ni+1...nd) for the matricization (i.e. combining several
indices into one using lexicographic order) of A ∈ Rn1×...×nd and An1×...×nd for the tensorization.
Define the shorthand AL := An1×(n2...nd) and AR := A(n1...nd−1)×nd .

In subsequent chapters we will use the TT product defined below. In the matrix case it is
equivalent to the matrix product and it allows us with little effort to rigorously describe many
tensor diagrams. Figure 15 shall serve as a dictionary between tensor diagrams and the TT product
notation.

Figure 15: tensor diagrams

A1 A2 A3

= A1A2A3

A1

B1

A2

B2

A3

B3

= ((A1A2A3)
R)T (B1B2B3)

R

Definition 3.13. We define a scalar product on Rn1×...×nd as the standard scalar product on
Rn1...nd . This induces a norm and the notion of orthogonality. We denote the TT product of the
two tensors A ∈ Rn1×...×ni×k and B ∈ Rk×ni+1×...×nd by

AB :=
(
ARBL

)n1×...×nd ∈ Rn1×...×nd .

The entries of this tensor are

(AB)(j1, ..., jd) :=

k∑
m=1

A(j1, ..., ji,m)B(m, ji+1, ..., jd).

The TT product is associative. It is equivalent to the matrix product if A and B are matrices.
The definition of the TT variety from Section 3.3.6 can be rewritten as:

Definition 3.14. The variety of TT tensors [18] of order d and dimensions (n1, ..., nd) of rank
bounded by k = (k1, ..., kd−1) can also be defined as

Mn1×...×nd

≤(k1,...,kd−1)
:= {A ∈ Rn1×...×nd : ∀i : rank

(
A(n1...ni)×(ni+1...nd)

)
≤ ki}.

The equivalence to the original Definition 3.8 follows by matricization. Define the manifold of TT
tensors of order d and dimensions (n1, ..., nd) of rank exactly (k1, ..., kd−1) as

Mn1×...×nd

=(k1,...,kd−1)
:= {A ∈ Rn1×...×nd : ∀i : rank

(
A(n1...ni)×(ni+1...nd)

)
= ki}.

A proof for the TT manifold being a smooth quotient manifold can be found in [19].
Any tensor X from Mn1×...×nd

≤(k1,...,kd−1)
can be decomposed as a product X = A1...Ad with A1 ∈

Rn1×k1 , Ai ∈ Rki−1×ni×ki ∀i = 2, ..., d − 1 and Ad ∈ Rkd−1×nd . This defines a parametrization
(A1, ..., Ad) ↦→ A1 · ... ·Ad of the TT variety. We will need this fact in Lemma 4.4. The proof is not
difficult and can be found for example in [18, Thm. 2.1].
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Parametrizing algebraic varieties in general however is difficult and not all varieties admit a
parametrization!

For the inverse of parametrizing there is an algorithm, the subject of the following chapter.

3.4.7 Implicitization

Given a parametrization, the process of finding the corresponding variety is called implicitization.
Let us look at the previous example again.

Example 3.12. (continued) Suppose we have a parametrization

f : t ↦→
(
t3

t2

)
.

This defines a variety in K3, namely

W :=

⎧⎨⎩
⎛⎝tx
y

⎞⎠ : x = t3, y = t2

⎫⎬⎭ .

See Figure 16.

Figure 16: W seen from different points of view

The projection V of W onto the x, y-plane is the variety that is parametrized by f . The result
of this projection is called first elimination ideal because it eliminates the first variable, here t.
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Algorithm 1 [10, Ch. 3.3] Input: parametrization of f
Output: implicit description of variety V whose parametrization is f
Calculate a Gröbner basis of V (x1−f1(t1, ..., tr), x2−f2(t1, ..., tr), ...) with respect to a lexicographic
(not graded) order where ti > xj ∀i, j. Prune all polynomials of the Gröbner basis that contain
ti’s.

Example 3.13. (continued) In our example we would do the following Gröbner basis calculation

g1 = t3 − x

g2 = t2 − y

g3 = S(g1, g2) = t3 − x− (t3 − ty) = ty − x

g4 = S(g2, g3) = t2y − y2 − (t2y − tx) = tx− y2

g5 = S(g3, g4) = txy − y3 − (txy − x2) = x2 − y3

We see that (g1 = 0 ∧ g2 = 0) implies g5 = 0. So the projection of V (g1, g2) onto the x, y-plane is
contained in V (g5). That V (g5) is indeed the smallest variety containing the projection is ensured
by Theorem 1 in [10, p. 130, Chapter 3.3].

3.4.8 Algebraic tangent cones

The notion of the tangent cone is quite intuitive. It is the set of all tangent directions, i.e. the
directions in which one can start a curve that lies on the variety. This definition can be formalized
as:

Definition 3.15. (e.g. used in [20]) The tangent cone of M at A is the set of the first non-zero
derivatives of all analytic arcs in M going through A

{v ∈ RN : ∃n ∈ N, γ : [0, 1] → M real analytic :

γ(0) = A, γ(n)(0) = v and ∀i < n : γ(i)(0) = 0}.

Example 3.14. (also published in [21]) The first derivatives do not suffice as our running example
can show. Consider the variety

M :=
{
(x, y) ∈ R2 : x2 = y3

}
and an analytic arc γ with values in M such that γ(0) = (0, 0). Then γ̇(0) always vanishes. Verify
this by plugging the analytic arc γ : t ↦→ (a1t+ a2t

2 + ..., b1t+ b2t
2 + ...) into the defining equation

and compare coefficients. But the tangent cone of M at (0, 0) is {(0, a), a ≥ 0} which is more than
{(0, 0)}. This example also works in the complex case. For example γ : t ↦→ (t

3
2 , t) has the desired

tangent vector but is not analytic.

For real algebraic varieties (and thus also for complex ones via C ∼= R2, analytic in real and
imaginary part) the previous definition is equivalent to the following via [22].
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Definition 3.16. (e.g. used in [1]) The tangent cone of an algebraic variety M ∈ RN at a point
A ⊂ M is the set of all vectors that are limits of secants through A:

TAM := {ξ ∈ RN : ∃(xn) ⊂ M, (an) ⊂ R+ s.t. xn → A, an(xn −A) → ξ}.

For complex varieties the first two definitions are also equivalent to the algebraic tangent cone
[10, p. 500, Chapter 9.7, Theorem 6]. For defining the latter, we need to say what we mean by a
smallest homogeneous component. Given a polynomial f its monomials can be divided into sets of
monomials of equal total degree. For example

f = x2 + xy + x2y + xy2 + x2y2

has x2 and xy of total degree 2, x2y and xy2 of total degree 3 and x2y2 of total degree 4. Take
the set with the monomials of smallest total degree and sum them up. The result is called smallest
homogeneous component fmin of f .

We can translate a variety to bring any point p to the origin by redefining its defining polynomials
as

fp(x) := f(x+ p).

Definition 3.17. The tangent cone of a variety V at the origin is defined by the minimal homo-
geneous components of all the elements in the ideal of V

V (fpmin
, f ∈ I(V )).

Remark 3.4. Determining the tangent cone algorithmically is hindered mainly by the fact, that
minimal homogeneous components of all elements of the ideal, not only of some defining polynomials
are required. However using Gröbner bases it is possible to compute the algebraic tangent cone as
explained in Proposition 4 of [10, p. 497, Chapter 9.7] and implemented in Macaulay 2.

3.4.9 Experimental verification of parametrization candidate for the tensor train tan-
gent cone

We now have all the machinery to do the following:
Given some fixed TT format and a fixed point in this format, determine whether a guess for the

parametrization of the tangent cone at this point is correct.

Example 3.15. Let M3×3×3
≤(2,2) ⊂ C3×3×3 be the variety of 3 × 3 × 3-tensors of TT rank at most

(2, 2).

p =

⎛⎝1
0
0

⎞⎠⊗

⎛⎝1
0
0

⎞⎠⊗

⎛⎝1
0
0

⎞⎠
lies on this variety. In fact by linear transformations in each dimension separately we can transform
any rank 1 point to p.

Defining A1 =
(
1 0 0

)
∈ R3×1×1, A2 =

(
1 0 0

)
∈ R1×3×1 and A3 =

(
1 0 0

)
∈ R1×1×3

we can write p = A1A2A3 in TT product notation. Our early guess (that turned out to be true in
general) for the tangent cone was

TCpM3×3×3
≤(2,2) =

⎧⎨⎩(A1 U1 X1

)⎛⎝A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠⎛⎝X3

V3
A3

⎞⎠⎫⎬⎭
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with dimensions of Ui, Vi, Zi equal to 3− 2 = 1. Here block matrix notation is used with respect to
the first and last indices of the tensors. Writing this explicitly yields tangent vectors of the form⎛⎝1 t0 t3

0 t1 t4
0 t2 t5

⎞⎠C

⎛⎝t18 t19 t20
t21 t22 t23
1 0 0

⎞⎠
where the three coronal slices (slices with respect to the second index) of C are⎛⎝1 t6 t9

0 t12 t15
0 0 1

⎞⎠ ,

⎛⎝0 t7 t10
0 t13 t16
0 0 0

⎞⎠ and

⎛⎝0 t8 t11
0 t14 t17
0 0 0

⎞⎠ .

Now using the algorithm for determining the algebriac tangent cone, we can calculate a Gröbner
basis of TCpM.

Using the algorithm for implicitization, we can calculate a Gröbner basis of the variety that
is parametrized by our guessed parametrization. Both can be compared if in reduced form. A
Macaulay 2 [23] program implementing all this is:

R=QQ[t_(0) .. t_(23), x_(0,0,0) .. x_(2,2,2), MonomialOrder=>Eliminate 24];
A=genericMatrix(R,x_(0,0,0),3,9);
B=matrix{{1+x_(0,0,0)-x_(0,0,0), 0, 0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0}};
C=A+B;
I1=minors(3,C);
D=genericMatrix(R,x_(0,0,0),9,3);
E=matrix{{1+x_(0,0,0)-x_(0,0,0), 0, 0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},
{0,0,0},{0,0,0},{0,0,0},{0,0,0}};
F=D+E;
I2=minors(3,F);
I3=I1+I2;
I4 = tangentCone(I3);

G=matrix{{1,t_(0),t_(3)},{0,t_(1),t_(4)},{0,t_(2),t_(5)}};
K=matrix{{t_(18), t_(19), t_(20)},{t_(21),t_(21),t_(23)},{1,0,0}};
H=matrix{{1,t_(6),t_(9)},{0,t_(12),t_(15)},{0,0,1}};
I=matrix{{0,t_(7),t_(10)},{0,t_(13),t_(16)},{0,0,0}};
J=matrix{{0,t_(8),t_(11)},{0,t_(14),t_(17)},{0,0,0}};
L=G*H*K;
M=G*I*K;
N=G*J*K;
P=L||M||N;
Q=P-D;
I5 = ideal(Q);{*parametrized set*}

I6=ideal(selectInSubring(1,gens gb I5));{*Implicitization*}
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{*We’re considering the parametrization

(A1,U1,X1) (A2,U2,X2) (X3)
(0 ,Z2,V2) (V3)
(0 ,0 ,A2) (A3)

i
n a TT-format of rank (2,2) in the space of 3x3x3-tensors.
The rank-deficient tensor is any tensor of rank 1.
For computation we use (1,0,0)ox(1,0,0)ox(1,0,0), which can be
translated to any other rank-1 tensor by a rank-preserving
and invertible linear transformation.

Is the parametrization a subset of the tangent cone?*}
isSubset(I4,I6) {*Is the tangent cone a subset of the parametrization?*}
isSubset(I6,I4) {*Known to be true by Lemma*}

This program comes to the conclusion that at least for this special case the parametrization of
the tangent cone is correct. The output is

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : input "TangentConeTT"
[...]
ii25 : isSubset(I4,I6) {*Is the tangent cone a subset of the parametrization?*}
oo25 = true
ii26 : isSubset(I6,I4) {*Known to be true by Lemma*}
oo26 = true

In the following chapter we will prove the general case analytically.
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4 Parametrizing tangent cones of tensor train varieties
The content of the current chapter is a nearly one-to-one copy of [21].

After having collected evidence for the structure of the tangent cone in the previous chapter, this
one contains a proof for the parametrization of tangent cones to TT varieties of arbitrary dimension
(Theorem 4.1). It is the key result of this thesis. It results in the surprising Corollary 4.2, stating
that the tangent cone of TT varieties is the intersection of tangent cones of the matrix varieties
that are defining the TT format. In general the intersections of tangent cones does not equal the
tangent cone of the intersection as Example 4.1 will show. It is open, whether this corollary can be
proven in an elegant algebraic way.

However more interestingly for numerical analysis, the knowledge about the structure of the
tangent cone enables a Łojasiewicz-based convergence proof for Riemannian line search methods,
the topic of Chapters 5 and 6.

The proof of the main result (Theorem 4.1) uses nothing but the orthogonal projection and the
corresponding result for the matrix case as proof techniques.

Lemmata 4.1 and 4.2 are trivial but essential for the proof of our main result.

Lemma 4.1.
Mn1×n2×n3

≤(k1,k2)
= Mn1×(n2n3)

≤k1
∩M(n1n2)×n3

≤k2

Proof. by definition.

On a subset we can only define a subset of the secants and thus a subset of the tangents.

Lemma 4.2. For every A ∈ Mn1×n2×n3

≤(k1,k2)
we have

TAMn1×n2×n3

≤(k1,k2)
⊂ TAMn1×(n2n3)

≤k1

and thus
TAMn1×n2×n3

≤(k1,k2)
⊂ TAMn1×(n2n3)

≤k1
∩ TAM(n1n2)×n3

≤k2
.

Proof. by definition.

Definition 4.1. Define the range of A ∈ Rn1×...×ni×k as

range(A) := {a ∈ Rn1×...×ni : ∃b ∈ Rk : a = Ab}.

4.1 Parametrization of the tangent cone
We will recall the matrix case as a guiding example and as a necessary prerequisite. Along the way,
we will introduce all ideas for the proof of the general case. In the following we will intentionally
allow submatrices to have zero rows or columns. Consider the matrix variety

Mn×m
≤k+s, s ≥ 0

i.e. the set of n×m matrices of rank at most k+ s. Let k ≤ min(m,n). Let further A ∈ Rn×k and
B ∈ Rk×m have full rank. Then AB has rank k and is a singular point of Mn×m

≤k+s. As for example
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shown in [1] (compare also to [24, p.256]), any tangent vector in the tangent cone at AB can be
decomposed as

X = AY +XB + UV =
(
A U X

)⎛⎝ Y
V
B

⎞⎠
with U ∈ Rn×s and V ∈ Rs×m. The converse is true by the following: The analytic arc

γ : t ↦→
(
A+ tX tU

)( B + tY
V

)
lies in Mn×m

≤k+s and its derivative is γ̇(0) = AY + XB + UV . Use
(
γ
(
1
ℓ

))
N∋ℓ≥N

to see, that γ̇(0)
lies in the tangent cone.

We can assume ATU = 0 (i.e. the columns of U are orthogonal to the columns of A), V BT = 0
and either ATX = 0 or Y BT = 0 by the following argument. PA := AA† is the orthogonal
projector onto range(A), where A† denotes the Moore-Penrose Pseudoinverse. Defining U̇ := A†U
and Û := (I − PA)U we can decompose

U = PAU + (I − PA)U = AA†U + Û = AU̇ + Û (2)

where Û is orthogonal to A, i.e. AT Û = 0. Decomposing V and X in the same way, we can write
X = AY + (AẊ + X̂)B + (AU̇ + Û)(V̂ + V̇ B) = A(Y + ẊB + U̇ V̂ + U̇ V̇ B) + X̂B + Û V̂ . We can
furthermore assume U and V to have full rank by choosing them from Rn×s̃ and Rs̃×m respectively
with s̃ minimal. We introduce a definition for this, because we will need it in the tensor case.

Definition 4.2. Let A ∈ Rn×m be a matrix of rank k and A1 ∈ Rn×k, A2 ∈ Rk×m be such that
A = A1A2. Call for the purpose of this paper

X = A1Y +XA2 + UV

an s-decomposition (with respect to A1 and A2) of the matrix X ∈ Rn×m if U ∈ Rn×s, V ∈ Rs×m,
AT

1X = 0, AT
1 U = 0, V AT

2 = 0 and U and V have full rank s.

Remark 4.1. The s-decomposition depends on A1 and A2. Whether X admits one depends only
on A (and s).

Lemma 4.3. Let X ∈ Rn×m. It admits an s-decomposition with respect to A1 ∈ Rn×k and
A2 ∈ Rk×m if and only if it lies in the tangent cone of Mn×m

k+s at A := A1A2 but not in the tangent
cone of Mn×m

k+s−1 at A. In other words, for every matrix in the tangent cone of Mn×m
k+S at A there

is a unique integer 0 ≤ s ≤ S such that it admits an s-decomposition with respect to A.

Proof. See above.

Remark 4.2. In the following we will allow matrices and tensors that have no entries because one
or more of the dimensions is zero.

As a first step, we will prove the converse (Lemma 4.4) of our main result (Theorem 4.1) as the
proof is completely analogous to the matrix case.
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Lemma 4.4. Assume A ∈ Mn1×...×nd

=(k1,...,kd−1)
, i.e. there are A1 ∈ Rn1×k1 , Ai ∈ Rki−1×ni×ki ∀i =

2, ..., d− 1 and Ad ∈ Rkd−1×nd such that A = A1...Ad. If a tensor X can be factorized as

X =
(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ad−1 Ud−1 Xd−1

0 Zd−1 Vd−1

0 0 Ad−1

⎞⎠⎛⎝ Xd

Vd
Ad

⎞⎠
with block matrix dimensions (ki + si + ki)× (ki+1 + si+1 + ki+1) then it is in the tangent cone of
Mn1×...×nd

≤(k1+s1,...,kd−1+sd−1)
at A1...Ad.

Figure 17: Decomposition of a tangent vector

A1

k1

U1

s1

X1

k1

0k1

k2

0

s2

A2

k2

0· s1 Z2 V2

A2k1 U2 X2

0 0 Ad−1

0... Zd−1 Vd−1

Ad−1 Ud−1 Xd−1

Ad

Vd·

Xd

Proof. The curve
γ : (−ε, ε) → Mn1×...×nd

≤(k1+s1,...,kd−1+sd−1)
: t ↦→(

A1 + tX1 U1

)( A2 + tX2 U2

tV2 Z2

)
...

(
Ad−1 + tXd−1 Ud−1

tVd−1 Zd−1

)(
Ad + tXd

tVd

)
is analytic and has X as its first derivative. See this by differentiating γ in t = 0 using the product
rule. Use Definition 3.16 for the tangent cone with the sequence

(
γ
(
1
ℓ

))
N∋ℓ≥N

.

What follows is a technical lemma that facilitates proving both, the case for order 3 TT varieties
as well as the inductive step for arbitrary order. Its first two assumptions (equations (3) and (4))
arrive from applying the matrix version to the two matricizations with respect to index 1 and 3.
The idea of the proof is the following: Represent an arbitrary tangent vector as the tangent vector
of the matricizations using Lemma 4.2. Then decompose using the result on matrix tangent cones
above. Orthogonalizing with respect to A1 and A3 allows us to decompose the tangent vector
into an orthogonal sum and compare the orthogonal components separately. Recall the notation
AL := An1×(n2...nd) and AR := A(n1...nd−1)×nd .

Lemma 4.5. Let A ∈ Mn1×n2×n3

=(k1,k2)
be a (possibly singular) point in Mn1×n2×n3

≤(k1+s1,k2+s2)
(s1, s2 ≥ 0).

Consider further a decmposition A = A1A2A3 into the three tensors A1 ∈ Rn1×k1 , A2 ∈ Rk1×n2×k2

and A3 ∈ Rk2×n3 . Assume the orthogonality of A1 and A2, AT
1 A1 = I,

(
AR

2

)T
AR

2 = I. Let
X ∈ Rn1×n2×n3 be a tensor whose matricizations admit the s̃1-decomposition

Xn1×n2n3 = A1Y
k1×n2n3 +X(A2A3)

k1×n2n3 + UVs̃1×n2n3 (3)
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and the s̃2-decomposition

Xn1n2×n3 = (A1A2)
n1n2×k2T + Sn1n2×k2A3 +On1n2×s̃2P (4)

with s̃1 ≤ s1 and s̃2 ≤ s2. Then X is decomposable as

X =
(
A1 U X

)⎛⎝ A2 Ȯ Ṡ

0 Z2 V̇
0 0 A2

⎞⎠⎛⎝ T
P
A3

⎞⎠ (5)

with Ȯ = A†
1O, Ṡ = A†

1S, V̇ = VA†
3 and Z2 = U †(O−A1Ȯ). In particular we have the orthogonality

statements
(
AR

2

)T
ȮR = 0,

(
AR

2

)T
ṠR = 0,

(
V̇ A3

)L (
(A2A3)

L
)T

= 0. We also find that Z2P+V̇ A3

and A1Ȯ + UZ2 have full rank and the equality

(
A1 U X

)⎛⎝ A2 Ȯ Ṡ

0 Z2 V̇
0 0 A2

⎞⎠ =
(
A1A2 S O

)
holds.

Remark 4.3. If one or two of the si is zero, then U,V or O, P and the corresponding submatrices
in Equation 5 need to be removed. The decompositions (3) and (4) are not symmetric versions of
one another in the sense that Y and T are both not orthogonalized but X and S are (see Definition
4.2). Therefore Y cannot play the same role as S. Note also that Y does not appear in equation
(5).

Proof. Define Ẏ := YA†
3, V̇ := VA†

3, Ṫ := TA†
3, Ṡ := A†

1S and Ȯ := A†
1O, where A† denotes

the Moore-Penrose Pseudoinverse and can be replaced by AT for orthogonal matrices and by
AT (AAT )−1 for full rank matrices with more columns than rows. Then we can decompose Y,
V, S, O and T into

Y = Ŷ + Ẏ A3, V = V̂ + V̇ A3, O = Ô +A1Ȯ, S = Ŝ +A1Ṡ and T = T̂ + ṪA3.

The hat-wearing variables are orthogonal to A1 or A3 respectively:

Ŷ AT
3 = 0, V̂ AT

3 = 0, AT
1 Ô = 0, AT

1 Ŝ = 0, T̂AT
3 = 0.

Then we can write the tangent vector as an orthogonal sum (w.r.t. the scalar product on Rn1n2n3)
in the four spaces

range(A1)⊗ Rn2 ⊗ range(AT
3 ),

range(A1)⊗ Rn2 ⊗ range(AT
3 )

⊥,

range(A1)
⊥ ⊗ Rn2 ⊗ range(AT

3 ),

range(A1)
⊥ ⊗ Rn2 ⊗ range(AT

3 )
⊥.

Rewriting equations (3) and (4) yields

X = A1Ẏ A3 +A1Ŷ + (XA2 + UV̇ )A3 + UV̂ (6)
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and
X = A1(A2Ṫ + Ṡ)A3 +A1(A2T̂ + ȮP ) + ŜA3 + ÔP (7)

respectively. Both representations need to be equal. Because they are orthogonal sums in the same
four spaces, each summand has to be equal to the corresponding summand in the other sum. In
particular we have

ÔP = UV̂ .

By defining Z2 := U †Ô, we can write

UV̂ = ÔP = UZ2P (8)

and see that Z2 = V̂ P † (by multiplying equation (8) by the full rank matrices U † and P †). Using
the first and second summand of equation (7), the third summand of equation (6) and equation (8)
we assemble the desired representation from equation (5)

X = A1ṠA3 +A1A2T +A1ȮP +XA2A3 + UV̇ A3 + UZ2P

with all the desired properties. See this in the following way: A1Ȯ + UZ2 = A1Ȯ + Ô =

O is orthogonal to A1A2, therefore 0 =
(
(A1A2)

R
)T

OR =
(
(A1A2)

R
)T (

A1Ȯ + UZ2

)R
=(

(A1A2)
R
)T (

A1Ȯ
)R

=
(
AR

2

)T
ȮR. And analogously for Z2P+ V̇ A3 = V and A1Ṡ+UV̇ +XA2 =

S (by XA2 + UV̇ = Ŝ from equations (20) and (7)).

We can now state our main result for arbitrary TT varieties. Note that the condition
(
AR

i

)T
UR
i =

0 in the theorem is equivalent to
(
(A1...Ai)

R
)T

(A1...Ai−1Ui)
R

= 0 because we assumed the Ai

to be orthogonalized. Orthogonalizing the Ai is not strictly necessary for the statement. It makes
the inductive step in the proof of the theorem easier and is also neccessary to prove Lemma 4.6,
which results in the convergence proof. Where si = 0 the corresponding submatrices are meant to
be removed.

Theorem 4.1. Let A ∈ Mn1×...×nd

=(k1,...,kd−1)
be a (possibly singular) point in Mn1×...×nd

≤(k1+s1,...,kd−1+sd−1)

(si ≥ 0) and let A1 ∈ Rn1×k1 , A2 ∈ Rk1×n2×k2 ,... and Ad ∈ Rkd−1×nd be tensors such that
A1...Ad = A and AT

1 A1 = I,
(
AR

i

)T
AR

i = I ∀i = 2, ..., d − 1. Then any vector in the tangent cone
of Mn1×...×nd

≤(k1+s1,...,kd−1+sd−1)
at the point A1...Ad can be written as the TT tensor

(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ad−1 Ud−1 Xd−1

0 Zd−1 Vd−1

0 0 Ad−1

⎞⎠⎛⎝ Xd

Vd
Ad

⎞⎠ (9)

with block matrix dimensions (ki + si + ki)× (ki+1 + si+1 + ki+1). It is possible to
enforce the orthogonality conditions

(
AR

i

)T
UR
i = 0 ∀i,

(
AR

i

)T
XR

i = 0 ∀i ̸= d and

(ViAi+1...Ad)
L
(
(Ai...Ad)

L
)T

= 0 ∀i.
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Figure 18: proof of the theorem

A2 AdA1 ... −→contract A2 A3...AdA1 −→matricize A2 A3...AdA1

↓ Lemma 4.5

( A1 U X )
(

A2 Ȯ Ṡ

0 Z2 V̇
0 0 A2

)(
T
P

A3...Ad

)
= ( A1A2 S O )

(
T
P

A3...Ad

)

↓ contract and matricize

A4...AdA1A2A3

↓ matrix case [24, 20, 1]

( A1A2A3 S2 O2 )
(

T2
P2

A4...Ad

)
Lemma 4.5 ... Induction

Proof. The idea of the proof is illustrated in Figure 18. Applying the matrix version of this the-
orem [20, 1, Thm 3.2] or equivalently Lemma 4.3 to the matricizations from Mn1×(n2...nd)

≤(k1+s1)
and

to M(n1n2)×(n3...nd−2)
≤(k2+s2)

gives us the two si-decompositions needed to apply Lemma 4.5 and can
decompose the tangent vector in the form

X =
(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠⎛⎝ T3
P3

A3...Ad

⎞⎠
with U1 andX1 orthogonal to A1, the two matrices U2 andX2 orthogonal to A1, (V2A3)

L orthogonal
to (A2A3)

L from the left and right respectively and A1U2 + U1Z2 having full rank. Using this as
inductive basis we continue by proving the inductive step: Assume that X has the decomposition

X =
(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ai Ui Xi

0 Zi Vi
0 0 Ai

⎞⎠⎛⎝ Ti+1

Pi+1

Ai+1...Ad

⎞⎠
with

(
AR

i

)T
UR
i = 0 ∀i,

(
AR

i

)T
XR

i = 0 ∀i and (ViAi+1...Ad)
L
(
(Ai...Ad)

L
)T

= 0 ∀i. Then we see
that in the contraction

(
A1...Ai B C

)
:=
(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ai Ui Xi

0 Zi Vi
0 0 Ai

⎞⎠ (10)

BR and CR are both orthogonal to (A1...Ai)
R from the left, i.e.

(
(A1...Ai)

R
)T

BR = 0 and(
(A1...Ai)

R
)T

CR = 0. We thus have the first assumption (equation (3)) of Lemma 4.5 for the

variety M(n1...ni)×ni+1×(ni+2...nd)
≤(ki+si,ki+1+si+1)

. The second assumption follows by the matrix version from [1].
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Thus we can apply Lemma 4.5 to achieve the decomposition

X =
(
A1...Ai B C

)⎛⎝ Ai+1 Ui+1 Xi+1

0 Zi+1 Vi+1

0 0 Ai+1

⎞⎠⎛⎝ Ti+2

Pi+2

Ai+2...Ad

⎞⎠ .

Combining this with equation (10) completes the inductive step and the proof of Theorem 4.1.

Remark 4.4. For parametrizing the tangent cone, we use the same number of parameters as in the

parametrizations of the TT variety. Each block
(
Ui Xi

Zi Vi

)
is of size (ki−1 + si−1)× (ki + si).

The tangent cone is a local approximation of the variety and thus has the same dimension
(dimension is defined as the dimension of the smooth part of the variety). We will see in Section
4.2 that even after factoring redundancy the dimensions still match.

Lemma 4.6. Evaluating the expression

(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ad−1 Ud−1 Xd−1

0 Zd−1 Vd−1

0 0 Ad−1

⎞⎠⎛⎝ Xd

Vd
Ad

⎞⎠
for the tangent cone parametrization yields

A1...Ad−1Xd +A1...Ad−2Xd−1Ad + ...+X1A2...Ad

+A1...Ad−2Ud−1Vd +A1...Ad−3Ud−2Vd−1Ad + ...+ U1V2A3...Ad

+A1...Ad−3Ud−2Zd−1Vd + ...+ U1Z2V3A4...Ad

...
+U1Z2...Zd−1Vd

(11)

where all summands are pairwise orthogonal in the standard scalar product on Rn1...nd .

Remark 4.5. An ALS algorithm only uses directions from the first line of this decomposition. The
DMRG algorithm additionally uses directions from the second line. See [25] for a study of both,
ALS and DMRG.

We can deduce, that in the case of TT varieties the intersection of the tangent cones is the
tangent cone of the intersection.

Corollary 4.2. ⋂
i=1,...,d−1

TAM(n1...ni)×(ni+1...nd)
≤ki

⊂ TAMn1×...×nd

≤(k1,...,kd−1)

and thus
TAMn1×...×nd

≤(k1,...,kd−1)
=

⋂
i=1,...,d−1

TAM(n1...ni)×(ni+1...nd)
≤ki

.

Proof. If
X ∈

⋂
i=1,...,d−1

TAM(n1...ni)×(ni+1...nd)
≤ki
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then by Lemma 4.5 we can find coefficient tensors such that we can write X in our parametrization.
But then by Lemma 4.4

X ∈ TAMn1×...×nd

≤(k1,...,kd−1)
.

This corollary was unexpected because of the following example.

Example 4.1. The tangent cone of the intersection is not always equal to the intersection of the
tangent cones. Consider the plane M := {(x, y, z) ∈ R3 : x = 0} and the cylinder N := {(x, y, z) ∈
R3 : (x− 1)2 + y2 = 1} and the point (0, 0, 0) ∈ N ∩M. Being the line where both varieties touch,
the tangent cone TAM of M at A is the same as the tangent cone of N at A, namely the y-z-plane.
However the tangent cone of M∩N = {(x, y, z) ∈ R3 : x = y = 0} at A is only the z-axis.

We can show that the issue raised in example 3.14 is unimportant for TT varieties. Namely:

Corollary 4.3. The tangent cone to a TT variety is equal to the set of all first derivatives to
analytic arcs.

Proof. By Theorem 4.1 every tangent vector can be written in the form

(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ad−1 Ud−1 Xd−1

0 Zd−1 Vd−1

0 0 Ad−1

⎞⎠⎛⎝ Xd

Vd
Ad

⎞⎠
and by Lemma 4.4 this is the first derivative of the analytic curve

γ : t ↦→

(
A1 + tX1 U1

)( A2 + tX2 U2

tV2 Z2

)
...

(
Ad−1 + tXd−1 Ud−1

tVd−1 Zd−1

)(
Ad + tXd

tVd

)
.

The converse is trivial by using the sequence
(
η
(

1
m

))
N∋m≥N

for an analytic curve η.

4.2 Uniqueness and dimension
In which sense is the representation given in Theorem 4.1 unique? To answer this question, we
revisit the matrix case. Consider a rank-k matrix A, that can be decomposed into two matrices of
full rank A = A1A2. As we have seen in the previous section, any tangent vector at A in M≤k+s

can be written in the form
X = A1Y +XA2 + UV

with X and U orthogonal to A1 and with V orthogonal to A2. We furthermore imposed the
restriction, that the dimension s̃ of U and V shall be as small as possible. This is equivalent to
demanding U and V to have full rank.

In this representation X and Y are uniquely defined by

Y := A†
1X

and
X := (X −A1Y )A†

2. (12)
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U and V however are not uniquely defined. The product UV is equal to the remainder

UV = X −A1Y −XA2.

How this remainder is factorized however is subject to some redundancy. We can introduce a big
identity between the two. If G is an invertible s̃× s̃ matrix, then

(UG)(G−1V ) = UV

where UG and G−1V admit the same orthogonality restrictions as are imposed on U and V above
respectively. This is a well-known technique, that has previously been used in [19] in the setting of
quotient manifolds through Lie group actions.

These considerations generalize in a straight-forward way to the TT case. For example in the
order 3 case, an element of the Lie group consists of the two matrices G ∈ Rs̃1×s̃1 and F ∈ Rs̃2×s̃2 .
The result of its action is

(
A1 U1G X1

)⎛⎝ A2 U2F X2

0 GZ2F GV2
0 0 A2

⎞⎠⎛⎝ X3

FV3
A3

⎞⎠ .

The action does not affect any of the orthogonality properties mentioned in Theorem 4.1. Note
how Z2 is not a matrix but a tensor. Therefore the actions from left and right do not permit to
simplify the representation in the seemingly possible way (forcing it to be "diagonal").

We want to count the dimensions of the TT variety

Mn1×...×nd

≤(k1+s1,...,kd−1+sd−1)
(13)

and its tangent cone
TA1...Ad

Mn1×...×nd

≤(k1+s1,...,kd−1+sd−1)
(14)

at an arbitrary, possibly singular point

A1...Ad ∈ Mn1×...×nd

=(k1,...,kd−1)
.

A parametrized variety is irreducible [10, p.199] and thus its smooth part has constant dimension
[26, p.101f]. Therefore the dimension of the variety (13) is the dimension of its smooth part, that
is, the dimension of the manifold

Mn1×...×nd

=(k1+s1,...,kd−1+sd−1)

which is known to be
n1r1 + r1n2r2 + ...+ rd−1nd − r21 − ...− r2d−1. (15)

Here the positive terms count the degrees of freedom in the parametrization and the negative terms
count the dimension of the Lie group action that keeps the tensor invariant. See [19] for the rigorous
proof.

For counting the dimensions of the tangent cone (14) we first find a smooth point on it. Consider
the parametrization (9). The Ui are orthogonal to the Ai from the left in the standard scalar
product and Vi are orthogonal to the Ai from the right in the scalar product defined by Ai+1...Ad.
Choosing all Ui to have full rank si and all Vi to have full rank si−1 - combined with the triangular
block structure of (9) - implies that the component tensors of the parametrization of the tangent
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cone all have full rank. Equation (11) is a decomposition of the tangent vector into components
from orthogonal spaces. These orthogonal spaces can be defined by the ranges and the orthogonal
complement of the ranges of the Ai. Thus we can count the dimensions seperately.

For all terms
UiVi+1

in (11) the Ui and Vi define Grassmannians in the orthogonal complement of the columns of
A1...Ai−1 and Aj+1...Ad respectively. Their combined dimension is

ki−1nisi + sini+1ki+1 − s2i − siki − siki (16)

where we define k0 := 1 and kd := 1. The siki-terms come from the orthogonality conditions and
the s2i from the Lie group action of putting a big identity in between Ui and Vi+1. The full rank
Ai in front and after UiVi+1 do not change the dimension. From the terms with only one Zi we
can see that the degrees of freedom of the Zi are directly mapped to dimensions of the manifold
parametrized by

A1...Ai−2Ui−1ZiVi+1Ai+2...Ad

because the Ai, Ui and Vi all have full rank. The resulting dimension is

si−1nisi

with s0 := 1 and sd := 1. The dimensions of the linear part - i.e. the first row in (11) - are known
from [19] as the dimension of the linear tangent space:

n1k1 + k1n2k2 + ...+ kd−1nd − k21 − ...− k2d−1.

In particular the Xi are uniquely defined by projections. To see this, examine the definitions of
X, Ṡ and T in (5).

All other terms with more than one Zi are dependent on the former terms because they do not
contain any new variables and thus do not contribute any new dimensions. The overall dimension
count of the tangent cone is thus the same as for the variety, which is in accordance to the basic
theory of Algebraic Geometry.

4.3 A remarkable a priori statement or a global optimality condition
In [1, Cor. 3.4] it has been noted for the matrix case that the tangent cone has the following rather
remarkable property if it is the tangent cone to a singular point: It spans the whole matrix space.
This is due to the following observation. If in a singular point A = A1A2 a tangent vector takes
the form

X = A1Y +XA2 + UV.

This representation is able to reproduce every rank-1 matrix Y. Given some rank-1 matrix, then Y
and X and the product UV are uniquely determined by the formulas given in the previous section.
These formulas represent orthogonal projections and therefore do not increase the rank and their
results fit into X, Y and UV . Therefore every rank-1 matrix can be represented as a tangent vector
with UV having rank 1 or vanishing.

There is an even simpler way to see that all rank-1 matrices are contained in the tangent cone
of a singular point on a matrix variety. The rank of the matrix A is strictly smaller than k. Thus
every sum

A+ εY
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is in M≤k. As you can see, this is a whole line when varying ε, that lies in the variety. A line
through A that lies completely in the variety must obviously be a tangent line.

In the TT case, singularity of a point does not imply that its tangent cone spans the whole
tensor space. A point on the TT variety is singular if at least one of the TT ranks is deficient. A
tensor A having a deficient TT rank at position i in the variety Mn1×...×nd

≤(k1,...,kd
) means that it lies in

some variety Mn1×...×nd

≤(k̃1,...,k̃d
) with k̃i < ki. However all ranks have to be deficient to ensure that the

tangent cone includes rank-1 tensors and thus spans the whole tensor space.
Take for example the order 3 case with s1 = 1 and s2 = 0 (using the notation from Theorem

4.1). Then a tangent vector admits the decomposition

(
A1 U1 X1

)⎛⎝ A2 X2

0 V2
0 A2

⎞⎠( X3

A3

)
.

Rewriting this as
A1A2X3 + (...)A3

shows that the tangent cone is part of the linear subspace

TM(n1n2)×n3

=k2
.

This linear subspace is the tangent space of a matrix manifold and in general a proper subspace of
the whole tensor space.

Showing that the tangent cone spans the whole space if all ranks are deficient is a matter of
generalizing the above reasoning from the matrix to the tensor case in a straight-forward way.

In [27] this topic is discussed for canonical tensor decompositions and neural networks. However,
in contrast to [27, Thm 15], we and [1] do not assume a regularization term and arrive at a similar
global optimality condition for the special case of tensor train decompositions: A local minimizer
of a convex differentiable function

f : Rn1×...×nd → R

on the TT variety, which is rank deficient in each TT rank, must be a global minimizer. To
relate rank deficiency and the zero slices assumed in [27], see that the following TT decomposition
containing zero slices(

A1 x1
0 0

)(
A2 x2
0 0

)
...

(
Ad

0

)
=

(
A1 0
0 0

)(
A2 0
0 0

)
...

(
Ad

0

)
is rank deficient in each TT rank.

4.4 The hierarchical format
All of the above generalizes in a straight-forward way to the hierarchical and Tucker format. How-
ever the notation is difficult. We will show only the proof ideas and check the facts that we expect
to be the key elements of a future more detailed and formal proof.

See Definition 3.9 or [14, 28] for a detailed study of the hierarchical tensor format. We will only
give the equivalent of the technical Lemma 4.5 for the Tucker format with order 3. This will allow
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us to use the same inductive step as in Theorem 4.1 to prove the parametrization for any binary
tree. In further generalizing the technical lemma to arbitrary Tucker formats, one could prove the
theorem for arbitrary tree formats.

Let A1 ∈ Rn1×k1 , A2 ∈ Rk2×n2 , A3 ∈ Rn3×k3 and A4 ∈ Rk1×k2×k3 with A1, A2 and A3 having
full rank. For writing simple tensor tree diagrams, we can use the Kronecker product. Sorting
the indices k1 and k3 lexicographically, we can identify the tree diagram and the term depicted in
Figure 19.

Figure 19: Kronecker product notation for tensor trees

A4 A3A1

A2

k1 k3

k2 =
(
(A1 ⊗A3)A

(k1k3)×k2

4 A2

)n1×n2×n3

We can write this in the following three ways:(
(A1 ⊗A3)A

(k1k3)×k2

4

)
·A2

= A1 ·
(
A

k1×(k3k2)
4 (A3 ⊗A2)

)
= A3 ·

(
A

k3×(k1k2)
4 (A1 ⊗A2)

)
.

Now any tangent vector from a tucker variety Mn1×n2×n3

≤(k1+s1,k2+s2,k3+s3)
(we use the obvious general-

ization of the symbols defined for the TT varieties) parametrized by A1, A2, A3 and A4 can be
decomposed in the s̃2-decomposition(

(A1 ⊗A3)A
(k1k3)×k2

4

)
Y2 +X2A2 +U2V2,

in the s̃1-decomposition

A1Y1 +X1

(
A

k1×(k2k3)
4 (A2 ⊗A3)

)
+ U1V1

and the s̃3-decomposition

A3Y3 +X3

(
A

k3×(k1k2)
4 (A1 ⊗A2)

)
+ U3V3

with s̃1 ≤ s1, s̃2 ≤ s2 and s̃3 ≤ s3. We can further decompose each of the three into the 8 orthogonal
subspaces

range(A1)⊗ range(AT
2 )⊗ range(A3), range(A1)⊗ range(AT

2 )⊗ range(A3)
⊥,

range(A1)
⊥ ⊗ range(AT

2 )⊗ range(A3), range(A1)
⊥ ⊗ range(AT

2 )⊗ range(A3)
⊥,

range(A1)⊗ range(AT
2 )

⊥ ⊗ range(A3), range(A1)⊗ range(AT
2 )

⊥ ⊗ range(A3)
⊥,
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range(A1)
⊥ ⊗ range(AT

2 )
⊥ ⊗ range(A3), range(A1)

⊥ ⊗ range(AT
2 )

⊥ ⊗ range(A3)
⊥.

Exemplarily we further decompose the s̃1-decomposition. For this purpose we need to write Y1 as
the orthogonal sum

Y
k1×(n2n3)
1 = (I ⊗A3)Ẏ1A2 + Y 3

1 A2 + (I ⊗A3)Y
2
1 + Y 2,3

1

such that (I ⊗ A3)
TY 3

1 = 0, Y 2
1 A

T
2 = 0, (I ⊗ A3)

TY 2,3
1 = 0 and Y 2,3

1 AT
2 = 0 (use pseudo inverses

for this purpose as in equation (2)). Analogously we rewrite V1 as

V
k1×(n2n3)
1 = (I ⊗A3)V̇1A2 + V 3

1 A2 + (I ⊗A3)V
2
1 + V 2,3

1

such that the s̃1-decomposition can be rewritten as the orthogonal sum

(A1 ⊗A3)Ẏ1A2

+(A1 ⊗ I)Y 3
1 A2

+(A1 ⊗A3)Y
2
1

+(A1 ⊗ I)Y 2,3
1

+((U1 ⊗A3)V̇1 + (X1 ⊗A3)A4)A2

+U1V
3
1 A2

+(U1 ⊗A3)V
2
1

+U1V
2,3
1 .

Comparing coefficients with the orthogonal decompositions of the s̃2- and s̃3-decompositions, we
arrive at the representation

X =
(
( A1 U1 X1 )⊗ ( A3 U3 X3 )

)
C

⎛⎝ Y2
V2
A2

⎞⎠
with C ∈ R(k1+s̃1+k1)(k3+s̃3+k3)×(k2+s̃2+k2) having the form depicted in Figure 20.

The coefficients of the block tensor C are

X4 = (A†
1 ⊗A†

3)X2, Z4 = (U†
1 ⊗ U†

3 )U
1,3
2 , U4 = V̇1,

W4 = U̇2, V4 = V̇3, V̄4 = V 2
1 V

†
2 = (UT

1 ⊗ I)U1
2 ,

W̄4 = (U †
1 ⊗ U †

3 )X
1,3
2 and Ū4 = (I ⊗ U †

3 )U
3
2 .

The inductive step works because by(
(A1 ⊗A3)A

(k1k3)×k2

4 , U4, X4

)
=
(
( A1 U1 X1 )⊗ ( A3 U3 X3 )

)
C

we can reduce the parametrization to the matrix case and reproduce U4 and X4.
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Figure 20: Central coefficient tensor of tangent cone parametrization for order 3 Tucker

C =

X4

U4

A4

V4

s̃1 W̄4

A4

s̃2

W4
A4

k2

k1

k3

V̄4

s̃3

Ū4

Z4

4.5 Implicit description of the tangent cone
The tangent cone for the matrix case can be implicitely defined as the variety{

X ∈ Rn×m : rank
(
(I −A1A

†
1)X (I −A†

2A2)
)
≤ s1

}
where the rank can be bounded by a set of determinants of minors. Since we have shown in
Corollary 4.2 that the tangent cone of a tensor variety is the intersection of tangent cones of matrix
varieties, the set of defining equations of the tensor variety is the union of defining equations of
matrix varieties of the appropriate matricizations.
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5 Projected gradients and the angle condition

5.1 Projected gradient
In local optimization, instead of searching for the minimum of a function f : Rn → R directly, one
looks for a point, at which the first derivative in every direction vanishes. Such a point x∗ where

f ′(x∗) · v =
∂f

∂v
(x∗) = 0 for every direction v

is called a critical point. On an algebraic variety M the set of directions is the tangent cone.
Therefore we call a point x∗ ∈ M on the variety a critical point if the derivative in every tangent
direction v ∈ Tx∗M vanishes, that is if

f ′(x∗) · v = 0 ∀v ∈ Tx∗M.

This is equivalent to asking that the best approximation

PTx∗M (∇f(x∗))

of the gradient of f at x∗ vanishes. The latter criterion is the more useful one for us. We will even
introduce the name

f
′

M(x) := PTxM (−∇f(x))

for the set of best approximations of the (or synonymously projected) antigradient, the points on
TxM that are closest to −∇f(x). This definition is also used in for example [1] or [29]. See Figure
21 for an illustration.

Remark 5.1. On a Riemannian manifold the best approximation of the gradient is equivalent to the
intrinsic (Riemannian) gradient of f when restricted to the manifold, i.e. the vector in the tangent
space that, when multiplied by any other tangent vector X produces the directional derivative of
f in direction X. However for tangent cones this relationship appears to be less obvious.

Just as for linear subspaces, in a cone the projected gradient also has the smallest possible angle
to the vector being approximated.

Lemma 5.1. Let C ⊂ Rn be a cone, which means that x ∈ C implies αx ∈ C for all non-negative
real α. Let further v ∈ Rn be any vector and p be one of its best approximations in C, that is
||p− v|| ≤ ||x− v|| ∀x ∈ C. Then if p ̸= 0,

�(v, p) ≤ �(v, x) ∀x ∈ C

or equivalently
⟨v, p

||p||
⟩ ≥ ⟨v, x

||x||
⟩ ∀x ∈ C.

Conversely if p ∈ C is such that �(p, v) ≤ �(x, v) ∀x ∈ C then there is a non-negative α such that
αp is a best approximation of v in C.

Proof. Angles between linear subspaces are contained in [0, π]. Let p be a best approximation of v
as in the formulation of the lemma and α the angle between x and p. α ∈ [0, π) because the best
approximation p does not vanish. Suppose there is a direction x with an angle between span(x)
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Figure 21: Best approximation of the gradient

−∇f(x)

f
′

M(x)

M TxM

TxM

0

−∇f(x)

f
′

M(x)

and v that is smaller than α. Then ⟨v, p
||p|| ⟩ ≤ ⟨v, x

||x|| ⟩. Then on span(x) we find a point that is
closer to v than p is, namely the orthogonal projection of v onto span(x):

|| ⟨v, x⟩
⟨x, x⟩

x− v|| = ⟨v, v⟩ − ⟨v, x

||x||
⟩2 < ⟨v, v⟩ − ⟨v, p

||p||
⟩2 = || ⟨v, p⟩

⟨p, p⟩
p− v|| ≤ ||p− v||.

We have used the monotonicity of the Cosine on [0, π] and of y ↦→ y2 on the positive real axis as
well as the equivalence of orthogonal projection and best approximation for a linear subspace. The
converse is proven with α := ⟨v,p⟩

⟨p,p⟩ by the inequality

||αp− v|| = || ⟨v, p⟩
⟨p, p⟩

p− v|| = ⟨v, v⟩ − ⟨v, p

||p||
⟩2 ≤ ⟨v, v⟩ − ⟨v, x

||x||
⟩2 = || ⟨v, x⟩

⟨x, x⟩
x− v||

which shows that the orthogonal projection onto span(p) is the best approximation in C under the
assumption �(v, p) ≤ �(v, x) ∀x ∈ C.

We can also formalize the mentioned orthogonality property in the following Lemma.

Lemma 5.2. If p is a best approximation of v in C, then the distance (p− v) is orthogonal to p.

Proof. Let p ∈ C be a best approximation of v. If ⟨v − p, p⟩ was not 0, then project v onto the
one-dimensional subspace spanned by p to produce a better approximation. See Figure 22.

5.2 Tangent spaces at singular points
For every tangent cone TxM there is a linear subspace of the ambient space

TxM
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Figure 22: approximation and orthogonality

v p

better approximation
•

spanned by all tangent vectors. This is not the same as the tangent cone. In the literature (for
example [24] or [10]) this is also called the tangent space. In regular points the tangent space
coincides with the tangent cone. In singular points the tangent space can have significantly higher
dimension than the tangent cone. That is for example the case in the singular points of low-rank
matrix and tensor varieties. What follows is a different viewpoint on Section 4.3. In a singular
point xsing ∈ Ms of the low-rank matrix variety M≤k, s < k the tangent cone contains the set of
rank-1 matrices. The set of rank-1 matrices contains a basis for the set of all matrices, for example
those with only one entry. The important implication is thus, that we cannot find a vector that is
orthogonal to the whole tangent space (except for the 0-vector). Or in more optimistic terms: If
the gradient does not vanish, then it has always a projection of positive length on the tangent cone
Txsing

M≤k. In terms of [1] if a singular point is critical on M≤k then it is automatically critical
on the whole space Rn×m.

5.3 Angle condition
For the matrix variety M≤k it is possible to calculate the exact projection onto the tangent cone
even in singular points using the singular value decomposition. For low-rank tensor varieties however
such an algorithm for an exact projection onto TxM≤(k1,...kd−1) is not known to us. The tangent
cone contains sheared low-rank tensor varieties. Thus one essential difficulty lies in the exact
projection onto the set of low-rank tensors M≤(r1,...,rl).

Remark 5.2. Contrary to intuition, the quasi-best approximation does not satisfy an angle condition,
i.e. the angle between a vector v and its quasi-best approximation cannot be bounded by a constant
multiple of the angle between v and its best approximation. In Figure 23 we have illustrated a
counterexample. The distance of −∇f to q is less than twice as much as the distance of −∇f to
its best approximation (projected antigradient). Thus q is a quasi-best approximation with factor
2. But the best approximation and q point in opposite directions, which makes q as unrelated to
the projected antigradient as possible.

The idea is to replace the exact projection with an approximation that still suits our needs:

• When the exact projection is 0 the approximated projection should also vanish.
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Figure 23: quasi-best approximation does not ensure angle condition

−∇f

best approx.

q A

TAM

• The angle between the approximated projection and −∇f should not be much bigger (and
certainly not bigger than 90 degrees) than that between the exact projection and −∇f .

Figure 24: angle condition

−∇f

best approx. p

b

γ
δ

β
α

As in [1] we formalize the second necessitiy in a way that will include the first one as a special
case.

Definition 5.1. (angle condition) Let ∇f be the gradient of some function f : RN → R at x and
p a best approximation of −∇f on the tangent cone TxM. Let b ∈ TxM be some vector in the
cone. Let γ := �(−∇f, p) and δ := �(−∇f, b) be the angles between the antigradient and p and b
respectively. Let α := π

2 − γ and β := π
2 − δ be as in Figure 24. Then b is said to satisfy an ω-angle

condition if
β ≥ ωα

for some real positive ω ∈ (0, 1].

52



The ω-angle condition
β ≥ ωα

is equivalent to
sin(β) ≥ ω sin(α)

and to
cos(δ) ≥ cos(γ)

and by the definition of an angle to

⟨− ∇f
||∇f ||

,
b

||b||
⟩ ≥ ω⟨− ∇f

||∇f ||
,
p

||p||
⟩.

Multiplying by ||∇f || we get

⟨−∇f, b

||b||
⟩ ≥ ω⟨−∇f, p

||p||
⟩

and using Lemma 5.2 (and the orthogonality of the best approximation ⟨−∇f − p, p⟩ = 0 ⇔
⟨−∇f, p⟩ = ⟨p, p⟩) this reduces to

⟨−∇f, b

||b||
⟩ ≥ ω||p||.

Multiplying by −||b|| we arrive at the version

⟨∇f, b⟩ ≤ −ω||p||||b||

that has been used in [1].

5.4 Angle condition for the TT variety
We would like to have an angle condition for the tangent cone of a TT variety. That is, given the
gradient of some function at a point on the TT variety, we search for a tensor from the tangent
cone whose angle with the gradient is not much worse than that of the best approximation on the
tangent cone. At the same time, this tensor should be computable within reasonable complexity.
As we have seen in Lemma 4.6, the TT tangent cone can be written as the sum of orthogonal
components. One of these components is the tangent space to a TT manifold of smaller rank

X1A2...Ad +A1X2A3...Ad + ...+A1...Ad−1Xd. (17)

The projection onto this part is easy and well known. See for example [30]. We assume again(
(A1...Ai)

R
)T

(A1...Ai)
R = I ∀i and

(
AR

i

)T
XR

i = 0 ∀i ̸= d.

From this we see that all the summands in Term 17 are orthogonal. Thus it suffices to project onto
each summand individually. For example the projection of Y onto the last summand is

(A1...Ad−1)
R
(A1...Ad−1)

T
Y,

the projection yielding the second summand is

A1

(
I −AR

2 (A
R
2 )

T
)
AT

1 Y
(
(A3...Ad)

L
)T

(A3...Ad)
L

and the projection yielding the first summand is(
I −AR

1 (A
R
1 )

T
)
Y
(
(A2...Ad)

L
)T

(A2...Ad)
L.
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5.4.1 Nonlinear terms in the TT tangent cone

Of the orthogonal components of the TT tangent cone identified in Lemma 4.6 the only one linear
is Equation 17. All other components are linearly transformed projections of TT varieties. As an
example consider

A1U2Z3V4A5.

The term U2Z3V4 parametrizes a TT variety of bounded rank. The orthogonality conditions(
AR

2

)T
AR

2 U2 = 0 and (V4A5)
L
(
(A4A5)

L
)T

= 0

on U2 and V4 can be seen as a projection of this variety onto a linear subspace. We will be able to
reduce everything to projecting onto a variety of bounded TT rank. Therefore we investigate this
topic first.

5.4.2 Plan

Let M := Mn1×...×nd

≤(k1,...,kd)
be a TT variety of bounded rank. Given some tensor v ∈ Rn1×...×nd and its

best approximation p on M, the aim is to find a tensor b ∈ M such that for some a priori known
constant ω we have

⟨ v

||v||
,
b

||b||
⟩ ≥ ω⟨ v

||v||
,
p

||p||
⟩.

As
⟨ v

||v||
,
p

||p||
⟩ ≤ 1

by definition, it suffices to show that there is a tensor b of length 1 satisfying

⟨ v

||v||
, b⟩ ≥ ω

or equivalently
⟨v, b⟩2 ≥ ω2⟨v, v⟩.

In words: Take any tensor v ∈ Rn1×...×nd of length 1. We can always find a tensor b of length 1
in the TT variety that has a positive scalar product with v that is greater than an a priori known
constant ω. In fact it suffices to restrict ourselves to TT rank (1, ..., 1).

5.4.3 Angle condition for rank-1 tensor varieties

The TT variety of rank (1, ..., 1) is the same set as the Tucker variety of rank (1, ..., 1) and the same
as the canonical variety of rank 1. Therefore we can just call it the rank-1 variety.

Lemma 5.3. Let Y ∈ Rn1×...×nd be some tensor. Then there is a tensor B of rank 1 such that the
angle condition

||B||F = 1 and ⟨Y,B⟩2F ≥ ω⟨Y, Y ⟩F
holds for

ω =
1

n1...nd
.
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Proof. Find the position (i1, ..., id) of the entry in Y of greatest absolute value. At the same position
B has its only non-zero entry Bi1,...,id = 1. Then we have

⟨Y,B⟩2F = (Yi1,...,id)
2
=

1

n1...nd

(
(n1...nd) (Yi1,...,id)

2
)
≥ ω

n1,...,nd∑
j1,...,jd

(Yj1,...,jd)
2
= ω⟨Y, Y ⟩F .

Now the problem is, that finding the largest entry of a tensor is believed to be a hard problem.
Instead we can find an entry that fulfils the same angle condition and is easily computable. Let Y ∈
Rn1×...×nd be a tensor. The j-th hyperslice with respect to index d is the tensor W j ∈ Rn1×...×nd−1

with entries (
W j
)
l1,...,ld−1

:= Yl1,...,ld−1,j .

Let W j be the hyperslice with respect to index d that has the largest Frobenius norm. Then

⟨W j ,W j⟩ = 1

nd
nd⟨W j ,W j⟩ ≥ 1

nd

nd∑
k=1

⟨W k,W k⟩ = 1

nd
⟨Y, Y ⟩.

We can write the hyperslice as

W j = Y · (0, ..., 0, 1, 0, ..., 0)T

where the j-th entry is 1. The size of the nd hyperslices can be compared pairwisely to determine
the largest. If Y is given in some low-rank format, then the complexity of calculating the norm of
a hyperslice is bounded by the cost of calculating the scalar product. If the scalar product is in
O(g(d)), then finding the desired hyperslice of greatest norm is in O (d · g(d)). For the TT format
for example the calculation of the scalar product is in O(dnr3) if the ranks are all less than r and
the dimensions less than n. This can be seen by contracting the edges from one side of the format
to the other. This results in a total cost for finding the direction of O(d2nr3) which is better than
O(nd) for searching for the largest entry of the tensor directly. Recursively finding the biggest
hyperslice, i.e. finding the greatest entry of the greatest fiber of the greatest slice of the ... of the
greatest hyperslice, we can find the desired entry Yi1,...,id which might not be the largest of the
tensor, but fulfils the same angle condition

(Yi1,...,id)
2 ≥ ω⟨Y, Y ⟩ with ω =

1

n1...nd
.

The techniques from [31] and [32] can probably be used to attain slightly better bounds by taking
the slice with the biggest projection to any of the slices. The constant ω would improve to

1

r1, ..., rd−1

where ri are the Tucker ranks.
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5.4.4 Angle condition for the TT cone

We have decomposed a tangent vector from the TT tangent cone as a sum of orthogonal components
in Lemma 4.6. To each component corresponds a space in the way that the component is the
orthogonal projection of the tangent vector onto this space. To define these spaces, we will define
the orthogonal projection onto them.

Define for i < j

Pij : Rn1×...×nd → Rn1×...×nd : X ↦→ A1..Ai−1ẊAj+1...Ad

in the following way.

X̃ :=

•X

...
•
A1 Ai−1 AdAj+1

• • •

X̂ := X̃−

•X̃

Ai

•

Ai•
...

Ẋ := X̂−

•X̂

...

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
Aj

•
Aj

•S
with S−1 :=

•
Aj

•
Ad

•
Aj

•
Ad

Pij is an orthogonal projection onto its image. Define

Y :=

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•Ẋ

...
•T

with T−2 =

•
Aj+1

•
Ad

•
Aj+1

•
Ad

.
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We know from Lemma 5.3 that there are Ũi, Zi+1, ..., Zj−1, V̂j such that

⟨Y, ŨiZi+1...Zj−1V̂j⟩2 ≥ 1

ni...nj
⟨Y, Y ⟩ (18)

Note that T−2 is symmetric positive definite and therefore T exists.

Lemma 5.4. Defining

,:= −•
Ũi

•
Ui

•
Ũi

•
Ai

•
Ai

:= •
V̂j

•
T

•
Ṽj

and

:= −•
Ṽj

•
Vj

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•

•

•

Aj

Ṽj

•S
Aj

with S−1 =

•
Aj

•
Ad

•
Aj

•
Ad

the tensor
W := A1...Ai−1UiZi+1...Zj−1VjAj+1...Ad

fulfils the angle condition

⟨PijX,
W

||W ||
⟩2 ≥ 1

ni...nj
⟨PijX,PijX⟩.

Proof. We calculate

⟨PijX,W ⟩ =
•

Aj+1
•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•Ẋ

•
Vj

•
Ui

•
Zi+1

•
Zj−1

...
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Def Ẋ, Vj
=

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•X̂

•
Ṽj

•
Ui

•
Zi+1

•
Zj−1

...

− 2

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•X̂

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
Aj

•
Aj

•S

•
Ṽj

•
Ui

•
Zj−1

•
Zi+1

...

+

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•X̂

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
Aj

•
Aj

•S

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
Aj

•
Aj

•S

•
Ṽj

•
Ui

•
Zj−1

•
Zi+1

...

= I

Def Ẋ
=

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•Ẋ

•
Ṽj

•
Ui

•
Zi+1

•
Zj−1

...
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Def Ẋ, X̂, Ui
=

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•Ẋ

•
Ṽj

•
Ũi

•
Zi+1

•
Zj−1

...

=
(18)

≥ 1
ni...nj

·

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•Ẋ

•
V̂j

•
Ũi

•
Zi+1

•
Zj−1

•T
...

•
Aj+1

•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•Ẋ

...
•T

•
Ai−1

•
A1

•
Ai−1•

A1

•
Ad

•
Aj+1

•
Ad•

Aj+1

•
Ẋ

1
2

...
•T

= II =

=
1

√
ni...nj

⟨PijX,PijX⟩ 1
2 .

It remains to check that the norm of W is bounded by 1. We can do the following calculation.

⟨W,W ⟩ =
•

Aj+1
•
Ad

•
Aj+1

•
Ad

•
A1 •

Ai−1

•
A1

•
Ai−1

•
Vj

•
Ui

•
Zi+1

•
Zj−1

•
Vj

•
Ui •

Zi+1•
Zj−1

...

...

=

... •
V̂j

•
Ũi •

Zi+1•
Zj−1

•P •Q

•
V̂j

•
Ũi

•
Zi+1

•
Zj−1

...

with P = I−
•
Ai

•
Ai

and Q = I−
•
Ai

•
Ai

•S

•T−1

•T−1

The operator P is an orthogonal projection and in particular P = PPT such that we can view
it as orthogonal projection applied to both factors in the scalar product. An orthogonal projection
can only decrease the norm. Q is the identity minus some positive (semi-)definite operator. Thus
we can say
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⟨W,W ⟩ ≤

... •V̂•
Ũi •

Zi+1•
Zj−1

•
V̂j

•
Ũi

•
Zi+1

•
Zj−1

...

−

... •V̂•
Ũi •

Zi+1•
Zj−1

•
Ai

•
Ai

•S

•T−1

•T−1

•
V̂j

•
Ũi

•
Zi+1

•
Zj−1

...

= 1− ||S−1|| ≤ 1.

In the last inequality it is of course only of importance, that what we subtract from 1 is positive
because it is a square.

Remark. Any improvement of the constant in Lemma 5.3 would carry over to Lemma 5.4 and thus
improve the angle condition for the TT tangent cone.

Lemma 5.5. (angle condition for TT cone) We can conclude an overall angle condition for the
TT tangent cone with a constant

ω =
1(

d+ 1
2

)
√
n1...nd

.

Proof. The challenge of this proof lies the fact that the Ui, Vi and Zi each appear in more than one
of the orthogonal terms of the decomposition of Equation 11. Therefore we cannot freely add the
angle condition fulfilling terms from each of the summands.

Determine
(k, l) := argmax

(i,j)

⟨PijX,Wij⟩

with the notation from Lemma 5.4. Choose all Ui, Vj , Zk, that do not appear in the decomposition
of Wkl equal to 0. Let

N :=

(
d+ 1
2

)
be the number of possible projections Pij . This includes the linear part of the tangent cone. The
binomial coefficient is the number of possible ways to choose two out of d + 1. The first of the
choices shall determine where the Ui is positioned and the second of the choices is one position
behind the Vi. If the first and the second choice are next to each other, replace U by X.

Then we have

N2⟨PX,Wkl⟩2 = N2⟨PklX,Wkl⟩2 ≥

⎛⎝∑
i<j

⟨PijX,Wij⟩

⎞⎠2
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≥

⎛⎝∑
i<j

√
ω
√
⟨PijX,PijX⟩

⎞⎠2

≥ ω
∑
i<j

⟨PijX,PijX⟩ = ω⟨PX,PX⟩

The first equation is true due to orthogonality. The inequality employ the definition of (k, l), the
individual angle conditions of the Wij and the positivity of the terms ⟨PijX,PijX⟩. For the last
equality we define P to be the sum of all Pij - a projection onto a superset of the tangent cone.

Remark 5.3. The constant might be really bad. It is subject to the curse of dimensionality. However
once the order of the tensor d is fixed, convergence of a gradient method can be ensured. This lemma
provides, that the projection cannot become arbitrarily small.
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6 Riemannian optimization
In this work, we are only considering submanifolds and subvarieties, even though the concepts can
and are being applied to abstract manifolds as well. The theory for local optimization on (abstract)
manifolds is the topic of [29], including second order algorithms like Newton or trust region methods.
Here however we generalize, where possible to tensor varieties as done in [1] for low-rank matrix
varieties. Furthermore we focus more on examples and practical application and try to illustrate
the theory by examples and figures. The setting starts with a cost function

f : RN → R

on some finite-dimensional vector space and a submanifold or subvariety

M ⊂ RN .

The ultimate aim is to find a minimum of f on M. Local optimization is only concerned with
finding a local minimum or even only a critical point.

6.1 Riemannian gradient method / steepest descent
The basic idea of the gradient method (or more intuitively called the steepest descent method) is to
search for a point with smaller cost in the direction, where f decreases fastest. This is the direction
v that produces the smallest directional derivative. In the vector space setting with the aim

min
x∈RN

f(x)

we begin with some starting point x0 ∈ RN and determine the direction of smallest directional
derivative

argmin
v∈RN

df
dv
.

In this setting
v = −∇f

is this direction.

6.1.1 Projected gradient

In the manifold/variety setting the set of possible directions is the tangent cone Tx0M and we can
also define

argmin
v∈Tx0

M, ||v||=1

df
dv
.

This happens to be exactly the best approximation of the gradient of f on the tangent cone (as-
suming that f is continuously differentiable). We will consider a running example.

Example 6.1. (best approximation on the circle) Consider as manifold or variety the unit circle

M :=

{(
x
y

)
∈ R2 : x2 + y2 = 1

}
in the plane and the task to find the point on this manifold that is closest to the point

(
4
4

)
.
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y

x

•(x, y)

•
X∗

•
(4, 4)T(x,y)M

The obvious solution is

X∗ =

(√
2
2√
2
2

)
.

Assume that you want to use a gradient method to find X∗. Assume further that you start with

some point X0 :=

(
x0
y0

)
on the circle. The tangent cone at X0 is

R
(
−y0
x0

)
=

{(
u
v

)
: ∃α ∈ R :

(
u
v

)
= α

(
−y0
x0

)}
.

We want to minimize the square of the distance

f :

(
x
y

)
↦→ 1

2

(
(x− 4)2 + (y − 4)2

)
to the point

(
4
4

)
. The gradient of f at

(
x
y

)
is

∇(x,y)f =

(
x− 4
y − 4

)
which is by chance exactly the distance vector(

x
y

)
−
(
4
4

)
.

The best approximation of the gradient on the tangent cone is in this case the orthogonal projection

grad(x,y) f = PT(x,y)M

(
x− 4
y − 4

)
=

(
−y
x

)(
−y x

)(x− 4
y − 4

)
= 4(y − x)

(
−y
x

)
.

In X∗ the projected gradient vanishes as it should. The next step is to determine a step size α
and “retract” the tangent vector α grad(x,y) f onto the manifold. This needs to be done in the right
order.
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6.1.2 Retraction

Figure 25: retraction

•
x

•x+ tv

•
R(x, tv)

||R(x, tv)− (x+ tv)||

t

Given a point x ∈ M on the variety and a direction v ∈ TxM from the tangent cone at x, a
retraction defines a point on the variety M that is “close” to x+ tv. As we work along the lines of
[1] we do not need the smooth version of a retraction from [29] but the following:

Definition 6.1. Formally a retraction [1] R is a map from the tangent bundle to the variety

R :
⋃

x∈M
{x} × TxM → M

that satisfies for every fixed x ∈ M and v ∈ TxM

lim
t→0

R(x, tv)− (x+ tv)

t
= 0

or equivalently

lim
t→0

||R(x, tv)− (x+ tv)||
t

= 0.

Not usually, but here part of the definition of retraction shall be the condition, that there is a
constant M independent of x and v such that

||R(x, v)− x|| ≤M ||v||.

The boundedness in v can be enforced by cutting off the retraction outside of some ball. In Figure
25 we have chosen without loss of generality ||v|| = 1 and labeled the distances ||(x+ tv)− x|| = t
and ||R(x, tv) − (x + tv)||. As t converges to 0, the ratio of the two will converge to 0, too. This
means that the retraction does not only approach the tangent cone as t approaches 0 but also
converges in the direction parallel to the tangent line x+ Rv.
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Example 6.2. (continued) As a retraction one obvious choice for the circle would be the central
projection (

x
y

)
↦→
(
x
y

)
1√

x2 + y2
.

Consider the situation in Figure 26

Figure 26: retraction for the circle

•
(4, 4)

•X∗
•

R(X,β gradX f)

•X + β gradX f

•X

•
X + α gradX f

A first (and wrong) idea for determining the step size is to find the minimum of f on the tangent
line that points in the search direction:

β := argmin
γ

f(X) + γ gradX f (wrong step size!)

As you can see in the picture by using the intercept theorem this will not converge to the critical
point X∗. For determining a good step size we have to apply the retraction first, i.e. use

α := argminR(
γ

f(X), γ gradX f) (optimal step size)

In our example step size α would even yield the exact critical point in one step. Finding this optimal
step size is often not possible. Instead a sufficient approximation, the Armijo step size can be used.

As a retraction for the TT variety one can use the curve from Lemma 4.4.

Lemma 6.1. The function

R : X =
(
A1 U1 X1

)⎛⎝ A2 U2 X2

0 Z2 V2
0 0 A2

⎞⎠ ...

⎛⎝ Ad−1 Ud−1 Xd−1

0 Zd−1 Vd−1

0 0 Ad−1

⎞⎠⎛⎝ Xd

Vd
Ad

⎞⎠
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↦→
(
A1 +X1 U1

)( A2 +X2 U2

V2 Z2

)
...

(
Ad−1 +Xd−1 Ud−1

Vd−1 Zd−1

)(
Ad +Xd

Vd

)
defines a retraction onto the TT variety in the sense of the definition above using the notation from
Chapter 4.

Proof. The image under R of the tangent vector multiplied by t, R(tX ) is

(
A1 + tX1 U1

)( A2 + tX2 U2

tV2 Z2

)
...

(
Ad−1 + tXd−1 Ud−1

tVd−1 Zd−1

)(
Ad + tXd

tVd

)
.

We calculate

lim
t↘0

R(x, tv)− x− tv

t
= lim

t↘0

t2(polynomial in t)
t

= lim
t↘0

t(polynomial in t) = 0.

The retraction is well-defined. When the Ai all have full ranks, the decomposition A = A1...Ad

is unique up to a Lie group action. This means, that for any other decomposition A = Ã1...Ãd we
have Ã1 = A1G1, Ãi = G−1

i−1AiGi for i = 2, ..., d − 1 and Ãd = G−1
d−1Ad with invertible Gi. See

[19] for details. As we have discussed in Section 4.2 the tangent vectors are also unique up to a
Lie group action. The proposed retraction R is independent of those two Lie group actions. When
using a different decomposition for both A and the tangent vector the image under R will be

(
(A1 +X1)G1 U1g1

)( G−1
1 (A2 +X2)G2 G−1

1 U2g2
g−1
1 V2G2 g−1

1 Z2g2

)
...

(
G−1

d−1(Ad +Xd)

g−1
d−1Vd

)
where we can cancel all Gi and gi to see the equality. That the same Gi are applied to the Ai and
the Xi can be seen by plugging the definition of Ãi into the definition of Xi along Equation 12.

This retraction is particularly easy to calculate if the tangent vectors are given in the described
format.

6.1.3 Armijo point

As step size the so-called Armijo point has proven to be a good choice - good enough to guarantee
convergence and easy enough to calculate. Consider some continuously differentiable function f :
Rn → R and consider that for some iterate xn you have evaluated f(xn). The goal is of course to
find xn+1 such that f(xn+1) is smaller than f(xn) and not just smaller but more-or-less as small
as possible along the current search direction. Assume we know the derivative of f . Then we know
the directional derivative

(∇xnf)
T
v

in the search direction v. Then there are several possible cases. The first is, that in the search
direction f stays below its linearization

f(xn + tv) ≤ f(xn) + (∇xn
f)

T
v.
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•
xn

f(xn)

v

•f

f(xn) + (∇xnf)
T v

In this case there is no minimum. Also if f stays below a flatter version of the linearization

f(xn + tv) ≤ f(xn) + c (∇xnf)
T
v for some c ∈ (0, 1)

•
xn

f(xn)

v

•f

f(xn) + c(∇xn
f)T v

there would be no minimum. But for every f that has a minimum on Rn there is at least one point
in the search direction, where the graph of f crosses the “flattened” linearization

f(xn) + c (∇xnf)
T
v.

The crossing that is closest to xn in the direction −∇xn
f is called xn − ᾱn∇xn

f in [1].

•
xn

f(xn)

v

•

•

•
xn + ᾱnv

As we cannot exactly determine ᾱn we content ourselves with a step size that is only a factor
β ∈ (0, 1) off ᾱn. β can be fixed in advance. The step size can then be found using backtracking.
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Figure 27: backtracking for finding Armijo step size

•
xn

f(xn)

v

•

•

•
β2β̄n

•
β3β̄n

•
ββ̄n

•
β̄n

In Figure 27 we have labeled the points on the horizontal axis by the step sizes that produce
them. Starting with step size β̄n backtracking yields the Armijo step size αn = β3β̄n. In general
on varieties, as used in [1] we define

ᾱn := min
{
α > 0 : f (R(xn, αv)) = f(xn) + cα (∇xnf)

T
v
}

and
αn := max

{
βmβ̄n : m ∈ N ∪ {0}, f

(
R(xn, β

mβ̄v)
)
≤ f(xn) + cβmβ̄ (∇xn

f)
T
v
}

We then have the properties

f(xn + αnv) ≤ f(xn) + cαn (∇xnf)
T
v

and by definition
αn ≥ βᾱn.

We can now conclude by completing our running example.

Example 6.3. (continued)

•
(4, 4)

•X∗

•X0 + β̄0 gradX0
f

•X0
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We go in detail through one whole iteration step. Let us start with the point

X0 :=

(
1
0

)
on the circle. The tangent space at this point is then the line

TX0M = R
(
0
1

)
.

Choose the initial guess for the step size β̄i as the length of the projected gradient

β̄0 := || gradX0
f || = 4.

Choose
β = c =

1

2
.

Now we need to do back-tracking. To make this more interesting we will choose as retraction not
the central projection but one that wraps the tangent vector around the circle. So if

X =

(
cos δ
sin δ

)
then the retraction shall be

R

(
X, γ

v

||v||

)
=

(
cos(δ + γ)
sin(δ + γ)

)
if v points anticlockwise.

x

X + δ v
||v||

•X =

(
cosα
sinα

)
•

R(X, δ v
||v|| ) =

(
cos(α+ δ)
sin(α+ δ)

)

Then
R

(
X0, 4

(
0
1

))
≈
(
−0.65
−0.76

)

69



which is further from (4, 4) than X0. Trying to bisect the step size

R

(
X0, 2

(
0
1

))
≈
(
−0.42
0.91

)
still yields a point further from (4, 4). Bisecting a second time yields the point

R

(
X0, 1

(
0
1

))
≈
(
0.54
0.84

)
which is closer to (4, 4) than the previous iterate. But is it an Armijo point? Recall that our
example-f was defined as

f :

(
x
y

)
↦→ 1

2

(
(x− 4)2 + (y − 4)2

)
and with c = 1

2 and (∇X0f)
T
v = 4 the Armijo step size has to fulfil

f(X1) ≤ f(X0)−
1

2
α04 =

25

2
− 2α0.

In our example this is not fulfilled by the step size 1. Thus we need to halve once more to find that

f

(
R

(
X0,

1

2

(
0
1

)))
= f

(
0.87...
0.47...

)
= 11.07... ≤ 11.5 =

25

2
− 1 = f (X0)− c

1

2
(∇X0f)

T

(
0
1

)
and

X1 =

(
0.87...
0.47...

)
is thus the next iterate.

6.1.4 Example: rank 1 approximation of a large matrix

We can also formulate the Riemannian gradient method for the best approximation problem in the
variety of rank-1 matrices. The variety would then be

M := Mn×n
≤1 :=

{
A ∈ Rn×n : rank(A) ≤ 1

}
.

We want to approximate an arbitrary matrix B ∈ Rn×n and do this by minimizing the functional

f(A) :=
1

2
||A−B||2F

on M. We can write A ∈ M as a tensor product of two vectors A = ab with a ∈ Rn×1 and
b ∈ R1×n. Where A has rank exactly 1, we can write the tangent space at A as

TAM =
{
X ∈ Rn×n : ∃v ∈ Rn×1, w ∈ R1×n : X = vb+ aw

}
.

The orthogonal projection of some matrix D onto this tangent space can be written as

PTAM (D) = v
(
vT v

)−1
vTD +

((
I − v

(
vT v

)−1
vT
)
D
)
wT
(
wwT

)−1
w

or
PTAM (D) = DwT

(
wwT

)−1
w + v

(
vT v

)−1
vT
(
D
(
I − wT

(
wwT

)−1
w
))

.

We implemented this in Octave/Matlab. The function init creates a random rank-1 or rank-2
matrix B and a starting iterate X0.
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function [B,v,w]=init(n,m)
B=rand(n,1)*rand(1,m);%+rand(n,1)*rand(1,m);
v=zeros(n,1);
w=zeros(1,m);
v(1,1)=1;
w(1,1)=1;

endfunction

The function step calculates the next iterate.

function [B,v,w]=step(B, v, w)

%calculation of gradient of distance function
dist=B-v*w;

%projection onto the tangent space
y=(v’*v)\v’*dist;
x=((w*w’)’\w*(dist-v*y)’)’;

%searching for armijo point
while norm((v+x)*(w+y)-B) > norm(v*w-B)-0.5*norm(x*w+v*y)*norm(x*w+v*y)

x=x/2;
y=y/2;

endwhile

%retraction
v=v+x;
w=w+y;

endfunction

We can plot the convergence behaviour with the function test:

function test(m)
[B,a,b]=init(10,10);
[U,S,V]=svd(A);
y=zeros(m,1);
x=zeros(m,1);
for i=1:m

[B,a,b]=step(B,a,b);
x(i)=i;
y(i)=norm(a*b-U(:,1:1)*S(1:1,1:1)*V(:,1:1)’);

endfor
semilogy(x,y)

endfunction

The asymptotic complexity of a single iteration lies in O(n2). The convergence appears to be
quadratic, if B has rank 1 but linear and sometimes very slow if B has rank 2. Possible convergence
behaviour can be seen in Figures 28 and 29.
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Figure 28: rank-1 approximation of a rank-1 matrix, error against number of iterations
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Figure 29: rank-1 approximation of a rank-2 matrix, error against number of iterations
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In the case that we want to approximate by a rank-1 matrix and the matrix we want to ap-
proximate is already given in a low-rank format, we can do some optimization. Suppose we want
to approximate B = ab where a ∈ Rn×2 and b ∈ R2×n by a rank-1 matrix A = vw with v ∈ Rn×1

and w ∈ R1×n. The distance between A and B can be written as(
a v

)( b
−w

)
.

The projection of this distance (which is the gradient of f) onto the tangent space at A can be
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written as

PTAM (B −A) = v

((
vTa

vT v

)
b− w

)
+

1

wwT

((
a− v

vTa

vT v

)(
bwT

))
w

which has better asymptotic complexity than the general formula by a factor of n. Modifying
the rest of the code as well yields a program, that runs in O(n) for every iteration. This is the
fundamental strength of optimizing on low-rank tensor varieties.

The Octave/Matlab code becomes

function [a,b,v,w]=initOpt(n,m)
a=rand(n,1);
b=rand(1,m);
v=zeros(n,1);
w=zeros(1,m);
v(1,1)=1;
w(1,1)=1;

endfunction

and

function [a,b,v,w]=stepOpt(a, b, v, w)

%projection onto the tangent space
y=((v’*a)/(v’*v))*b-w;
x=1/(w*w’)*(a*(b*w’)-v*(w*w’+y*w’));

%searching for armijo point
while sqrt(((v+x)’*(v+x))*((w+y)*(w+y)’)+trace((a’*a)*(b*b’))-2*trace((a’*(v+x))*((w+y)*b’)))

#> sqrt(((v)’*(v))*((w)*(w)’)+trace((a’*a)*(b*b’))-2*trace((a’*(v))*((w)*b’)))
#-0.5*((x’*x)*(w*w’)+(v’*v)*(y*y’)-2*(v’*x)*(w*y’))

x=x/2;
y=y/2;

endwhile
%retraction
v=v+x;
w=w+y;

endfunction

For a 1000000× 1000000 matrix one iteration takes about 2 seconds on a 2-core 3 GHz laptop.
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Figure 30: seconds against n, time to evaluate one iteration for n× n matrix
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This graph has been produced using the function

function testPerf(n)
%3 lines for tricking frequency scaling into setting max cpu frequency
[a,b,v,w]=initOpt(1000000,1000000);
[a,b,v,w]=stepOpt(a,b,v,w);
[a,b,v,w]=stepOpt(a,b,v,w);

for i=1:n
[a,b,v,w]=stepOpt(a,b,v,w);
x(i)=2^i;
[a,b,v,w]=initOpt(2^i,2^i);
tic;
[a,b,v,w]=stepOpt(a,b,v,w);
y(i)=toc;

endfor
plot(x,y)

6.1.5 Łojasiewicz inequality

We would like to show the convergence of an optimization algorithm for a very wide range of
functions. In [33] it is shown, how for functions satisfying Łojasiewicz’ inequality a converging
algorithm can be constructed. The setting of [33] are functions Rn → R. Łojasiewicz’ inequality
is satisfied for all analytic functions. The type of convergence is the following: If the algorithms
possesses a cluster point, it is the limit. [1] combines [33] with the techniques of [29] to generalize the
convergence result to matrix varieties. For a list of work about convergence analysis via Łojasiewicz’
inequality, see [1] from where we also copy the following definition.

Definition 6.2. Let α(y) be the length of the best approximation of the gradient at y onto the
tangent cone. We say that x ∈ M satisfies a Łojasiewicz inequality for the projected gradient, if
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there exists δ > 0, Λ > 0, and θ ∈ (0, 12 ] such that for all y ∈ M with ||y − x|| < δ

|f(y)− f(x)|1−θ ≤ Λα(y) (19)

holds.

In this chapter we want to prove, that the Łojasiewicz gradient inequality holds on the set of
TT tensors. In order to do this we cite the following Proposition.

Proposition 6.1. (2.2 in [1]) Let f be real-analytic and defined on the open subset D ⊆ RN . Let
further M ⊆ D be contained in the domain of f . Assume there exists an open set of parameters
N ⊆ RM and a preimage t0 ∈ N of x ∈ M of the real-analytic map τ : N → RN such that

1. τ(N ) ⊆ M and

2. the image of every open neighborhood of t0 under τ contains an open neighborhood of x in M
(in the induced topology)

Then the Łojasiewicz gradient inequality holds at x.

Because we are in metric spaces, Condition 2 can be rephrased as

∀t0∀δ∃ε : (y ∈ Bε(x) ∩M =⇒ (∃s ∈ Bδ(t0) : y = τ(s))) .

Using the proposition, we illustrate the proof of the following result about the matrix case.

Theorem 6.1. (proven in [1, Theorem 3.8]) Let the real-analytic f : D → R be defined on the open
superset D of the set of matrices of bounded rank Mn×m

≤r . Then the Łojasiewicz inequality holds at
any point of Mn×m

≤r .

Proof. Let X ∈ Mn1×n2

≤k+s be a matrix of rank s. Then there are full rank matrices U0, V0 such that
X = U0V

T
0 . Now define the map

τ : Rn1×s × Rn1×k × Rn2×s × Rn2×k → Rn1×n2 :(
U, Ũ , V, Ṽ

)
↦→ UV T + Ũ Ṽ T .

The image of τ is contained in Mn1×n2

≤k+s . Thus property 1 of Proposition 6.1 holds. We need to show
property 2. It suffices to show that for every ε there is a δ such that every Y ∈ Bδ(X) ∩Mn1×n2

≤k+s

has a preimage under τ contained in Bε ((U0, 0, V0, 0)). Let Y ∈ Bδ(X), i.e. ||Y −X||F < δ. Let
Ys be the best approximation of Y in M≤s in the Frobenius norm and Yk = Y − Ys.

•
Ys

Y•

M≤s

•X
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Then, because Ys is the best approximation, we have

||Yk||F = ||Y − Ys||F ≤ ||Y −X||F < δ. (20)

If σ1 > ... > σs+k are the singular values of Y , then σs+1 > ... > σs+k are the singular values of Yk
and inequality 20 implies σ2

s+1 + ...+ σ2
s+k < δ2. In particular every singular value of Yk is smaller

than δ. If UkΣV
T
k is the singular value decomposition of Yk, then Ûk := Uk

√
Σ and V̂k := Vk

√
Σ

have distance at most
√
kδ2 =

√
kδ from zero. Furthermore by the triangle inequality and the best

approximation we have

||Ys −X||F ≤ ||Ys − Y ||F + ||Y −X||F ≤ 2||Y −X||F ≤ 2δ.

Thus Ys is contained in a small neighborhood of X on the smooth manifold Mn1×n2
=s . Using [Ddé.

16.7.5] (which is a direct consequence of the famous “théorème du rang” 10.3.1) we can decompose

Ys = (U + Us)(V + Vs)
T

where Us and Vs can be made arbitrarily small by decreasing δ. And we conclude that

τ
(
U + Us, Uk

√
Σ, V + Vs, Vk

√
Σ
)
= Y

and for δ small enough, we can force

||
(
U + Us, Uk

√
Σ, V + Vs, Vk

√
Σ
)
− (U, 0, V, 0) ||F ≤ ε.

Property 1 of Proposition 6.1 generalizes in the intuitive way to the TT format. It remains to
check Property 2 for the TT format and do this by enhancing the proof of the matrix case using
induction.

Lemma 6.2. (generalization of [1, Theorem 3.8]) Let the real-analytic f : D → R be defined on
the open superset D of the set of TT tensors of bounded rank Mn1×...×nd

≤(r1,...,rd−1)
. Then the Łojasiewicz

inequality holds at any point of Mn1×...×nd

≤(r1,...,rd−1)
.

Proof. Assume that Condition 2 has been proven for TT tensors of order d − 1. Let X = U1...Ud

be a full rank TT decomposition of X ∈ Mn1×...×nd

≤(k1,...,kd−1)
. Setting si := ri−ki, visualizing τ amounts

to writing X as

U1

k1

0

s1

k2 s2

0s1

·
0

U2k1 0

kd−1 sd−1

0sd−2

. . .

0

Ud−1kd−2 0
0 sd−1

·
Ud kd−1

which is equal to
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k2 s2

U1U2 0

k3 s3

0s2

·
0

U3k2 0

kd−1 sd−1

0sd−2

. . .

0

Ud−1kd−2 0
0 sd−1

·
Ud kd−1

by evaluating the first multiplication. Now joining the first two indices n1 and n2 yields

k2 s2

U12n1 · n2 0

k3 s3

0s2

·
0

U3k2 0

kd−1 sd−1

0sd−2

. . .

0

Ud−1kd−2 0
0 sd−1

·
Ud kd−1

where U12 is the matricization of U1U2. Applying the inductive hypothesis, for every ε > 0 there is a
δ > 0 such that every Y ∈ Bδ(X)∩Mn1n2×n3×...×nd

≤(r2,...,rd−1)
(and thus every Y ∈ Bδ(X)∩Mn1×n2×n3×...×nd

≤(r1,r2,...,rd−1)

because it is a subset) can be written as

k2 s2

U1U2

+α1

α2

k3 s3

α5s2

·
α6

U3

+α3
k2 α4

α8 sd−1
. . .

Ud

+α7
kd−1

with the αi each smaller than ε.
As U2 has full rank k1 in the first index, the tensor

k2 s2

k1 U2 0

has full rank in the first index as well (horizontal slices stay linearly independent) and its matri-
cization U̇2 ∈ Rk1×((k2+s2)·n2) has full rank k1. Let U̇12 be the matricization of
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k2 s2

n1 U1U2 0

in Rn1×((k2+s2)·n2). We have
U̇12 = U1 · U̇2.

The matricization of

k2 s2

n1
U1U2

+α1

α2

in Rn1×((k2+s2)·n2) has rank ≤ r1 in the first index (because Y has rank ≤ r1 in the first index).
Thus it has distance

√
||α1||2F + ||α2||2F ≤

√
2ε from U̇12 and using the matrix version of this lemma,

we can write it as

n1

k1 s1

U1

+β1
β2

β4
·

(k2 + s2)n2

s1

k1U̇2 + β3

again with arbitrarily small βi. Tensorization of the second factor yields the desired result.

6.1.6 Global convergence analysis

We now have all the necessary ingredients to generalize the convergence analysis from [1] to TT
tensor varieties. The following diagram shows the individual steps in the argument.
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f analytic, M alg. variety Seq. xi bounded matrix variety TT variety

Chapter 6.1.5
for TT varieties

[1] for
matrices

⇓
Łojasiewicz grad. ineq.

⇓
xi has cluster pt. in M

⇓[1, Prop. 2.6]

⇓Lemma 5.5

angle condition holds⇓[1, Cor. 2.9]

xn → cluster point x∗

x∗ singular point of M⇓
restarting algorithm with x0 = x∗

guarantees improvement

x∗ regular/smooth point of M⇓
quadratic convergence with Newton method

The central part in the argument is Corollary 2.9 from [1]. It states that, if f satisfies a Łojasiewicz
gradient inequality and the line search algorithm satisfies an angle condition, then it converges to
a cluster point of the sequence of iterates, if one exists. We cite:

Lemma 6.3. (Corollary 2.9 in [1]) Assume that f is continuously differentiable and bounded below.
Assume that

xn+1 = R(xn, αnvn)

where vn satisfies an angle condition, αn is an Armijo step size and R a retraction in the sense of
Definition 6.1. Then, if a cluster point x∗ of (xi)i∈N exists and satisfies the Łojasiewicz inequality,
it is the limit

x∗ = lim
i→∞

xi.

So, why is this result not stronger? Why can we not prove that the sequence converges to a
local minimum or at least to a critical point, where the projected gradient vanishes? Consider the
following counter example.

It depicts an algebraic variety (two crossing lines) and the problem of approximating the point
y by a point on the variety. x∗ is the cluster point and limit of the sequence (xi)i∈N that could have
been produced by some gradient descent algorithm as in the lemma. The length of the projected
gradients of the iterates converges to 0. However the projected gradient in the limit point x∗ does
not vanish! Fortunately this can only happen, when the limit point is a singular point of M. And
in this case we could restart the algorithm with the starting point x0 = x∗ set to the old singular
limit point. This would give us either an improvement - i.e. an iterate with decreased value of f -
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Figure 31: possible convergence to a singular but non-critical point

•x
∗

•y

•x0

•x1

•x2
•x3

gradx∗ f

or certainty that we have found a critical point in RN . If the limit is a smooth point, we can either
use the convergence rates from [1] or use the Newton method to gain a quadratic convergence rate.

6.2 Riemannian Newton method
The Riemannian Newton method is the generalization of Newtons method to Riemannian manifolds.
The aim of this chapter is to illustrate this method, described for example in [29], with a running
example.

6.2.1 An Example: Finding the best appxoximation on the circle

Example 6.4. Let

M :=

{(
x
y

)
: x2 + y2 = 1

}
be the unit circle and

f :

(
x
y

)
↦→ 1

2
(x− 4)2 +

1

2
(y − 4)2

be the function that we aim to minimize.

Define the projected gradient as in the previous chapter as

grad⎛⎝x
y

⎞⎠ f := PT⎛⎜⎜⎝ x
y

⎞⎟⎟⎠
M∇f.
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In the example this amounts to

grad⎛⎝x
y

⎞⎠ f = 4(y − x)

(
−y
x

)
.

The idea of the Newton algorithm is to find the point where the gradient vanishes - in other words:
find a zero of the derivative of f . In our example, the gradient ∇f of f does not vanish at any
point on the circle M.

We can instead reformulate the problem statement to: Finde the point, where the projected
gradient grad⎛⎝x

y

⎞⎠ f vanishes. In the example, the points

(√
2
2√
2
2

)
and

(
−

√
2
2

−
√
2
2

)

would be a solution. But how does the algorithm work to find it?
We have to start out with some first iterate on the variety(

x0
y0

)
∈ M.

There is a naive but misleading idea: Search for some point on the current tangent space(
x
y

)
∈ T⎛⎝x0

y0

⎞⎠M

such that the projected gradient
grad⎛⎝x

y

⎞⎠ f

vanishes. The point in the tangent space that would be generated by this method is illustrated in
the following picture:
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•
(4, 4)∇pf

•
R(p)

•optimum

•p

•(x, y)T

This method, which can be expressed as

p such that PT⎛⎜⎜⎝x
y

⎞⎟⎟⎠
M∇pf = 0

yields a far too large step if M has large curvature compared to the gradient. The correct gen-
eralization of the Newton method to manifolds is the following: Because the projected gradient
grad⎛⎝x

y

⎞⎠ f depends on the current tangent space T⎛⎝x
y

⎞⎠M, its derivative

(
grad

(
x
y

)
f

)′

depends on the curvature of the manifold. In our example

grad f = PT⎛⎜⎜⎝x
y

⎞⎟⎟⎠
M

(
x− 4
y − 4

)

depends on T⎛⎝x
y

⎞⎠M and

(grad f)
′
= 4

(
y x− 2y

y − 2x x

)
.

What is the meaning of (grad f)′? If v ∈ T⎛⎝x
y

⎞⎠M is a tangent vector, then (grad f)
′
v tells how the
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projection changes when going in direction v. In the following figure you can see that the derivative
of grad⎛⎝x

y

⎞⎠ f does in general not lie in the tangent space.

•
(4, 4)

−∇f

•
Hf = − grad f

•optimum

•
− grad f

•
(
x
y

)

−(grad f)′
(
−y
x

)

Projecting it back to T⎛⎝x
y

⎞⎠M, i.e.

PT⎛⎜⎜⎝x
y

⎞⎟⎟⎠
M (grad f)

′
v
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yields the change of grad f . The Newton equation Hf = − grad f is thus explicitely

PT⎛⎜⎜⎝x
y

⎞⎟⎟⎠
M

⎛⎜⎜⎝PT⎛⎜⎜⎝x
y

⎞⎟⎟⎠
M∇f

⎞⎟⎟⎠
′

v = − grad⎛⎝x
y

⎞⎠ f.

In our example this reads

−4(y − x)

(
−y
x

)
=

(
−y
x

)
4
(
−y x

)( y x− 2y
y − 2x x

)
v.

As v is in the tangent space, we can write it as

α

(
−y
x

)
and the Newton equation becomes

−4(y − x) = 4
(
−y x

)( y x− 2y
y − 2x x

)(
−y
x

)
α

and α can be determined as
α =

x− y

x3 + y3 + xy2 + x2y

and with the defining equation of the manifold x2 + y2 = 1 we can simplify to

α =
x− y

x− y
.

Thus in the example we get (
x1
y1

)
=

1

x0 + y0

(
1
1

)
which after an orthogonal projection as a retraction yields the optimal solution in just one single
step. Even though in general the optimum is not attained after one step, it can be shown, that the
convergence rate is quadratic. See for example [29, p.114, Chapter 6, Theorem 6.3.2].

A proof of the local quadratic convergence of the Newton method on manifolds can be found in
[29, Theorem 6.3.2].

6.3 Rank adaptive algorithm
As we have shown above, the proposed gradient method on the TT variety converges either to a
critical point on the smooth part or to a singular point. In the case of convergence to a singular
point, we cannot ensure that it is locally optimal. See Figure 31 for an illustration of this case.

A possible solution to this problem is the following: When the algorithm detects, that it is
converging to a singular point, it could “jump into this point” and restart the Riemannian gradient
search from there. [27] use a very similar approach to construct globally convergent gradient
methods for neural networks.

Another possible solution has been proposed in [34]: Start with the rank-1 variety, find a
critical point and increase the allowed rank by one, and so on. The authors demonstrate very good
convergence behaviour for this method in the matrix case.
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