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Zusammenfassung

Die numerische Simulation komplexer dynamischer Systeme spielt heutzutage eine wichtige
Rolle in der Entwicklung technischer Komponenten. Die Modellgleichungen dieser dynami-
schen Systeme werden häufig mit Hilfe von automatisierten Modellierungsprogrammen er-
stellt und bestehen üblicherweise aus differentiell-algebraischen Gleichungen (DAEs), d.h.
aus Differentialgleichungen, die das dynamische Verhalten des Systems beschreiben und
daran gekoppelte algebraische Zwangsbedingungen, die diese Dynamik auf eine bestimmte
Mannigfaltigkeit zwingen. Neben den bekannten Schwierigkeiten in der numerischen Lösung
von DAEs, wie das Auftreten von Ordnungsreduktionen in den numerischen Verfahren, In-
stabilitäten oder das Abdriften der numerischen Lösung von der Lösungsmannigfaltigkeit,
können komplexe Systeme zusätzlich Differentialgleichungen höherer Ordnung enthalten,
oder die Modellgleichungen ändern sich mit der Zeit, so daß die Systeme zwischen verschie-
denen Systemskonfigurationen schalten, in Abhängigkeit von Schaltbedingungen. Deswei-
teren treten häufig differentiell-algebraische Systeme mit strukturierten Koeffizienten auf.

Diese Arbeit beschäftigt sich mit der Analyse sowie mit der numerische Lösung von struk-
turierten und geschalteten differentiell-algebraischen Gleichungen. Im wesentlichen werden
drei Schwerpunkte behandelt.

Zunächst werden differentiell-algebraische Systeme zweiter Ordnung betrachtet. Die klas-
sische Ordnungsreduktion, die verwendet wird um gewöhnliche Differentialgleichungen hö-
herer Ordnung in Systeme von Differentialgleichungen ersten Ordnung zu überführen, kann
bei der Anwendung auf differentiell-algebraische Gleichungen zu verschiedenen Problemen
führen, wie zum Beispiel zu einer Erhöhung des Index der DAE oder sogar zum Verlust der
Lösbarkeit. Aufgrund dessen wird in dieser Arbeit ein Indexreduktionsverfahren, sowohl
für lineare als auch nichtlineare DAE Systeme zweiter Ordnung entwickelt, das basierend
auf Ableitungsfeldern des Systems zweiter Ordnung die Konstruktion eines äquivalenten
differentiell-algebraischen Systems bestehend aus entkoppelten Differentialgleichungen ers-
ter und zweiter Ordnung sowie davon unabhängigen algebraischen Gleichungen ermöglicht.
Dieses reduzierte System besitzt die gleiche Lösung wie das ursprüngliche System. Weiter
erlaubt das Verfahren die Transformation in ein reduziertes System erster Ordnung von
niedrigem Index sowie eine explizite Lösungsdarstellung im Fall von Zeit-invarianten linea-
ren Systemen zweiter Ordnung.

Der zweite Teil der Arbeit befaßt sich mit strukturierten differentiell-algebraischen Sys-
temen. Da die Strukturen in den Koeffizientenmatrizen die physikalischen Eigenschaften
des Systems widerspiegeln, sollten diese Strukturen während der numerischen Lösung er-
halten bleiben, um auch die physikalischen Eigenschaften des Systems zu erhalten. In der
vorliegenden Arbeit werden lineare DAEs mit symmetrischen und selbstadjungierten Koef-
fizientenmatrizen untersucht und strukturerhaltende Normalformen für symmetrische und
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vi Zusammenfassung

selbstadjungierte lineare DAE Systeme entwickelt. Es stellt sich heraus, dass eine struk-
turerhaltende strangeness-freie Formulierung sowohl für symmetrische als auch für selbst-
adjungierte Systeme nur für Systeme mit Strangeness Index kleiner oder gleich 1 existiert.
Für symmetrische Systeme benötigt man außerdem weitere starke Voraussetzungen an die
Koeffiezientenmatrizen, um die Struktur erhalten zu können. Desweiteren wird ein struk-
turerhaltendes Indexreduktionsverfahren für selbstadjungierte lineare DAEs entwickelt, ba-
sierend auf minimaler Erweiterung des Originalsystems, welches eine strukturerhaltende
numerische Behandlung erlaubt.
Der dritte Teil der Arbeit beschäftigt sich mit geschalteten oder so genannten hybri-
den differentiell-algebraischen Systemen, welche auf der Basis von Schaltbedingungen zwi-
schen verschiedenen Zustandsbeschreibungen schalten. Zunächst wird die Formulierung
dieser Systeme untersucht, sowie die Existenz und Eindeutigkeit von Lösungen nach dem
Umschalten. Danach wird die numerische Lösung von hybriden differentiell-algebraischen
Systemen behandelt. Hierbei spielt insbesondere die konsistent Re-Initialisierung nach
dem Umschalten und die Behandlung von numerischen Schnattern (sogenanntes ”Chat-
tering”) während der numerischen Simulation eine wichtige Rolle. Für die konsistenten Re-
Initialisierung wird ein Verfahren verwendet, welches es erlaubt bestimmte Komponenten
des Lösungsvektors an der Stelle des Umschaltens festzuhalten, um so die Lösung des Ge-
samtsystems auf physikalisch sinnvolle Weise fortzuführen. Unter Verwendung sogenannter
“Sliding Mode Simulation” ist es möglich das dynamische Verhalten des Systems während
des Schnatterns zu approximieren, um durch die Lösung eines Ersatzmodells ständiges Um-
schalten zwischen verschiedenen Systembeschreibungen und den damit verbundenen hohen
Rechenaufwand zu vermeiden. Eine Modussteuerung für die numerische Simulation hybri-
der differentiell-algebraischer Systeme, die die numerische Integration der DAEs mit der
Organisation der Moduswechsel verbindet und Sliding Mode Simulation erlaubt wurde im-
plementiert. Die Funktionalität der Modussteuerung wird durch eine Anzahl numerischer
Beispiele illustriert, insbesondere im Hinblick auf elektrische Schaltkreise mit schaltenden
Elementen und mechanische Systeme mit Haft- und Gleitreibung. Desweiteren werden die
grundlegenden Ideen zur Steuerung von linearen geschalteten Deskriptorsystemen betrach-
tet.



Abstract

The numerical simulation of complex dynamical systems nowadays plays an important role
in technical applications. Typically, the dynamical systems arising from automatic model
generating tools are described by differential-algebraic equations (DAEs), i.e., by differ-
ential equations describing the dynamical behavior of the system coupled with algebraic
constraints forcing these dynamics onto a specific manifold. Besides the already known
difficulties in solving DAEs numerically, as e.g. order reduction of numerical methods,
instabilities, or the drift-off from the solution manifold, complex systems additionally can
contain higher order differential-algebraic equations, or the system can switch between
different system configurations or operation modes based on certain transition conditions.
Further, the coefficient matrices of the DAEs can exhibit certain structures.

In this thesis we discuss the analysis as well as the numerical solution of structured and
switched differential-algebraic equations. Basically, the thesis focuses on three topics.

First, second order differential-algebraic equations are considered. It is known that the
classical order reduction that is used to transform higher order ordinary differential equa-
tions into first order systems leads to a number of difficulties when applied to DAEs, as
e.g. an increase in the index of the system or even the loss of solvability. In this thesis,
an index reduction method for linear as well as nonlinear second order DAEs based on
differentiation of the second order system is derived that allows to construct an equivalent
second order system of low index in a numerical feasible way. This approach also enables
the transformation into so-called trimmed first order form of low index and an explicit
representation of solutions in the case of linear time-invariant second order systems.

The second topic involves structured differential-algebraic systems. As the structure of the
coefficient matrices represent certain physical properties of the system the symmetry struc-
ture should be preserved during the numerical solution. In particular, linear differential-
algebraic systems with symmetric and self-adjoint coefficient matrices are considered and
structure preserving condensed forms for symmetric and self-adjoint linear DAEs are de-
rived. It turns out that a structure preserving strangeness-free formulation for symmetric
and self-adjoint systems only exists if the strangeness index of the system is lower or equal
one. For symmetric systems we need in addition strong assumptions on the coefficient
matrices in order to preserve the symmetry. Further, a structure preserving index reduc-
tion method based on so-called minimal extension is investigated that allows a structure
preserving numerical treatment.

The third topic involves switched or so-called hybrid differential-algebraic systems that
switch between different modes of operation based on certain transition conditions. First,
we examine the formulation of hybrid systems and the existence and uniqueness of solu-
tions after switching. Afterwards, the numerical solution of hybrid systems is considered.
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viii Abstract

In particular, a consistent reinitialization after mode switching is considered that allows a
continuation of the previous solution in a physical reasonable way by fixing certain com-
ponents of an initial value vector, and the treatment of chattering behavior during the
numerical simulation using so-called sliding mode simulation is studied. A hybrid mode
controller is implemented for the numerical solution of hybrid differential-algebraic systems
that organizes mode switching and allows sliding mode simulation. The functionality of
the mode controller is illustrated by several examples, in particular, considering electrical
circuits with switching elements and mechanical systems with dry friction phenomena. Fur-
ther, the basic concepts for the control of linear hybrid descriptor systems are considered.
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Notation

ẋ, ẍ, x(i) time derivative of x(t), i.e., ẋ(t) = d
dt

x(t),

ẍ(t) = d2

dt2
x(t), x(i)(t) = di

dti
x(t), see Chapter 2

f;. = ∂f

∂.
partial derivative of a function f , see Definition 2.1

∇j backward difference, see Definition 6.12
‖.‖ vector norm, see Definition 2.4
(., .) sesquilinear form, i.e., (f, g) =

∫

I
fT (t)g(t)dt for

f, g ∈ C0(I, Rn), see (4.19) and Definition 4.14
AT transpose of a matrix A ∈ Rm,n

A−1 inverse of a matrix A ∈ Rn,n, see Definition 2.14
A+ Moore-Penrose pseudo-inverse of a matrix A ∈ Rm,n,

see Definition 2.17
AD Drazin inverse of a matrix A ∈ Rn,n, see Definition 2.20
aµ, ai, a

l
µ number of algebraic variables (in mode l)

αj coefficients of a BDF method, see (6.16)
αij, βj , γj coefficients of a Runge-Kutta method, see (6.8)
b, bl right-hand side of a linear first order DAE (in mode l), see (2.5)
Ck(I, V ) set of k-times continuously differentiable functions f : I → V
C(I, V ) = C0(I, V ) set of continuous functions f : I → V
Cm

imp(T ) set of impulsive smooth distributions, see Definition 2.44
C set of complex numbers
dµ, dl

µ number of differential variables (in mode l), see Theorem 2.36

d
(2)
µ , d

(2)
i number of second order differential variables, see Lemma 3.8

d
(1)
µ , d

(1)
i number of first order differential variables, see Lemma 3.8

δa Dirac delta distribution at a point a ∈ R

Dx, Dẋ, Dx(i) domain of x, ẋ, x(i)

Dn set of test functions, see Section 2.2.3
D differential-algebraic operator D : X → Y, see (4.17)
D⋆ conjugate differential-algebraic operator D⋆ : Y⋆ → X⋆,

see Definition 4.15
Dl union of subintervals Ii, see Definition 5.3
E(Tτ ) set of event times for a hybrid time trajectory Tτ , see Section 5.1
f right-hand side of a linear second order DAE, see (3.6)
Fk,F l

k derivative array of level k (in mode l), see (2.15)

F̂ , F̂1, F̂2, F̂3 functions describing a reduced nonlinear DAE, see (2.19)
FN normal force, see Example 5.2
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F, F l function describing a nonlinear DAE (in mode l),
see (2.3), (5.3)

Γl
j,i switching surface, see (5.9)

Γl boundary of the constraint manifold Λl, see (5.10)
gl

j,i, g
l
j , g

l switching functions, see Definition 5.3
h stepsize of a discretization method, see Section 6.2
H a hybrid differential-algebraic system, see Definition 5.3
I = [t0, tf ] ⊂ R interval
Ii = [τi, τ

′
i) subinterval, see Definition 5.3

J l set of autonomous transitions in mode l, see Definition 5.3
Ll

j, transition condition, see Definition 5.3
Ll Lagrange interpolation polynomial, see (6.12)
Lk, L

l
k solution set of the derivative array Fk, F l

k, see (2.16)
L, Ll constraint manifold of a DAE (in mode l), see Section 2.2.2
Λl constraint manifold of a hybrid system (in mode l), see (5.11)
Ll Jacobian of derivative array, see (3.20), (3.39)
L,Ll differential part of nonlinear reduced system (in mode l),

see (2.21)
m,ml number of equations (in mode l)
M set of modes, see Definition 5.3
Ml Jacobian of derivative array, see (3.20), (3.39)
n, nl number of unknowns (in mode l)
Nl Jacobian of derivative array, see (3.20), (3.39)
N set of natural numbers (excluding 0)
N0 set of natural numbers (including 0)
NI number of integration intervals, see Definition 5.3
NF number of modes, see Definition 5.3
nl

T number of transitions of mode l, see Definition 5.3
nl

j number of switching functions for transition j in mode l,
see Definition 5.3

Πk space of polynomials of maximal degree k, see (6.1)
Φ discretization method, see (6.7)
R set of real numbers
Rm,n set of real matrices of size m × n
R[Di] set of i-th order differential polynomials in R

Rl reachable set in mode l, see Definition 5.35
R,Rl algebraic part of a nonlinear reduced system (in mode l),

see (2.21)
RH set of reachable states of a hybrid system H,

see Definition 5.40
S cost functional of an optimal control problem, see (1.3)
Sl mode allocation function, see Definition 5.3
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s(MCK), s
(MCK)
i strangeness due to (M,C,K), see Lemma 3.8

s(CK), s
(CK)
i strangeness due to (C,K), see Lemma 3.8

s(MC), s
(MC)
i strangeness due to (M,C), see Lemma 3.8

s(MK), s
(MK)
i strangeness due to (M,K), see Lemma 3.8

si part of s
(MK)
i , see Lemma 3.15

ti gridpoint of a discretization
t independent variable, time
T k

l transition function, see Definition 5.3
Tτ hybrid time trajectory, see Section 5.1
Tm hybrid mode trajectory, see Section 5.1
τ ′
i , τi event times, see Definition 5.3

uµ, u
l
µ, ui number of undetermined variables (in mode l), see Theorem 2.36

ueq equivalent control, see (5.30)
vµ, v

l
µ, vi number of vanishing equations (in mode l), see Theorem 2.36

µ, µl strangeness index (in mode l), see Definition 2.35
µmax maximal strangeness index of a hybrid system, see Definition 5.8
µf , µs, µk coefficients of friction, see Example 5.2
ν index of nilpotency, see Definition 2.19
νd differentiation index, see Chapter 1
ximp impulsive part of a generalized function, see (2.26)
x distribution x ∈ Cn, see Definition 2.43
Xi discretized solution, see (6.7)
xi approximation of the solution at time ti, i.e., xi ≈ x(ti)
X function space, see (4.18)
X⋆ dual function space, see (4.20)
Y function space, see (4.18)
Y⋆ dual function space, see (4.20)
(M,C,K) matrix triple or triple of matrix functions describing a linear

second order DAE, see (3.6)
(E,A), (El, Al) matrix pair or pair of matrix-valued functions describing a

linear DAE (in mode l), see (2.5) or (2.6)

(Ê, Â) pair of matrix functions describing a reduced linear DAE,
see (2.24)

f [tj , . . . , tj+k] divided difference, see Definition 6.4
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Abbreviations

BDF backward differential formulas, see Section 6.2.2
DAE differential-algebraic equation, see Section 2.2
d-index differentiation index, see Chapter 1
GELDA general linear differential algebraic system solver, see Section 7.1.1
GENDA general nonlinear differential algebraic system solver, see Section 7.1.1
GESDA general switched differential algebraic system solver, see Section 7.1
MNA modified nodal analysis, see Chapter 1
s-index strangeness index, see Chapter 1
ODE ordinary differential equation, see Chapter 1
SVD singular value decomposition, see Chapter 2.1



Chapter 1

Introduction

The numerical simulation of complex dynamical systems nowadays plays an important role
for technical inventions and requires reliable mathematical models of the physical systems
as well as efficient numerical solution methods. In almost all areas of electrical, mechan-
ical, chemical, or traffic engineering the modeling of the dynamics of complex technical
systems is today highly modularized, thus allowing the easy and efficient automatic gener-
ation of mathematical models. Modern modeling tools automatically generate models for
substructures and link them together via constraints. The numerical simulation of these
models, however, exhibits a number of difficulties that have to be dealt with. The dy-
namical behavior of physical processes is usually modeled via differential equations. If the
states of the physical system are in some ways constrained, then the mathematical model
also contains algebraic equations to describe these constraints. Such systems, consisting
of differential and algebraic equations, are called differential-algebraic equations (DAEs).
Differential-algebraic equations arise naturally in the modeling process and are therefore
widely used in the simulation and control of constrained dynamical systems in numerous
applications, such as mechanical systems, electrical circuit simulation, chemical engineer-
ing, fluid dynamics and many other areas. In the following, we present some of the most
important examples.

Mechanical Systems. In the industrial simulation and mathematical modeling of me-
chanical systems the multibody approach is frequently used [34, 130]. A multibody system
is the result of describing a mechanical system by a finite number of bodies with masses
and torques and the interconnections between these bodies. The equations of motion of a
constrained multibody system are given by

M(p, t)p̈ = fa(p, ṗ, t) − GT (p, t)λ,

0 = g(p, t).
(1.1)

Here, p ∈ Rnp denotes the vector of generalized position coordinates of the mechanical
system with np degrees of freedom, M(p, t) ∈ Rnp,np is the mass matrix, which is usu-
ally positive semi-definite and symmetric, and the vector fa(p, ṗ, t) ∈ R

np describes the
applied forces acting on the system. Further, the vector g(p, t) ∈ Rnλ describes con-
straints restricting the motion of the system which are coupled via the constraint matrix
G(p, t) := d

dp
g(p, t) ∈ Rnλ,np and the Lagrange multipliers λ ∈ Rnλ to the dynamical sys-

tem. Thus, the multibody approach leads to a nonlinear differential-algebraic equation
(1.1).
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2 Introduction

Linearization of the equations of motion (1.1) along the equilibrium solution or the dis-
cretization of mechanical structures by finite element methods leads to systems of the form

M(t)p̈ + C(t)ṗ + K(t)p = f(t), (1.2)

where M(t) ∈ Rnp,np is again the mass matrix, C(t) ∈ Rnp,np is the damping matrix that
can also contain Coriolis forces for gyroscopic systems [65, 89], K(t) ∈ Rnp,np is the stiffness
matrix, and f(t) ∈ R

np denotes time-dependent external forces. When the leading matrix
M(t) is singular, then the system (1.2) forms a linear second order differential-algebraic
equation.

Optimal control problems. Classical control applications such as stabilization of a
system or path following often are formulated as optimal control problems. The linear-
quadratic optimal control problem as in [77, 83] is the problem of minimizing a cost func-
tional

S(x, u) =

∫ tf

t0

[
x
u

]T [
Q(t) S(t)
ST (t) R(t)

] [
x
u

]

dt (1.3a)

subject to the initial value problem

E(t)ẋ = A(t)x + B(t)u, x(t0) = x0, (1.3b)

with control input u, where E,A ∈ C(I, Rm,n), B ∈ C(I, Rm,k), Q ∈ C(I, Rn,n), R ∈
C(I, Rk,k), S ∈ C(I, Rn,k) and Q(t) = QT (t), R(t) = RT (t) for all t ∈ I = [t0, tf ]. By
application of the Pontryagin maximum principle [83] this linear-quadratic optimal control
problem leads to the boundary value problem for a differential-algebraic equation of the
form





0 E(t) 0
−ET (t) 0 0

0 0 0









λ̇
ẋ
u̇



 =





0 A(t) B(t)

(A(t) + Ė(t))T Q(t) S(t)
BT (t) ST (t) R(t)









λ
x
u



 , (1.3c)

with boundary conditions

x(t0) = x0, ET (tf )λ(tf) = 0.

Electrical circuits. In the simulation of electrical circuits the modified nodal analysis
(MNA) [35] leads to a quasi-linear differential-algebraic equation of the form

AC

dqC(AT
Ce, t)

dt
+ ARr(AT

Re, t) + ALjL + AV jV + AIiS(t) = 0,

dΦL(jL, t)

dt
− AT

Le = 0,

AT
V e − vS(t) = 0.

(1.4)
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Here, the vector e denotes the node potentials, jL and jV are the currents through induc-
tances and voltage sources, respectively, the input functions iS and vS describe the cur-
rent and voltage sources, the function r describes the resistances, and qC and ΦL are the
functions describing the charges of the capacitances and the fluxes of the inductances, re-
spectively. Further, the incidence matrix A = [AC AL AR AV AI ] contains the information
on the topology of the circuit, with AC , AL, AR, AV and AI describing the branch-current
relation for capacitive, inductive, resistive branches and branches for voltage sources and
current sources, respectively. Thus, the vectors AT

Ce, AT
Le, AT

Re and AT
V e describe the branch

voltages for the capacitive, inductive, resistive and voltage source branches, respectively.

Compared to ordinary differential equations (ODEs) there are many difficulties in solving
DAEs analytically as well as numerically. An important property describing the difficulty to
solve a DAE is the so-called index of the DAE. There are several index concepts such as the
differentiation index (d-index) [17, 59], the strangeness index (s-index) [82], the perturbation
index (p-index) [24, 59] or the tractability index (t-index) [55, 97]. The differentiation index
roughly states how often all or part of the DAE have to be differentiated with respect to
time t in order to obtain an ordinary differential equation, i.e., a system of the form
ẋ = ϕ(t, x). The concept of the differentiation index is widely-used in the analysis of
differential-algebraic equations, but it has the major drawback that it is not defined for
over- and underdetermined systems as it is based on a solvability concept that requires
unique solvability. Therefore, the concept of the strangeness index was developed in [72,
78, 79, 84] as a generalization of the differentiation index to over- and underdetermined
systems. We will use the concept of the strangeness index throughout this thesis. As
the differentiation index determines how far the differential-algebraic equation is away
from an ordinary differential equation, an ordinary differential equation has d-index zero,
while an algebraic equation has d-index one. In contrast, the strangeness index measures
the distance to a decoupled system of ordinary differential equations and purely algebraic
equations. Hence, ordinary differential equations and purely algebraic equations both have
s-index zero. In this way, the index also determines the smoothness that is needed for
the inhomogeneity of a linear differential-algebraic equation to guarantee the existence of
a classical solution. Also of great importance in the numerical treatment of differential-
algebraic equations is the perturbation index that measures the sensitivity of solutions
with respect to perturbations of the problem in the initial values and right-hand sides.
For a detailed analysis and a comparison of various index concepts with the differentiation
index, see [24, 82, 98]. In the following, differential-algebraic equations with a d-index
higher than 1 or an s-index higher than 0 are called higher index problems. It is well-
known that under the standard assumptions that the mass matrix M is symmetric and
positive definite and the constraints are independent, meaning that the constraint matrix
G has full row rank, the equations of motion (1.1) of multibody systems are of d-index 3
or s-index 2 respectively, see e.g. [34]. Also in electrical circuit analysis it is well-known
which influence specific elements and their combination may have on the index, see [56, 57].
Furthermore, in [36, 141] topological methods have been derived that analyze the network
topology and show which equations are responsible for a high index. It has been shown
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in [36] that for wide classes of circuits the t-index of the MNA equations (1.4) does not
exceed 2 and can be determined by topological criteria assuming positive definiteness of
the Jacobians of the element-characterizing functions.
The accuracy and stability of the numerical solution of a DAE depends on the index, in such
a way that the higher the index of the DAE, the more sensitive is the numerical solution
to perturbations and errors in the data. In particular, for higher index problems numerical
methods may not converge and instabilities can occur. Further, due to hidden algebraic
constraints in higher index problems the discretization errors can cause the numerical
solution to drift-off from the constraint manifold that is given by the algebraic relations
in the system. To overcome these difficulties in the solution of higher index problems,
regularization techniques can be applied to transform the system to an equivalent system
of lower index. In many applications like multibody systems or circuit simulation problems
the differential-algebraic equations have extra structure that can be used to determine
the reduced systems. For mechanical multibody systems there are several regularization
techniques, see e.g. [14, 50, 34, 137], all of them involving differentiations of the constraint
equations. Further, an index reduction method that allows to conserve certain structural
properties of the given problem based on introducing some new variables is the index
reduction by minimal extension studied in [80] and in [6] for the MNA equations (1.4). Index
reduction techniques for general linear and nonlinear over- and underdetermind DAEs are
given in [82].
Besides the challenges already given in the numerical solution of general nonlinear DAEs
some more difficulties arise that have not yet quite been settled. First of all, the differential-
algebraic system can contain certain structures describing physical properties of the system.
In the linearized equations of motion (1.2) of mechanical systems the matrices M and K are
typically symmetric, positive definite and sparse, and C is symmetric, or skew-symmetric
for gyroscopic systems [65, 89]. In linear-quadratic optimal control problems (1.3) the ma-
trices Q and R are usually positive semi-definite and positive definite, respectively, and the
corresponding pair of matrix functions in (1.3c) is self-adjoint. These structures present
physical properties of the system and numerical integration methods should preserve the
structure to meet these characteristic properties. Furthermore, most of the differential-
algebraic systems arising in engineering applications are second order systems due to the
fact that forces are proportional to accelerations. In the following, differential-algebraic
systems where derivatives of the unknown x of order k with k ≥ 2 occur are called higher
order systems. The classical approach for the solution of higher order differential-algebraic
systems is the transformation into a first order system by introducing new variables for
higher order derivatives. While this approach works well for ordinary differential equations
it can lead to a number of problems for DAEs. On the one hand, it may increase the index
of the DAE as has been shown in [102, 135] and on the other hand numerical methods can
fail for which various examples are given in [4, 17, 129, 151, 152]. Furthermore, in practical
applications the differential-algebraic system may be badly scaled and perturbations are
present in the data, such that the transformation to first order leads to very different solu-
tions in the perturbed system. Moreover, the transformation to first order leads to systems
of double dimension and may destroy structures present in the system. Therefore, numer-
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ical methods are proposed in [129, 151, 152] which enable the direct numerical solution of
higher order differential-algebraic systems. Otherwise, introducing only some derivatives in
the transformation to first order systems may avoid an increase of the index, but in general
it is not known which derivatives can be included without difficulties. A condensed form for
linear higher order differential-algebraic systems is introduced in [102, 135] which allows an
identification of those higher order derivatives of variables that can be replaced to obtain a
first order system without changing the smoothness requirements or increasing the index.
This condensed form allows the analysis of existence and uniqueness of solutions for higher
order DAEs and a definition of the strangeness index for higher order linear DAEs, but
it is not really numerically computable as it involves derivatives of computed orthogonal
transformations.
Another difficulty is that in many technical applications the behavior of the system or the
mathematical model can change with time, e.g., due to switching elements in electrical
circuits like electric switches or diodes, or friction phenomena and impacts in mechanical
systems, see e.g. [34, 88]. Thus, we are faced with so-called switched or hybrid differential-
algebraic systems that were studied e.g. in [12, 60, 61, 94]. In these systems discrete
event dynamics and continuous time dynamics interact and influence each other such that
they must be analyzed and solved simultaneously. Switching system models also involve
discontinuities in the system and in the solution or changes in the index of the system. The
analysis of singular points and the behavior of solutions of differential-algebraic systems
at critical points, such as singularities or those points where characteristic quantities of
the DAE change, as well as the behavior at impasse points, i.e., points beyond which
the solution of the DAEs cannot be continued, is still a widely open problem. Only few
results in this direction have been obtained, mainly for specially structured systems, see
e.g. [99, 120].
In this thesis we treat some of the encountered difficulties concerning the analysis and
numerical solution of structured and switched differential-algebraic systems. With regard
to higher order differential-algebraic systems, we will present an index reduction method
that allows the determination of an equivalent reduced higher order system locally at every
time step in a numerical feasible way. The approach also allows to find trimmed first order
formulations of s-index 0 for linear second order DAEs and explicit solution representation
in the case of time-invariant linear systems. Further, we will consider structure preserving
condensed forms for linear differential-algebraic systems with symmetric coefficients as well
as self-adjoint system, and derive a structure preserving index reduction method that allows
to preserve the structure and therefore also the physical properties of the system during
the numerical integration. In the numerical simulation of switched differential-algebraic
systems, besides the already existing problems in the numerical integration of DAEs there
are new difficulties. An index reduction has to be done in the same way as for DAEs
and appropriate numerical methods for DAEs have to be used, but index reduction and
integration is often done in small intervals resulting in high computational effort. Further,
besides consistent initial values that are needed to start the integration also consistent
values at each point where the system behavior changes are needed to restart the integration
at those points. The states at the switch points have to be determined exactly, as they are
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the basis for the consistent reinitialization and for the restart of the numerical integration.
Special phenomena arising in the numerical solution of switched systems like chattering,
i.e., cyclic switching between modes of operation, have to be treated in an appropriate way
to ensure the termination of the numerical integration. We will consider these difficulties in
the numerical integration of switched systems as well as the detection and location of switch
points and the restarting of integration methods including consistent reinitialization. We
will also consider existence and uniqueness of solutions of switched differential-algebraic
systems after switching and the control of linear hybrid DAE systems.

This thesis is organized as follows. Chapter 2 contains some basic definitions and well-
known results used throughout the thesis and a short overview of the existing analysis of
linear and nonlinear DAEs. For linear DAEs we present condensed forms that allow to
transform the system into an equivalent so-called strangeness-free system of s-index 0, and
for general nonlinear DAEs we present the so-called derivative array approach that uses
the derivatives of the system to obtain an equivalent strangeness-free system. Further, we
introduce the concept of generalized functions and distributions that allows discontinuities
in the solution of a differential-algebraic system. In Chapter 3 we consider second order
DAEs and we present an derivative array approach for linear second order systems that
allows to derive an equivalent strangeness-free systems locally for every time step in a
numerical feasible way. For this, the relationships between the local and global charac-
teristic invariants of linear second order DAEs are derived. The approach is also used to
determine so-called trimmed first order formulations for second order systems and to give
explicit representations of solutions in the case of linear time-invariant systems. Conclud-
ing, the approach is also generalized to general nonlinear second order systems. In Chapter
4 we derive structure preserving condensed forms for linear systems with symmetric coeffi-
cients as well as self-adjoint systems, and we present a structure preserving index reduction
method using the ideas of minimal extension. In Chapter 5 we consider switched DAEs.
First, we introduce the formulation of so-called hybrid differential-algebraic systems and
explain the basic properties and behavior of switched differential-algebraic systems. Then,
we consider existence and uniqueness of solutions of switched systems. Further, we consider
consistent reinitialization of switched systems after switching that allows the continuation
of a given solution in a physically reasonable way and we introduce so-called sliding motion
for switched differential-algebraic systems that allows an efficient treatment of chattering
behavior during the numerical integration. In the last part, we show how control theoretical
results for DAEs can be extended to switched systems. Chapter 6 describes the numerical
methods used during the numerical solution of switched differential-algebraic systems. We
describe numerical integration methods for DAEs, in particular BDF and Runge-Kutta
methods, that can also be used efficiently to interpolate the numerical solution between
the grid points given by the stepsize selection. This is needed to determine the solution
of a switched system at a switch point from which the integration is resumed. The switch
points are determined as the roots of so-called switching functions using a modified secant
method as root finding routine. Finally, we show how a mode controller can be realized that
uses existing integration methods for DAEs as inner integration routine and organizes the
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mode switching and restarts of the integrator. In Chapter 7 we describe the implemented
mode controller GESDA that is designed to solve general switched differential-algebraic
systems using suitable DAE integration routines. To illustrate the algorithms we present
several numerical examples. Finally, in Chapter 8 we summarize and discuss the obtained
results and point out several open problems that should be investigated in the future.





Chapter 2

Preliminaries

In this chapter we introduce some basic definitions and general results in analysis and
linear algebra used throughout the thesis. We shortly present the existing analysis of
linear and general nonlinear differential-algebraic equations that will serve as basis for our
investigations. Further, we introduce the concept of generalized functions or distributions
that can be used to handle discontinuous solutions of linear differential-algebraic equations.

2.1 Definitions and Basics

In this section we introduce some notations and definitions and review some of the funda-
mentals that are used throughout the thesis. Most of the proofs can be found in [54, 82].

Definition 2.1 (Differentiable function). A function f : D → R
m on an open subset

D ⊂ Rn is called differentiable at a point x0 ∈ D if there exists a linear function u : h 7→
A(x0)h with A(x0) ∈ Rm,n such that

lim
h→0

‖f(x0 + h) − f(x0) − u(h)‖

‖h‖
= 0.

Then A(x0) is called the derivative of f at x0. If f is differentiable at every point x0 ∈ D

the function f is called differentiable on D and the function A : D → Rm,n is called the
derivative of f . The derivative of the function f (with respect to x) is denoted by df

dx
= f;x.

Definition 2.2 (Continuously differentiable). A differentiable function f : D ⊂ Rn →
Rm is called continuously differentiable if the derivative of f is continuous in D. The
set of continuously differentiable functions from D into Rm is denoted by C1(D, Rm). A
function f : D ⊂ R

n → R
m is called l-times continuously differentiable if the derivative

of f is an (l − 1)-times continuously differentiable function from D into Rm. The set of
l-times continuously differentiable functions is denoted by C l(D, Rm). Furthermore, the set
C∞(D, Rm) is called the set of infinitely continuously differentiable functions.

Let x : I ⊂ R → R
n and f : D ⊂ R

n → R
m be differentiable functions. In the following,

the derivatives of x(t) with respect to t are denoted by ẋ(t) = d
dt

x(t), ẍ(t) = d2

dt2
x(t),

x(i)(t) = di

dti
x(t), and partial derivatives of f(x) with respect to selected variables p from

x = [xi]i=1,...,n are denoted by f;p, e.g.,

f;xi
(x) =

∂

∂xi

f(x), f;xi,...,xi+j
(x) =

[
∂

∂xi

f(x) . . .
∂

∂xi+j

f(x)

]

.

9
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Further, we define the directional derivatives of a function f .

Definition 2.3 (Directional derivative). Let D ⊂ Rn be open and consider a function
f : D → R. For a point x ∈ D and a vector v ∈ R

n, the directional derivative of f in x
along v is defined by

Dvf(x) :=
d

ds
f(x + sv)

∣
∣
∣
∣
s=0

= lim
s→0

f(x + sv) − f(x)

s
.

If the function f is continuously differentiable then it holds that Dvf(x) = f;x(x)v, see e.g.
[42, p. 50]. The directional derivative of a function along a vector v at a point x represents
the rate of change of the function, moving through x, in the direction of v.

Definition 2.4 (Vector norm). A function ‖.‖ : Rn → R is called a vector norm if for
all x, y ∈ Rn and α ∈ R the following conditions are satisfied:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0,

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖,

3. ‖αx‖ = |α|‖x‖.

In the following, we will always consider the so called Hölder norms which are defined for
p ∈ N ∪ {∞} by

‖x‖p =

(
n∑

i=1

|xi|
p

) 1
p

for vectors x = [xi]i=1,...,n ∈ Rn, where in particular ‖x‖∞ = max1≤i≤n |xi|. Furthermore,
with respect to matrices we will use the associated norms defined for p ∈ N ∪ {∞} by

‖A‖p = sup
x6=0

‖Ax‖p

‖x‖p

,

for a matrix A ∈ Rm,n. In the following, it is not necessary to distinguish between different
p, so we will use ‖.‖ instead of ‖.‖p.

Definition 2.5 (Homeomorphism, homeomorphic). A function f : D ⊂ R
n → R

m

is called a homeomorphism if f is bijective and both f and its inverse function f−1 are
continuous. Two subsets D ⊂ Rn and G ⊂ Rm are called homeomorphic if there exists a
homeomorphism f : D → G between them.

Definition 2.6 (Diffeomorphism). A function f : D ⊂ R
n → R

m is called a diffeomor-
phism if f is bijective and both f and its inverse function f−1 are continuously differentiable.

Definition 2.7 (Manifold). A subset M ⊂ Rn is called a manifold of dimension r if
every point x ∈ M has an open neighborhood in M which is homeomorphic to an open
subset of Rr.
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Theorem 2.8. Let H ∈ C1(D, Ra), D ⊆ Rn open, k ∈ N ∪∞, with M = H−1({0}) 6= ∅
and suppose that rank H;x(x) = a ≤ n for all x ∈ M . Then, M is a manifold of dimension
r = n − a.

Proof. See [82, Theorem 4.65].

Theorem 2.9 (Implicit Function Theorem). Suppose that f : D ⊂ Rn × Rm → Rn is
continuous on an open neighborhood D0 ⊂ D of a point (x0, y0) for which f(x0, y0) = 0.
Assume that f;x exists in a neighborhood of (x0, y0) and is continuous at (x0, y0), and that
f;x(x0, y0) is nonsingular. Then there exist open neighborhoods Ux ⊂ R

n and Uy ⊂ R
m of

x0 and y0, respectively, such that, for any y ∈ Uy, the equation f(x, y) = 0 has a unique
solution x = φ(y) ∈ Ux and the mapping φ : Uy → Ux is continuous. (Here, Ux and Uy

denote the closure of Ux and Uy, respectively.) Moreover, if f;y exists at (x0, y0), then φ is
continously differentiable at y0 and its derivative is given by

φ;y(y0) = − [f;x(x0, y0)]
−1 f;y(x0, y0).

Proof. See [113, p. 128].

In the following, we will often use the left- and right-hand limits of functions x : I → Rn

that are defined by

x(τ−) = lim
t→τ−

x(t) = lim
t→τ
t<τ

x(t), x(τ+) = lim
t→τ+

x(t) = lim
t→τ
t>τ

x(t).

Next, we introduce some important properties concerning subspaces and matrices. Impor-
tant subspaces associated with a matrix A ∈ Rm,n are the range and the nullspace or kernel
of the matrix.

Definition 2.10 (Orthogonal complement). The orthogonal complement of a subspace
S ⊆ Rn is defined by S⊥ = {y ∈ Rn : yT x = 0 for all x ∈ S}.

Definition 2.11 (Kernel, cokernel, range and corange). Let A ∈ Rm,n. The kernel,
cokernel, range, and corange of A are defined by

kernel(A) = {x ∈ R
n : Ax = 0},

cokernel(A) = (kernel(A))⊥,

range(A) = {y ∈ R
m : there exists an x ∈ R

n such that y = Ax},

corange(A) = (range(A))⊥.

Lemma 2.12. Let A ∈ Rm,n, then

cokernel(A) = range(AT ) and corange(A) = kernel(AT ).

Proof. See [54, p. 69].
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Definition 2.13 (Rank and corank). Let A ∈ Rm,n. Then, the rank of the matrix A is
defined by

rank(A) = dim(range(A)),

where dim(S) denotes the dimension of a subspace S ⊆ R
m. The corank is defined as the

dimension of the corange of A, i.e.,

corank(A) = m − rank(A).

Definition 2.14 (Nonsingular matrix and inverse matrix). If for a matrix A ∈ Rn,n,
a uniquely determined matrix X ∈ Rn,n exists with AX = XA = In, where the matrix
In ∈ Rn,n denotes the identity matrix, then the matrix A is called nonsingular or invertible
and the matrix X is called the inverse of A and is denoted by A−1 = X.

Definition 2.15 (Orthogonal matrix). A matrix A ∈ Rn,n is said to be orthogonal if
AT A = In.

Definition 2.16 (Orthogonal projection). Let S ⊆ Rn be a subspace. A matrix P ∈
R

n,n is called the orthogonal projection onto S if range(P ) = S, P 2 = P , and P T = P .

From Definition 2.16 it follows that I − P is the orthogonal projection onto S⊥. Further-
more, the orthogonal projection onto a subspace S is unique, see [54, p.75].
Generalizations of the inverse of a matrix are given by the Moore-Penrose pseudoinverse
or the Drazin inverse, see [27, 54].

Definition 2.17 (Moore-Penrose pseudo-inverse). Let A ∈ Rm,n. The Moore-Penrose
pseudo-inverse of A is defined as the unique matrix A+ ∈ Rn,m that satisfies the following
Moore-Penrose conditions

AA+A = A, (2.1a)

A+AA+ = A+, (2.1b)

(AA+)T = AA+, (2.1c)

(A+A)T = A+A. (2.1d)

Lemma 2.18. Let A ∈ R
m,n. Then

AA+ is a projection onto range(A),

I − AA+ is a projection onto corange(A),

I − A+A is a projection onto kernel(A),

A+A is a projection onto cokernel(A).

Proof. See [54, p. 257-258].

Definition 2.19 (Index of nilpotency). Let A ∈ Rn,n. The quantity

ν = min{l ∈ N0 | kernel (Al+1) = kernel(Al)}

is called the index (of nilpotency) of A and is denoted by ν = ind(A).
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Definition 2.20 (Drazin inverse). Let A ∈ Rn,n have the index ν = ind A. A matrix
X ∈ Rn,n satisfying

AX = XA, (2.2a)

XAX = X, (2.2b)

XAν+1 = Aν (2.2c)

is called the Drazin inverse of A and is denoted by AD = X.

The Drazin inverse is unique for every matrix A ∈ R
n,n, and for nonsingular matrices it

corresponds to the inverse AD = A−1, see e.g. [82, Theorem 2.19, Lemma 2.10]. Further,
we have the following properties of the Drazin inverse.

Lemma 2.21. For a matrix A ∈ Rn,n and a nonsingular matrix T ∈ Rn,n we have

(T−1AT )D = T−1ADT.

Proof. See [82, Lemma 2.20].

Lemma 2.22. Consider two matrices E,A ∈ Rn,n that commute, i.e., EA = AE. Then
we have

EAD = ADE,

EDA = AED,

EDAD = ADED.

Proof. See [82, Lemma 2.21].

Theorem 2.23 (Singular value decomposition (SVD)). Let A ∈ Rm,n. Then there
exist orthogonal matrices U ∈ R

m,m and V ∈ R
n,n such that

UTAV = Σ =

[
Σr 0
0 0

]

,

where Σr = diag(σ1, . . . , σr) ∈ Rr,r and σ1 ≥ · · · ≥ σr > 0.

Proof. See [54, p.70].

The singular value decomposition allows the computation of the range, corange, kernel,
and cokernel of a matrix A.

Lemma 2.24. Let A ∈ Rm,n with rank(A) = r and suppose that A = UΣV T ∈ Rm,n is an
SVD of A. If we have the partitioning U =

[
U1 U2

]
∈ Rm,m with U1 ∈ Rm,r, U2 ∈ Rm,m−r

and V =
[
V1 V2

]
∈ Rn,n with V1 ∈ Rn,r, V2 ∈ Rn,n−r, then

U1U
T
1 is a projection onto range(A),

U2U
T
2 is a projection onto corange(A),

V2V
T
2 is a projection onto kernel(A),

V1V
T
1 is a projection onto cokernel(A).
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Proof. See [54, p. 75].

Note that these orthogonal projections are uniquely determined by U and V although the
matrices U and V are in general not unique. There also exists a continuous version of the
singular value decompositions for smooth matrix-valued functions.

Theorem 2.25. Let E ∈ Ck(I, Rm,n), k ∈ N0 ∪ {∞}, with rank E(t) = r for all t ∈ I.
Then there exist pointwise orthogonal matrix-valued functions U ∈ Ck(I, Rm,m) and V ∈
Ck(I, Rn,n), such that

UT (t)E(t)V (t) =

[
Σr(t) 0

0 0

]

with pointwise nonsingular Σr ∈ Ck(I, Rr,r).

Proof. See [82, Theorem 3.9].

2.2 Differential-Algebraic Equations

In this section we review the general theory of linear and nonlinear differential-algebraic
equations as presented in [82]. In the most general form a nonlinear differential-algebraic
equation (DAE) is given by

F (t, x, ẋ) = 0, (2.3)

where F : I × Dx × Dẋ → Rm is a sufficiently smooth function on a compact interval
I = [t0, tf ] ⊂ R and Dx, Dẋ ⊆ R

n are open sets. In addition, an initial condition

x(t0) = x0 ∈ R
n, (2.4)

might be given. If not otherwise specified, we will use the classical concept of solvability
yielding continuously differentiable solutions as follows.

Definition 2.26 (Solution of a DAE). Consider a nonlinear system (2.3) with a suf-
ficiently smooth function F . A function x : I → Rn is called a solution of (2.3) if
x ∈ C1(I, Rn) and x satisfies (2.3) pointwise. It is called a solution of the initial value
problem (2.3)-(2.4) if x is a solution of (2.3) and satisfies the initial condition (2.4). An
initial condition (2.4) is called consistent if the corresponding initial value problem has at
least one solution.

This notion of solution can be weakend, since the derivative ẋ does not occur in the kernel
of E such that the solution has to be continuously differentiable only on the cokernel of
E. Later on, considering switched systems we will also allow so-called strong solutions and
generalized solutions in a distributional setting, see Section 5.3.
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2.2.1 Linear Differential-Algebraic Equations

At first, we consider the initial value problem for linear differential-algebraic equations of
the form

E(t)ẋ = A(t)x + b(t), (2.5)

with E,A ∈ C(I, Rm,n) and b ∈ C(I, Rm) together with an initial condition (2.4).

The special case of linear DAEs with constant coefficients E,A ∈ Rm,n of the form

Eẋ = Ax + b(t) (2.6)

is well-understood using purely algebraic techniques, e.g., through the Kronecker canonical
form [71] or the Weierstraß canonical form [150] derived via equivalence transformations
of matrix pairs.

Definition 2.27 (Strong equivalence). Two pairs of matrices (Ei, Ai), Ei, Ai ∈ Rm,n,
i = 1, 2, are called strongly equivalent if there exist nonsingular matrices P ∈ R

m,m and
Q ∈ Rn,n, such that

E2 = PE1Q, A2 = PA1Q. (2.7)

If this is the case, we write (E1, A1) ∼ (E2, A2).

Definition 2.28 (Regularity). Let E,A ∈ R
m,n. The matrix pair (E,A) is called regular

if m = n and the so-called characteristic polynomial p defined by

p(λ) = det(λE − A), λ ∈ C

is not the zero polynomial. Otherwise, the matrix pair is called singular.

A canonical form under strong equivalence transformations (2.7) for regular matrix pairs
is the Weierstraß canonical form given in the following theorem.

Theorem 2.29. Let E,A ∈ Rn,n and (E,A) be regular. Then, there exist nonsingular
matrices W,T ∈ Rn,n such that

(E,A) ∼ (WET,WAT ) =

([
In1 0
0 N

]

,

[
J 0
0 In−n1

])

, (2.8)

where J is a matrix in Jordan canonical form, and N is a nilpotent matrix also in Jordan
canonical form. Moreover, it is allowed that one or the other block is not present.

Proof. See [82, Theorem 2.7].
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The eigenvalues of J are called the finite eigenvalues of the pair (E,A) and subspaces
W, T ⊂ Rn are called the left and right deflating subspaces of (E,A) if dim(W) = dim(T )
and W = ET + AT . The matrices

Pl = W−1

[
In1 0
0 0

]

W, Pr = T

[
In1 0
0 0

]

T−1, (2.9)

are the projections onto the left and right deflating subspace of (E,A) corresponding to
the finite eigenvalues, see e.g. [139].

Definition 2.30 (Index of a matrix pair). Consider a pair (E,A) of square matrices
that is regular and has a canonical form as in (2.8). The quantity ν defined by N ν = 0,
Nν−1 6= 0, i.e., by the index of nilpotency of N in (2.8), if the nilpotent block in (2.8) is
present and by ν = 0 if it is absent, is called the index of the matrix pair (E,A), denoted
by ν = ind(E,A).

Using Definition 2.30 the index ν of a matrix A ∈ Rn,n as in Definition 2.19 is also given
by ν = ind(A) = ind(A, I). In this way, the Weierstraß canonical form (2.8) allows to
determine the index of a linear DAE (2.6) with constant coefficients and to analyze the
existence and uniqueness of solutions. The linear DAE (2.6) is uniquely solvable for a
consistent initial value x0 if the matrix pair (E,A) is regular. In this case, i.e., if the pair
is regular, we can find a λ such that (λE−A) is nonsingular. Multiplication of the original
system with (λE − A)−1 from the left, corresponding to a scaling of the system, does not
change the solution and we get the equivalent system

Êẋ = Âx + b̂(t), (2.10)

with Ê = (λE − A)−1E, Â = (λE − A)−1A, and b̂ = (λE − A)−1b. Then, we can give an
explicit formula for the solution of the linear system (2.6).

Theorem 2.31. Let the matrix pair (E,A) be regular and let b ∈ Cν(I, Rn) with ν = ind(E)
and t0 ∈ I. Then every solution x ∈ C1(I, Rn) of (2.6) has the form

x(t) = eÊDÂ(t−t0)ÊDÊv +

∫ t

t0

eÊDÂ(t−s)ÊDb̂(s)ds − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂD b̂(i)(t)

for some v ∈ Rn, where Ê = (λE − A)−1E, Â = (λE − A)−1A, and b̂ = (λE − A)−1b for
some λ.

Proof. See [82], Theorem 2.29 and Lemma 2.31.

Remark 2.32. For commuting matrices E and A, i.e., EA = AE, the solution represen-
tation given in Theorem 2.31 can be formulated directly in terms of E and A, see e.g. [82,
Theorem 2.29]. To obtain the solution representation for general non-commuting matrices
E and A we have used a trick due to Campbell [26]. If we can find a λ such that (λE −A)
is nonsingular, then the matrices Ê = (λE − A)−1E and Â = (λE − A)−1A commute, see
e.g. [82, Lemma 2.31].
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In the analysis of linear DAEs some more care has to be taken in the case of time dependent
coefficients, see e.g. [82, Examples 3.1, 3.2]. An appropriate equivalence relation in this
case can be defined as follows.

Definition 2.33 (Global equivalence). Two pairs (Ei, Ai), i = 1, 2, of matrix-valued
functions Ei, Ai ∈ C(I, Rm,n) are called globally equivalent if there exist pointwise nonsin-
gular matrix-valued functions P ∈ C(I, Rm,m), Q ∈ C1(I, Rn,n) such that

E2 = PE1Q, A2 = PA1Q − PE1Q̇. (2.11)

There exists a condensed form for pairs of matrix-valued functions via global equivalence
transformations (2.11), which allows to extract the characteristic quantities of the corre-
sponding DAE (2.5). In the following, we say that a matrix is a basis of a vector space
if this is valid for its columns. We additionally use the convention that the only basis of
the vector space {0} ⊆ R

n is given by the empty matrix ∅n,0 ∈ R
n,0 with the properties

rank ∅n,0 = 0 and det ∅0,0 = 1. For a given matrix T , we use the notation T ′ to denote a
matrix that completes T to a nonsingular matrix, i.e., [T T ′] forms a nonsingular matrix.
This also applies to matrix-valued functions.

Theorem 2.34. Let E,A ∈ C(I, Rm,n) be sufficiently smooth and let

T be a basis of kernelE,

Z be a basis of corangeE,

T ′ be a basis of cokernelE,

V be a basis of corange (ZT AT ),

with local characteristic values
r = rankE, (rank)
a = rank (ZT AT ), (algebraic part)
s = rank (V T ZT AT ′), (strangeness)
d = r − s, (differential part)
u = n − r − a, (undetermined variables)
v = m − r − a − s, (vanishing equations)

and suppose that

r(t) ≡ r, a(t) ≡ a, s(t) ≡ s for all t ∈ I (2.12)

holds for the local characteristic values of (E,A). Then, the pair (E,A) is globally equiva-
lent to a pair of matrix-valued functions of the form

















Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 A12 0 A14

0 0 0 A24

0 0 Ia 0
Is 0 0 0
0 0 0 0

















s
d
a
s
v

. (2.13)

Here, all entries Aij are again matrix-valued functions on I and the last block column in
both matrix-valued functions has size u.
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Proof. See [82, Theorem 3.11].

By a stepwise reduction procedure involving differentiations of some of the algebraic equa-
tions we can eliminate the strangeness in the global condensed form (2.13) and finally
obtain a so-called strangeness-free system where s = 0. The number of steps involved in
this reduction procedure defines the strangeness index of the DAE.

Definition 2.35 (Strangeness index (s-index)). The minimum number of times µ that
all or part of the differential-algebraic equations (2.5) have to be differentiated in order to
obatin a system of purely ordinary differential equations and algebraic equations is called
the strangeness index (s-index) of the DAE.

The strangeness index is well-defined if the assumptions of Theorem 2.34, and in particular
the regularity assumptions (2.12) hold.

Theorem 2.36. Let the strangeness index µ of (E,A) be well-defined and let b ∈ Cµ(I, Rm).
Then the linear differential-algebraic equation (2.5) is equivalent (in the sense that there
is a one-to-one correspondence between the solution sets) to a strangeness-free differential-
algebraic system of the form

ẋ1 = A13(t)x3 + b1(t), (dµ differential equations)
0 = x2 + b2(t), (aµ algebraic equations)
0 = b3(t), (vµ consistency conditions)

(2.14)

where A13 ∈ C(I, Rdµ,uµ) and the inhomogeneities b1, b2, b3 are determined by the deriva-
tives b(0), . . . , b(µ).

Proof. See [82, Theorem 3.17].

The strangeness-free form (2.14) allows to decide on existence and uniqueness of solutions
of the linear DAE (2.5), see e.g. [82].

2.2.2 Nonlinear Differential-Algebraic Equations

In this section, we consider nonlinear differential-algebraic equations of the form (2.3). As
a general approach for the analysis of general nonlinear DAEs, Campbell introduced the
derivative array, which summarizes the original equations of the DAE and all its derivatives
up to a certain order l in one large system, see [22, 25, 78]. The derivative array Fl of level
l ∈ N0 is given by the inflated system

Fl(t, x, ẋ, . . . , x(l+1)) = 0, (2.15)

where Fl has the form

Fl(t, x, ẋ, . . . , x(l+1)) =








F (t, x, ẋ)
d
dt

F (t, x, ẋ)
...

dl

dtl
F (t, x, ẋ)








.
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We introduce the solution set of the nonlinear equation associated with the derivative array
Fl for some integer l, given by

Ll = {(t, x, ẋ, . . . , x(l+1)) ∈ R
(l+2)n+1 | Fl(t, x, ẋ, . . . , x(l+1)) = 0}, (2.16)

and we define the Jacobians

Ml(t, x, ẋ, . . . , x(l+1)) = Fl;ẋ,...,x(l+1)(t, x, ẋ, . . . , x(l+1)),

Nl(t, x, ẋ, . . . , x(l+1)) = −[Fl;x(t, x, ẋ, . . . , x(l+1)), 0, . . . , 0].
(2.17)

The following hypothesis was stated in [79]. Note, that we will use the convention that
corankF−1;x = 0.

Hypothesis 2.37. Consider a nonlinear differential-algebraic equations (2.3). There exist
integers µ, r, aµ, dµ and vµ such that the solution set Lµ is nonempty and such that for

every point (t0, x0, ẋ0, . . . , x
(µ+1)
0 ) ∈ Lµ there exists a (sufficiently small) neighborhood in

which the following properties hold:

1. The set Lµ ⊆ R
(µ+2)n+1 forms a manifold of dimension (µ + 2)n + 1 − r.

2. We have rankFµ;x,ẋ,...,x(µ+1) = r on Lµ.

3. We have corankFµ;x,ẋ,...,x(µ+1) − corankFµ−1;x,ẋ,...,x(µ) = vµ on Lµ.

4. We have rankMµ(t, x, ẋ, . . . , x(µ+1)) = r − aµ on Lµ such that there exist smooth
matrix functions Z2 and T2 defined on Lµ of size ((µ + 1)m, aµ) and (n, n − aµ),
respectively, and pointwise maximal rank, satisfying

ZT
2 Mµ = 0, rank ZT

2 Nµ [In 0 . . . 0]T = aµ, ZT
2 Nµ [In 0 . . . 0]T T2 = 0

on Lµ.

5. We have rank F;ẋT2 = dµ = m−aµ−vµ on Lµ such that there exists a smooth matrix
function Z1 defined on Lµ of size (m, dµ) and pointwise maximal rank, satisfying
rank ZT

1 F;ẋT2 = dµ.

In Hypothesis 2.37 we have omitted the function arguments for convenience. Further, note
that the matrix functions Z1, Z2, and T2 are smooth along a solution with respect to t,
even if the matrix functions formally are defined on Lµ. When a nonlinear DAE (2.3)
satisfies Hypothesis 2.37, then we call the smallest possible µ the strangeness index (s-
index) of (2.3). A nonlinear system (2.3) with vanishing strangeness index µ = 0 is called
strangeness-free. The corresponding numbers dµ and aµ are the numbers of differential and
algebraic equations of the DAE and the quantity vµ measures the number of redundant
equations such that a complete classification of the equations is given.

Definition 2.38 (Regularity). A nonlinear DAE (2.3) that satisfies Hypothesis 2.37 with
n = m = dµ + aµ, i.e., vµ = 0, is called regular.
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Under Hypothesis 2.37 projection matrices Z1, Z2 and T2 can be computed for every point
zµ ∈ Lµ, which allow locally to construct a reduced strangeness-free system with the same
solution set as the original DAE and separated differential and algebraic parts. Let zµ,0 =

(t0, x0, ẋ0, . . . , x
(µ+1)
0 ) ∈ Lµ be fixed. By assumption Lµ is a manifold of dimension (µ+2)n+

1− r that can locally be parameterized by (µ + 2)n + 1− r parameters. These parameters
can be chosen from (t, x, ẋ, . . . , x(µ+1)) in such a way that discarding the associated columns
from Fµ;x,ẋ,...,x(µ+1)(zµ,0) does not lead to a rank drop. As Fµ;x,ẋ,...,x(µ+1) already has maximal
rank r, t can always be chosen as a parameter. Since

corankMµ(zµ,0) = aµ, rank(Z2(zµ,0)
TN (zµ,0)

[
In 0 . . . 0

]T
) = aµ,

we can choose n−aµ parameters out of x. Without restriction we can write x as (x1, x2, x3)
with x1 ∈ Rdµ , x2 ∈ Rn−aµ−dµ, x3 ∈ Raµ , and choose (x1, x2) as these n − aµ parameters.
In particular, the matrix ZT

2 Fµ;x3 is then nonsingular. The remaining parameters p ∈
R(µ+1)n+aµ−r associated with the columns of Fµ;t,x,...,x(µ+1)(zµ,0) that we can remove without

having a rank drop, must then be chosen out of (ẋ, . . . , x(µ+1)). Let (t0, x1,0, x2,0, p0) be the
part of zµ,0 that corresponds to the selected parameters (t, x1, x2, p). The implicit function
theorem (Theorem 2.9) then implies that there exists a neighborhood V ⊆ R

(µ+2)n+1−r of
(t0, x1,0, x2,0, p0) and a neighborhood Ũ ⊆ R(µ+2)n+1 of zµ,0 such that

U = Lµ ∩ Ũ = {θ(t, x1, x2, p) | (t, x1, x2, p) ∈ V},

where θ : V → U is a diffeomorphism. Thus, the equation

Fµ(t, x, ẋ, . . . , x(µ+1)) = 0

can be locally solved according to

(t, x, ẋ, . . . , x(µ+1)) = θ(t, x1, x2, p)

for some (t, x1, x2, p) ∈ U. In particular, there exist locally defined functions G, corre-
sponding to x3, and H, corresponding to (ẋ, . . . , x(µ+1)) such that

Fµ(t, x1, x2, G(t, x1, x2, p), H(t, x1, x2, p)) = 0 (2.18)

on V. Setting y = (ẋ, . . . , x(µ+1)), it follows with Z2 as defined by Hypothesis 2.37 that

d

dp
(ZT

2 Fµ) = (ZT
2;x3

Fµ + ZT
2 Fµ;x3)G;p + (ZT

2;yFµ + ZT
2 Fµ;y)H;p = ZT

2 Fµ;x3G;p = 0,

on V, since Fµ = 0 and ZT
2 Fµ;y = ZT

2 Mµ = 0. By construction the variables in x3 were
selected such that ZT

2 Fµ;x3 is nonsingular. Hence,

G;p(t, x1, x2, p) = 0

for all (t, x1, x2, p) ∈ V, implying the existence of a function R such that

x3 = G(t, x1, x2, p) = G(t, x1, x2, p0) = R(t, x1, x2),
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and

Fµ(t, x1, x2, R(t, x1, x2), H(t, x1, x2, p)) = 0

on V. In a similar way we then get that

d

dx1
(ZT

2 Fµ) = (ZT
2;x1

Fµ + ZT
2 Fµ;x1) + (ZT

2;x3
Fµ + ZT

2 Fµ;x3)R;x1 + (ZT
2;yFµ + ZT

2 Fµ;y)H;x1

= ZT
2 Fµ;x1 + ZT

2 Fµ;x3R;x1 = 0

and

d

dx2
(ZT

2 Fµ) = (ZT
2;x2

Fµ + ZT
2 Fµ;x2) + (ZT

2;x3
Fµ + ZT

2 Fµ;x3)R;x2 + (ZT
2;yFµ + ZT

2 Fµ;y)H;x2

= ZT
2 Fµ;x2 + ZT

2 Fµ;x3R;x2 = 0

on V, again using that Fµ = 0 and ZT
2 Fµ;y = 0. Thus,

ZT
2 Nµ

[
In 0 . . . 0

]T
[

In−aµ

R;x1,x2

]

= 0.

Following Hypothesis 2.37 we can therefore choose T2 as

T2(t, x1, x2) =

[
In−aµ

R;x1,x2(t, x1, x2)

]

.

Thus, Hypothesis 2.37 yields a matrix function Z1 which only depends on (t, x, ẋ). Due to
the full rank assumption, we can choose the neighborhood V so small that we can take a
constant Z1. The corresponding reduced differential-algebraic equation therefore reads

F̂ (t, x, ẋ) =

[
F̂1(t, x, ẋ)

F̂2(t, x)

]

= 0, (2.19)

with

F̂1(t, x, ẋ) = ZT
1 F (t, x, ẋ), F̂2(t, x) = ZT

2 Fµ(t, x,H(t, x)).

Theorem 2.39. The reduced system (2.19) satisfies Hypothesis 2.37 with characteristic
values µ = 0, r = aµ + dµ, aµ, dµ, and vµ.

Proof. See [82, p. 208].

The condition F̂2(t, x) = 0 is locally equivalent via the implicit function theorem to a
relation x3 = R(t, x1, x2) such that we get the system

F̂1(t, x1, x2, x3, ẋ1, ẋ2, ẋ3) = 0, (2.20a)

x3 − R(t, x1, x2) = 0. (2.20b)
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We can eliminate x3 and ẋ3 in (2.20a) using (2.20b) and its time derivative to obtain

F̂1(t, x1, x2, R(t, x1, x2), ẋ1, ẋ2, R;t(t, x1, x2) + R;x1(t, x1, x2)ẋ1 + R;x2(t, x1, x2)ẋ2) = 0.

By Hypothesis 2.37 we may assume without loss of generality that this system can be
locally solved for ẋ1. In this way, we obtain a decoupled differential-algebraic system of
the form

ẋ1 = L(t, x1, x2, ẋ2),

x3 = R(t, x1, x2),
(2.21)

which has a vanishing strangeness index µ = 0 with dµ differential and aµ algebraic equa-
tions. In this system x2 ∈ C1(I, Ruµ) with uµ = n−dµ−aµ can be chosen arbitrarily. Then,
the resulting system has locally a unique solution for x1 and x3, provided that consistent
initial values are given. This means that x2 can be interpreted as a control.

Theorem 2.40. Let F as in (2.3) be sufficiently smooth and satisfy Hypothesis 2.37 with
characteristic values µ, r, aµ, dµ, vµ, and uµ = n − dµ − aµ. Then every sufficiently smooth
solution of (2.3) also solves the reduced DAE (2.19) and (2.21) consisting of dµ differential
and aµ algebraic equations.

Proof. See [82, Theorem 4.31].

In the case of linear DAEs (2.5) with sufficiently smooth matrix-valued functions E,A and
inhomogeneity b the inflated system (2.15) takes the form

Ml(t)żl = Nl(t)zl + gl(t), l = 0, . . . , µ, (2.22)

where for i, j = 0, . . . , l we have

[Ml]i,j =

(
i

j

)

E(i−j) −

(
i

j + 1

)

A(i−j−1), i, j = 0, . . . , l,

[Nl]i,j =

{
A(i) for i = 0, . . . , l, j = 0,
0 otherwise,

[zl]j = x(j), j = 0, . . . , l,

[gl]i = b(i), i = 0, . . . , l,

(2.23)

using the convention that
(

i

j

)
= 0 for i < 0, j < 0 or j > i. In this case the Hypothesis

2.37 can be formulated as a Theorem.

Theorem 2.41. Let the strangeness-index µ of (E,A) in (2.5) be well-defined. Then there
exist integers µ, aµ, dµ, v̂ and uµ such that the inflated pair (Mµ,Nµ) associated with
(E,A) has the following properties:
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1. For all t ∈ I it holds that rankMµ(t) = (µ + 1)n − aµ − v̂, such that there exists a
smooth matrix function Z with orthonormal columns and size ((µ + 1)m, aµ + v̂) and
pointwise maximal rank satisfying ZTMµ = 0.

2. For all t ∈ I we have rank ZTNµ

[
In 0 . . . 0

]T
= aµ and without loss of gen-

erality Z can be partitioned as [Z2, Z3], with Z2 of size ((µ + 1)n, aµ) and Z3 of

size ((µ + 1)n, v̂), such that Â2 = ZT
2 Nµ

[
In 0 . . . 0

]T
has full row rank aµ and

ZT
3 Nµ

[
In 0 . . . 0

]T
= 0. Furthermore, there exists a smooth matrix function T2

with orthonormal columns and size (n, dµ + uµ), satisfying Â2T2 = 0.

3. For all t ∈ I it holds that rank ET2 = dµ, such that there exists a smooth matrix func-
tion Z1 with orthonormal columns and size (m, dµ) yielding that ZT

1 E has constant
rank dµ.

Proof. See [84, Theorem 11].

Remark 2.42. The integers µ, aµ, dµ and uµ in Theorem 2.41 correspond to the charac-
teristic values of the strangeness-free system (2.14).

Using Theorem 2.41, it is possible to derive an equivalent strangeness-free system of the
form

Ê(t)ẋ = Â(t)x + b̂(t), (2.24)

with Ê =





Ê1

0
0



, Â =





Â1

Â2

0



 and b̂ =





b̂1

b̂2

b̂3



 defined by

Ê1 = ZT
1 E, Â1 = ZT

1 A, Â2 = ZT
2 Nµ

[
In 0 . . . 0

]T
,

b̂1 = ZT
1 f, b̂i = ZT

i gµ for i = 2, 3.

In general, the solution of a DAE is restricted to a subset L ⊆ I × R
n by certain algebraic

constraints implicitly contained in the DAE. In the following, this subset is called the
constraint manifold. The constraint manifold of a DAE is defined by all constraints, i.e.,
explicitly given algebraic constraints in the DAE and additionally hidden constraints that
are not stated explicitly as equations but results from differentiations of certain parts of the
DAE in higher index problems. For nonlinear DAEs given in the reduced strangeness-free
forms (2.19) or (2.21) the constraint manifold is explicitly given by

L = {(t, x) ∈ I × R
n | F̂2(t, x) = 0},

or

L = {(t, x1, x2, x3) ∈ I × R
n | R(t, x1, x2) = x3},
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respectively, and the corresponding differential parts F̂1(t, x, ẋ) = 0 in (2.19) or ẋ1 =
L(t, x1, x2, ẋ2) in (2.21) then describe the dynamical behavior inside the constraint mani-
fold. Thus, the constraint manifold L is a subset of the solution set Lµ of the derivative
array defined in (2.16). For a linear DAE in reduced form (2.24) the constraint manifold
is given by

L = {(t, x) ∈ I × R
n | Â2(t)x + b̂2(t) = 0}.

In particular, initial values (2.4) have to lie in the constrained manifold L in order to be
consistent with the DAE.

2.2.3 Generalized Functions and Distributional Solutions

In the previous section is was assumed that the solution of a DAE is a continuously dif-
ferentiable function x : I → R

n. It is also possible to allow jumps or discontinuities in the
solution at a number of distinct points in a distributional setting. In particular, this will
be important when considering switched differential-algebraic systems. In this section, we
recall a few important facts about generalized functions, see e.g. [82, 133]. In the distribu-
tional setting we follow an approach based on the space of impulsive smooth distributions
introduced in [62] and for DAEs in [51, 52, 118, 119] for a single point of discontinuity. In
[82] ideas for the extension to the case, where nonsmooth behavior occurs at a countable
number of points is proposed. This approach allows generalized functions (or distribu-
tions) as solution of a differential-algebraic system, relaxed smoothness requirements for
the inhomogeneities, as well as non-differentiability or discontinuous inhomogeneities, and
non-consistent initial values. The proofs of the theorems given in this section are all given
in [82] for a single point of discontinuity at t = 0. If nonsmooth behavior of the solution
occurs at points τj ∈ T , where the set T has no accumulation points, then all results can
be obtained in an analogous way. In the following, we denote by Dn = C∞

0 (R, Rn) the
set of infinitely differentiable functions with values in Rn and compact support in R. The
elements of Dn are also called test functions.

Definition 2.43 (Generalized function/Distribution). A linear function f : Dn → Rn

with

f(α1φ1 + α2φ2) = α1f(φ1) + α2f(φ2)

for all α1, α2 ∈ R and φ1, φ2 ∈ Dn, is called a generalized function or distribution if it is
continuous in the sense that f(φi) → 0 in R

n for all sequences (φi)i∈N with φi → 0 in Dn.
We denote the space of all distributions acting on Dn by Cn.

In order to use distributions in the framework of differential-algebraic equations, we need
derivatives and primitives of distributions. The q-th order derivative f(q), q ∈ N0, of a
distribution f ∈ Cn is defined by

f(q)(φ) = (−1)qf(φ(q)) for all φ ∈ Dn.
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The so obtained functional f(q) is linear and continuous, hence, every distribution has
derivatives of arbitrary order in Cn, see e.g. [133]. For a given distribution f ∈ Cn any
distribution x ∈ Cn which satisfies

ẋ(φ) = f(φ) for every φ ∈ Dn

is called a primitive of f, i.e., x is a solution of ẋ = f. Further, the Dirac delta distribution
δa ∈ Cn is defined by

δa(φ) = φ(a) for all φ ∈ Dn, a ∈ R,

and we can use multiplication by matrix-valued functions in the form

Ax(φ) = x(AT φ) for all φ ∈ Dn,

where A ∈ C∞(R, Rm,n) and x ∈ Cn. Note the difference in notation for continuous
functions x ∈ C(R, Rn) and distributions x ∈ Cn. For ease of notation we treat every
function x : I → Rn, I ⊆ R as being defined on R by trivially extending it by zero, i.e.,
setting x(t) = 0 for t /∈ I. Nonsmooth behavior of the solution is restricted to happen at a
countable number of points τj ∈ T ⊂ R. Away from τj the solution should be as smooth
as the solution in the classical sense.

Definition 2.44 (Impulsive smooth distribution). Suppose that the set T = {τj ∈
R | τj < τj+1, j ∈ Z} has no accumulation point. A generalized function x ∈ Cn is called
impulsive smooth if it can be written in the form

x = x̂ + ximp, x̂ =
∑

j∈Z

x̂j, (2.25)

where x̂j ∈ C∞([τj, τj+1], R
n) for all j ∈ Z and the impulsive part ximp has the form

ximp =
∑

j∈Z

ximp,j, ximp,j =

qj∑

i=0

cijδ
(i)
τj

, cij ∈ C, qj ∈ N0. (2.26)

The set of impulsive smooth distributions is denoted by Cn
imp(T ).

Lemma 2.45. Impulsive smooth distributions in Cn
imp(T ), where T ⊂ R has no accumu-

lation point, have the following properties:

1. A distribution x ∈ Cn
imp(T ) uniquely determines the decomposition (2.25).

2. With a distribution x ∈ Cn
imp(T ), we can assign a function value x(t) for every t ∈

R\T by

x(t) = x̂j(t) for t ∈ (τj, τj+1),

and limits

x(τ−
j ) = lim

t→τ−

j

x̂j−1(t), x(τ+
j ) = lim

t→τ+
j

x̂j(t),

for every τj ∈ T .
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3. All derivatives and primitives of x ∈ Cn
imp(T ) are again in Cn

imp(T ).

4. The set Cn
imp(T ) is a vector space and closed under multiplication with functions

A ∈ C∞(R, Rm,n). In particular, we have

Ax = Ax̂ +
∑

j∈Z

qj∑

i=0

qj−i
∑

k=0

(−1)k

(
k + i

k

)

A(k)(τj)ci+k,jδ
(i)
τj

(2.27)

for x as in (2.25).

Proof. See [82, Lemma 2.38].

Further, we introduce a measure for the smoothness of impulsive smooth distributions.

Definition 2.46 (Impulse order). Let the impulsive part of x ∈ Cn
imp(T ) have the form

(2.26). The impulse order of x at τj ∈ T is defined as iord x|τj
= −q − 2 if x can be

associated with a continuous function in [τj−1, τj+1] and q with 0 ≤ q ≤ ∞ is the largest
integer such that x|[τj−1,τj+1] ∈ Cq([τj−1, τj+1], R

n). It is defined as iord x|τj
= −1 if x can

be associated with a function that is continuous in [τj−1, τj+1] except at t = τj, and it is
defined as

iord x|τj
= max{i ∈ N0| 0 ≤ i ≤ qj, cij 6= 0}

otherwise. Further, the impulse order of x is defined as

iord x = max
τj∈T

iord x|τj
.

Lemma 2.47. Let x ∈ Cn
imp(T ) and A ∈ C∞(R, Rm,n). Then

iord Ax ≤ iord x

with equality for m = n and A(τj) invertible for each τj ∈ T .

Proof. For the impulse order of x at every τj ∈ T the inequality iord Ax|τj
≤ iord x|τj

follows directly from (2.27), see also [82, Lemma 2.40]. Thus, the inequality holds also for
the maximum over all τj ∈ T .

To describe impulsive smooth solutions x ∈ Cn
imp(T ) for a linear distributional DAE

E(t)ẋ = A(t)x + b, (2.28)

with b ∈ Cm
imp(T ), we must require that E,A ∈ C∞(R, Rm,n) in order to have well-defined

products Eẋ and Ax.
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Theorem 2.48. Let E,A ∈ C∞(R, Rm,n) and let the strangeness index µ of (E,A) be
well-defined. Furthermore, let b ∈ Cm

imp(T ) with iord b = q ∈ Z ∪ {−∞}. Then the
differential-algebraic system (2.28) is equivalent (in the sense that there is a one-to-one
correspondence between the solution sets) to a strangeness-free system of the form

ẋ1 = A13(t)x3 + b1(t), (dµ differential equations)
0 = x2 + b2(t), (aµ algebraic equations)
0 = b3(t), (vµ vanishing equations)

(2.29)

where A13 ∈ C∞(R, Rdµ,uµ) and iord





b1

b2

b3



 ≤ q + µ.

Proof. The constructions that lead to the condensed form (2.13) can be done by using
infinitely often differentiable matrix functions due to Theorem 2.25. Then the form (2.29)
follows directly from Theorem 2.36, where the inhomogeneities are determined from the
derivatives of b via transformations with infinitely often differentiable matrix functions.
See also [82, Theorem 3.72].

Corollary 2.49. Let E,A ∈ C∞(R, Rm,n) satisfy the assumptions of Theorem 2.48. Then
we have:

1. The problem (2.28) has a solution in Cn
imp(T ) if and only if the vµ distributional

conditions

b3 = 0 (2.30)

are fulfilled.

2. Let t0 ∈ R\T and x0 ∈ Rn. There exists a solution x ∈ Cn
imp(T ) satisfying one of the

initial conditions

x(t0) = x0, x(τ−
j ) = x0, x(τ+

j ) = x0, for some τj ∈ T , (2.31)

if and only if in addition to (2.30) the corresponding condition out of

x2(t0) = −b2(t0), x2(τ
−
j ) = −b2(τ

−
j ), x2(τ

+
j ) = −b2(τ

+
j )

is implied by the initial condition.

3. The corresponding initial value problem has a unique solution in Cn
imp(T ) if and only

if in addition it holds that

uµ = 0.

Moreover, all solutions x satisfy iord x ≤ max{q + µ, iord x3}.
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Proof. The proof follows directly from the strangeness-free form (2.29) in Theorem 2.48.

In the following, we will call a solution x ∈ Cn
imp(T ) of (2.28) a generalized solution of

the DAE. To treat initial conditions for the DAE (2.28) in the distributional setting we
decompose the system as in (2.25) into

x = x̂ + ximp, x̂ =
∑

j∈Z

x̂j, and b = b̂ + bimp, b̂ =
∑

j∈Z

b̂j, (2.32)

and therefore consider the DAEs

E(t)ẋ = A(t)x + b̂j, t ∈ [τj, τj+1], for all j ∈ Z, (2.33)

with b̂j ∈ C∞([τj, τj+1], R
m). The problem of solving (2.33) with x(τj) = xj,0 for an

arbitrary xj,0 ∈ R
n that is not necessarily consistent with the DAE at τj often arises when

a known function is to be extended into a solution of the current DAE. If x(τ−
j ) = xj,0

exists for some past solution x(t) defined for t < τj, then this would be a natural initial
condition at time τj, but it does not have to be consistent with the DAE (2.33). Inconsistent
initial conditions can be treated as impulses in the inhomogeneity. We can change the
inhomogeneity of the DAE such that it satisfies a given history and solve the modified
system. Let the distributional DAE (2.28) satisfies the assumptions of Theorem 2.48 with
uµ = vµ = 0 and suppose that a function xj

0 ∈ C∞([τj−1, τj], R
n) is given that describes

a certain history for the system. The initial condition xj,0 = xj
0(τj), however, may not be

consistent for (2.33). Setting

b̂j = E(t)ẋj
0 − A(t)xj

0 (2.34)

forces xj
0 to be a solution for (2.33), thus making the initial condition consistent. For an

initial value xj,0 at τj the problem under consideration therefore should be

E(t)ẋ = A(t)x + b, x̂j−1 = xj
0, (2.35)

where b = b̂ + bimp, b̂ =
∑

i∈Z
b̂i and b̂j satisfies (2.34). Then, according to Corollary 2.49,

the problem (2.35) with initial condition xj,0 at τj has a unique solution x ∈ Cn
imp(T ). Since

ẋ = ˙̂x + ẋimp +
∑

i∈Z

(x̂i(τi) − x̂i−1(τi))δτi

the system (2.35) can be written as

E(t)( ˙̂x + ẋimp +
∑

i∈Z

(x̂i(τi) − x̂i−1(τi))δτi
) = A(t)(x̂ + ximp) + b̂ + bimp,
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with x̂j−1 = xj
0 and due to (2.34) we get

E(t)( ˙̂x + ẋimp +
∑

i∈Z

(x̂i(τi) − x̂i−1(τi))δτi
) = A(t)(x̂ + ximp) + E(t)ẋj

0

− A(t)xj
0 +

∑

i6=j

bi + bimp.

Setting x̃ = x − x̂j−1 and b̃ = b − b̂j this can be expressed in the form

E(t) ˙̃x = A(t)x̃ + b̃ + E(t)xj,0δτj
, x̃j−1 = 0, (2.36)

where xj,0 = x̂j−1(τj). The initial condition does not occur as it is stated in the classical for-
mulation, as we cannot prescribe values of distributions, but as part of the inhomogeneity.
The general formulation of an initial value problem

E(t)ẋ = A(t)x + b + E(t)xj,0δτj
, xj−1 = 0, (2.37)

suggests that for sufficiently smooth b the smoothness of x will depend on the initial
condition. Thus, the impulsive behavior and the future smooth development of the system
does not depend on the whole history but only on the initial condition.

2.2.4 Remarks

A drawback of the presented DAE theory is the restrictive constant rank assumption (2.12)
that needs to be applied in each step of the index reduction procedure leading to the reduced
system (2.14). Thus, the strangeness index (as in Definition 2.35) is only defined on a dense
subset of the given closed interval I which can be shown using the following properties of
the rank of continuous matrix-valued functions.

Theorem 2.50. Let I ⊆ R be a closed interval and M ∈ C(I, Rm,n). Then there exist open
intervals Ij ⊆ I, j ∈ N, with

⋃

j∈N

Ij = I, Ii ∩ Ij = ∅ for i 6= j, (2.38)

and integers rj ∈ N0, j ∈ N, such that

rank M(t) = rj for all t ∈ Ij .

Proof. See [82, Theorem 3.25] or [27, Ch. 10].

Applying this property to a continuous matrix-valued function we immediately obtain the
following result.

Corollary 2.51. Let I ⊆ R be a closed interval and E,A ∈ C(I, Rm,n) be sufficiently
smooth. Then there exist open intervals Ij, j ∈ N, as in Theorem 2.50, such that the
strangeness index of (E,A) restricted to Ij is well-defined for every j ∈ N.
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Proof. See [82, Corollary 3.26].

Thus, the consequence of the constant rank assumption in Theorem 2.34 is that the
strangeness index is defined on a dense subset of a given closed interval I ⊆ R. Note,
that the proof of Theorem 2.50 and Corollary 2.51 is given in [82] only for the case of
complex matrix-valued functions. Nevertheless, the proof can be given in the case of real-
valued continuous matrix functions under the additional assumption that no accumulation
of critical points, i.e., points where the constant rank assumption is not fulfilled, occur. In
the following, we will exclude the case that accumulation of critical points occur from our
examinations. As a consequence, we can transform to the global canonical form (2.13) on
each component Ij separately, but the theory does not allow to treat jumps in the index
and in the characteristic values between the intervals Ij of (2.38). Even within the frame-
work of impulsive smooth distributions it is not straightforward to define impulsive smooth
distributions with impulses allowed at every point of a set

T = I\
⋃

j∈N

Ij

as the set T does not need to be countable. Further, jumps in the characteristic values
may affect the solvability within the set of impulsive smooth distributions as can be seen
in the following example.

Example 2.52. [82] Consider the initial value problem

tx = 0, x(0) = 0.

For this DAE the strangeness index is not defined, but there exits a unique smooth solution
of the initial value problem in C1(R, R), namely x = 0. Within the solution space Cimp a
possible decomposition according to Corollary 2.51 is given by

R = (−∞, 0) ∪ (0,∞).

Obviously, all distributions of the form x = cδ with c ∈ R solve the initial value problem.
Hence, we may loose unique solvability when we turn to distributional solutions. Moreover,
there is no initial condition of the form (2.31) that fixes a unique solution.

A further drawback of the distributional solution theory presented in Section 2.2.3 is that
we have to require infinitely often differentiable matrix-valued functions E(t) and A(t).
Another distributional solution theory for linear DAEs considering so-called piecewise-
smooth distributions is presented in [144] that also allows discontinuities in the coefficient
matrices E(t) and A(t). In this case, a suitable multiplication for distributions need to be
defined. Note, that the space of impulsive smooth distributions is a subspace of piecewise
smooth distributions where jumps and Dirac impulse can only occur at times τi.



Chapter 3

Higher Order Differential-Algebraic Systems

General nonlinear k-th order differential-algebraic systems of the form

F (t, x, ẋ, . . . , x(k)) = 0, (3.1)

with F : I × Dx × Dẋ × · · · × Dx(k) → Rm sufficiently smooth on a compact interval I ⊆ R

and open sets Dx, Dẋ, . . . , Dx(k) ⊆ R
n, as well as linear k-th order differential-algebraic

equations of the form

Ak(t)x
(k) + Ak−1(t)x

(k−1) + · · · + A0(t)x = f(t), (3.2)

where Ai ∈ C(I, Rm×n) for i = 0, 1, . . . , k, k ∈ N0 and f ∈ C(I, Rm) naturally arise in many
technical applications. In particular, second order differential-algebraic systems with k = 2
play a key role in the modeling and simulation of constrained dynamical systems, e.g., in
the simulation of mechanical multibody systems or in electrical circuit simulation, as we
have seen in Chapter 1.
In the classical theory of differential equations, higher order systems are turned into first
order systems by introducing new variables for the derivatives. For DAEs this classical
approach has to be performed with great care since it may lead to a number of mathematical
difficulties as has been discussed in several publications, see [4, 32, 102, 129, 135]. In [102,
135] several examples are presented that show that the classical approach of introducing
the derivatives of the unknown vector-valued function x(t) as new variables may lead to
higher smoothness requirements for the inhomogeneity f(t) that are needed to ensure the
existence of a solution, which corresponds to an increase in the index of the DAE. By
introducing only some new variables, however, this difficulty can be circumvented.

Example 3.1. [102] Consider the linear second order constant coefficient DAE
[
1 0
0 0

]

ẍ +

[
1 0
0 0

]

ẋ +

[
0 1
1 0

]

x = f(t), t ∈ I, (3.3)

where x = [x1, x2]
T , and f = [f1, f2]

T . System (3.3) has the unique solution

x1 = f2,

x2 = f1 − ḟ2 − f̈2,

and hence the minimum requirement for the existence of a continuous solution is that f1 is
continuous and f2 is twice continuously differentiable. Using the classical transformation
to first order by introducing

v = [v1, v2]
T = [ẋ1, ẋ2]

T , y = [v1, v2, x1, x2]
T ,

31
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we get the additional solution components

v1 = ḟ2,

v2 = ḟ1 − f̈2 − f
(3)
2 ,

and thus, f2 has to be three times continuously differentiable to obtain a continuous solu-
tion. If, however, we only introduce v1 = ẋ2, then no extra smoothness requirements are
needed.

Another difficulty that arises in practical numerical applications is that the system may be
badly scaled and that there are disturbances and perturbations in the data, such that the
transformation to first order may lead to very different solutions in the perturbed system.

Example 3.2. [102] Consider the second order system

ǫ1ẍ + ǫ2ẋ + ǫ3x = ǫ4f(t), t ∈ I, (3.4)

with coefficients ǫi, i = 1, . . . , 4 of absolute value close to the machine precision and f
of norm approximately 1. If we transform (3.4) to first order in the classical way by
introducing

y = [y1, y2]
T := [ẋ, x]T ,

then we obtain the system
[
ǫ1 0
0 1

]

ẏ +

[
ǫ2 ǫ3

−1 0

]

y =

[
ǫ4f(t)

0

]

. (3.5)

For different values of the ǫi, in finite precision arithmetic, we may decide that the system
(3.5) has a unique solution, no solutions at all, or is actually underdetermined.

Recently, it has been shown in [129, 152] that the direct discretization of the second order
system may yield better numerical results and is able to prevent certain numerical difficul-
ties as the failure of numerical methods, see also [4, 17, 151]. Therefore, a proper treatment
of higher order differential-algebraic systems requires either the direct numerical solution
of the high order system by appropriate numerical methods as proposed in [129, 152], or
carefully chosen first order formulations.

Example 3.3. Consider the example of a multibody system

M(p, t)p̈ = fa(p, ṗ, t) − GT (p, t)λ,

0 = g(p, t).

In such systems it is common practice to derive a first order formulation by just introducing
new variables v = ṗ but not the derivative of λ, i.e.,

ṗ = v,

M(p, t)v̇ = fa(p, v, t) − GT (p, t)λ,

0 = g(p, t).

In this way an unnecessary derivative of the Lagrange multiplier λ is avoided.
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The theoretical analysis of linear high order differential-algebraic equations of the form
(3.2) regarding existence and uniqueness of solutions has been studied in [102, 135], where
condensed forms and corresponding invariants under equivalence transformations are de-
rived and a definition of the strangeness-index is given. Further, a stepwise index reduction
procedure allows to transform the original system to a strangeness-free system that enables
an identification of those higher order derivatives of variables that can be replaced to ob-
tain a first order formulation without changing the smoothness requirements. However, the
computation of these condensed forms is not numerical feasible as it involves the derivatives
of computed transformation matrices.

In this chapter, we first give a brief survey of the relevant results for linear second order
DAEs obtained in [102, 135] and introduce the characteristic invariants. Then, we present
a numerically computable method to determine the strangeness index as well as the char-
acteristic invariants using derivative arrays, following the ideas that were presented in
Section 2.2.2. An equivalent strangeness-free differential-algebraic system can be obtained
from the original system and its higher derivatives that has the same solution behavior as
the original DAE. In Section 3.2 the ideas are extended to nonlinear DAEs. Further, in
Section 3.3, we discuss first order formulations for linear second order DAEs and present a
trimmed first order formulation, see also [21] for further trimmed first order formulations.
The trimmed first order formulation also allows an explicit representation of solutions for
linear second order DAEs with constant coefficient matrices. In the following, we restrict
to second order systems for ease of representation and since they are most frequently used.
In principle, all ideas can also be extended to arbitrary k-th order systems.

3.1 Linear Second Order Differential-Algebraic Systems

In this section we consider linear second order differential-algebraic equations with variable
coefficients of the form

M(t)ẍ + C(t)ẋ + K(t)x = f(t), (3.6)

where M,C,K ∈ C(I, Rm×n) and f ∈ C(I, Rm) are sufficiently smooth functions, together
with the initial conditions

x(t0) = x0 ∈ R
n, ẋ(t0) = ẋ0 ∈ R

n, for t0 ∈ I. (3.7)

At first, we introduce the condensed forms that have been derived in [102, 135] for linear
second order systems (3.6) that allow to describe the characteristic quantities of the DAE.
In Section 3.1.2 these condensed forms and the relationships between the characteristic
quantities are used to extract a strangeness-free reduced system using derivative arrays.

3.1.1 Condensed Forms

To analyze linear second order DAEs of the form (3.6) we first derive condensed forms for
the corresponding triple (M(t), C(t),K(t)) of matrix-valued functions under appropriate
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equivalence transformations. An equivalence relation for triples of matrix-valued functions
can be defined in the same way as for pairs of matrix-valued functions in Definition 2.33.

Definition 3.4 (Global equivalence of matrix triples). Two triples of matrix-valued
functions (M1, C1,K1) and (M2, C2,K2), with Mi, Ci,Ki ∈ C(I, Rm×n), i = 1, 2 are called
globally equivalent if there exist pointwise nonsingular matrix functions P ∈ C(I, Rm×m)
and Q ∈ C2(I, Rn×n) such that

M2 = PM1Q, C2 = 2PM1Q̇ + PC1Q, K2 = PM1Q̈ + PC1Q̇ + PK1Q. (3.8)

For equivalent matrix triples we write (M1, C1,K1) ∼ (M2, C2,K2).

At first, we consider the action of the equivalence relation (3.8) locally at a fixed point
t̂ ∈ I, taking into account that for given matrices P̂ , Q̂, R̂1 and R̂2 of appropriate size,
using Hermite interpolation, we can always find matrix functions P and Q, such that at
a given value t = t̂ we have P (t̂) = P̂ , Q(t̂) = Q̂, Q̇(t̂) = R̂1 and Q̈(t̂) = R̂2, i.e., we can
choose Q(t̂), Q̇(t̂), Q̈(t̂) independently. Therefore, we can define local equivalence of matrix
triples in the following way.

Definition 3.5 (Local equivalence of matrix triples). Two matrix triples (M1, C1,K1)
and (M2, C2,K2) with Mi, Ci,Ki ∈ Rm×n, i = 1, 2, are called locally equivalent if there exist
nonsingular matrices P ∈ Rm×m and Q ∈ Rn×n and matrices R1, R2 ∈ Rn×n such that

M2 = PM1Q, C2 = 2PM1R1 + PC1Q, K2 = PM1R2 + PC1R1 + PK1Q. (3.9)

Again, we write (M1, C1,K1) ∼ (M2, C2,K2) if the context is clear.

It has be shown in [135, Propositions 3.2 and 3.4] that the relations (3.8) and (3.9) are
equivalence relations on the set of tuples of matrix-valued functions, and on the set of
tuples of matrices, respectively. Further, condensed forms for matrix triples under strong
equivalence, i.e., for R1 = 0 and R2 = 0 in (3.9), are considered in [102, 135], that corre-
spond to the case of linear time-invariant second order differential-algebraic systems. For a
linear second order differential-algebraic system of the form (3.6) a condensed form under
local equivalence transformation (3.9) of the corresponding matrix triple (M(t̂), C(t̂),K(t̂))
at a fixed point t̂ ∈ I has also been derived in [102, 135]. This local condensed form if given
in the following Lemma.

Lemma 3.6. Consider matrices M,C,K ∈ R
m×n. Then the matrix triple (M,C,K) is

locally equivalent via equivalence transformation (3.9) to a matrix triple (M̂, Ĉ, K̂) of the
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following local condensed form
















































Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 Is(MK) 0 0 0 0 0
0 0 0 Id(2) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

























0 0 C C 0 0 C C
0 0 C C 0 0 C C
0 0 C C 0 0 C C
0 0 C C 0 0 C C
0 0 0 C Is(CK) 0 0 0
0 0 0 0 0 Id(1) 0 0

Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























, (3.10)

























0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 0 0 0 0 0 Ia 0
0 0 0 0 Is(CK) 0 0 0
0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

















































s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a
s(CK)

s(MK)

s(MCK)

v

,

where the quantities s(MCK), s(MC), s(MK), s(CK), d(2), d(1), a and v are nonnegative inte-



36 Higher Order Differential-Algebraic Systems

gers and the last column in each matrix is of width u.

Proof. See [102, 135].

Remark 3.7. For convenience of expression, in Lemma 3.6 and in the following, we drop
the subscripts of the elements of block matrices unless they are needed for clarification.

The quantities s(MCK), s(MC), s(MK), s(CK), d(2), d(1), a, v and u in (3.10) are called the
(local) characteristic values of the linear second order DAE (3.6). Each of these charac-
teristic values appearing in Lemma 3.6 can be expressed in terms of ranks of matrices and
dimensions of column spaces. In addition, it can be shown that the quantities are invariant
under the local equivalence relation (3.9).

Lemma 3.8. Let M,C,K ∈ R
m×n and let

V1 be a basis of kernel(MT ),

V2 be a basis of kernel(M),

V3 be a basis of kernel(MT ) ∩ kernel(CT ),

V4 be a basis of kernel(M) ∩ kernel(V T
1 C).

Then, the quantities
r = rank(M) (rank of M)
a = rank(V T

3 KV4) (algebraic part)
s(MCK) = dim(range(MT ) ∩ range(CT V1) ∩ range(KT V3)) (strangeness of M,C,K)
s(CK) = rank(V T

3 KV2) − a (strangeness of C,K)
d(1) = rank(V T

1 CV2) − s(CK) (1st-order diff. part)
s(MC) = rank(V T

1 C) − s(MCK) − s(CK) − d(1) (strangeness of M,C)
s(MK) = rank(V T

3 K) − a − s(MCK) − s(CK) (strangeness of M,K)
d(2) = r − s(MCK) − s(MC) − s(MK) (2nd-order diff. part)
v = m − r − 2s(CK) − d(1) − 2s(MCK) − s(MC) − a − s(MK) (vanishing equations)
u = n − r − s(CK) − d(1) − a (undetermined part)

are invariant under the local equivalence relation (3.9).

Proof. See [102, 135].

Thus, in contrast to linear first order DAEs which are characterized by their differential,
algebraic and strangeness parts, see Theorem 2.34, second order differential-algebraic sys-
tems require a distinction into first and second order differential parts, algebraic parts, and
the strangeness s(MCK), s(MC), s(MK), s(CK) due to the different possible couplings between
the matrices M , C and K. For triples (M(t), C(t),K(t)) of matrix-valued functions we
can compute the local condensed form (3.10) at any fixed value t̂ ∈ I and determine the
characteristic quantities given in Lemma 3.8 for the triple (M(t̂), C(t̂),K(t̂)), so that we
obtain the functions

r, a, d(2), d(1), s(MCK), s(CK), s(MC), s(MK), u, v : I → N0.
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In the following, we assume that these functions are constant over the considered interval
I, i.e.,

r(t) ≡ r, a(t) ≡ a, d(1)(t) ≡ d(1), s(MCK)(t) ≡ s(MCK),

s(CK)(t) ≡ s(CK), s(MC)(t) ≡ s(MC), s(MK)(t) ≡ s(MK), for all t ∈ I.
(3.11)

From Lemma 3.8 it then follows that d(2)(t), u(t) and v(t) are also constant in I. We will
call (3.11) the regularity conditions for the triple (M(t), C(t),K(t)). Under this assumption
we can obtain a global condensed form for triples of matrix-valued functions via the global
equivalence transformations (3.8).

Lemma 3.9. Let the matrix-valued functions M,C,K ∈ C(I, Rm,×n) be sufficiently smooth,
and suppose that the regularity conditions (3.11) hold for the local characteristic values of
(M,C,K). Then, (M,C,K) is globally equivalent to a triple of matrix-valued functions
(M̃, C̃, K̃) of the condensed form

















































Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 Is(MK) 0 0 0 0 0
0 0 0 Id(2) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

























0 0 C C 0 0 C C
0 0 C C 0 0 C C
0 0 C C 0 0 C C
0 0 C C 0 0 C C
0 0 0 0 Is(CK) 0 0 0
0 0 0 0 0 Id(1) 0 0

Is(MCK) 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























, (3.12)
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























0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 K 0 K 0 K 0 K
0 0 0 0 0 0 Ia 0
0 0 0 0 Is(CK) 0 0 0
0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

















































s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a
s(CK)

s(MK)

s(MCK)

v

.

Here, all blocks are again functions on I and the last block columns have size u.

Proof. See [102, 135].

The global condensed form (3.12) can now be used to derive an equivalent strangeness-free
second order DAE by a stepwise index reduction procedure. The associated differential-
algebraic system with coefficient matrices (M̃, C̃, K̃) in global condensed form (3.12) is
given by

ẍ1 + C13ẋ3 + C14ẋ4 + C17ẋ7 + C18ẋ8 + K12x2 + K14x4 + K16x6 + K18x8 = f1, (a)

ẍ2 + C23ẋ3 + C24ẋ4 + C27ẋ7 + C28ẋ8 + K22x2 + K24x4 + K26x6 + K28x8 = f2, (b)

ẍ3 + C33ẋ3 + C34ẋ4 + C37ẋ7 + C38ẋ8 + K32x2 + K34x4 + K36x6 + K38x8 = f3, (c)

ẍ4 + C43ẋ3 + C44ẋ4 + C47ẋ7 + C48ẋ8 + K42x2 + K44x4 + K46x6 + K48x8 = f4, (d)

ẋ5 + K52x2 + K54x4 + K56x6 + K58x8 = f5, (e)

ẋ6 + K62x2 + K64x4 + K66x6 + K68x8 = f6, (f)

ẋ1 + K72x2 + K74x4 + K76x6 + K78x8 = f7, (g)

ẋ2 + K82x2 + K84x4 + K86x6 + K88x8 = f8, (h)

x7 = f9, (i)

x5 = f10, (j)

x3 = f11, (k)

x1 = f12, (l)

0 = f13. (m)

If we differentiate the equations (g)− (l) once, we can eliminate the corresponding deriva-
tives ẋ1, ẋ3, ẋ5, ẋ7, ẍ1, ẍ2 in the equations (a) − (e) and (g). This, yields the differential-
algebraic system

−K72ẋ2 + (C14 − K74)ẋ4 − K76ẋ6 + (C18 − K78)ẋ8 + (K12 − K̇72)x2
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+(K14 − K̇74)x4 + (K16 − K̇76)x6 + (K18 − K̇78)x8 = f̃1,

−K82ẋ2 + (C24 − K84)ẋ4 − K86ẋ6 + (C28 − K88)ẋ8 + (K22 − K̇82)x2

+(K24 − K̇84)x4 + (K26 − K̇86)x6 + (K28 − K̇88)x8 = f̃2,

ẍ3 + C34ẋ4 + C38ẋ8 + K32x2 + K34x4 + K36x6 + K38x8 = f̃3,

ẍ4 + C44ẋ4 + C48ẋ8 + K42x2 + K44x4 + K46x6 + K48x8 = f̃4,

K52x2 + K54x4 + K56x6 + K58x8 = f̃5,

ẋ6 + K62x2 + K64x4 + K66x6 + K68x8 = f6,

K72x2 + K74x4 + K76x6 + K78x8 = f̃7,

ẋ2 + K82x2 + K84x4 + K86x6 + K88x8 = f8,

x7 = f9,

x5 = f10,

x3 = f11,

x1 = f12,

0 = f13,

where

f̃1 = f1 − ḟ7 − C17ḟ9 − C13ḟ11,

f̃2 = f2 − C27ḟ9 − ḟ8 − C23ḟ11,

f̃3 = f3 − C37ḟ9 − C33ḟ11,

f̃4 = f4 − C47ḟ9 − C43ḟ11,

f̃5 = f5 − ḟ10,

f̃7 = f7 − ḟ12.

Thus, after one differentiation and elimination step we get an equivalent second order
system of DAEs

M<1>(t)¨̃x + C<1>(t) ˙̃x + K<1>(t)x̃ = f<1>(t),

with (M<1>, C<1>,K<1>; f<1>) being of the form


















































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Is(MK) 0 0 0 0 0
0 0 0 Id(2) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























,


























0 C 0 C 0 C 0 C

0 C 0 C 0 C 0 C

0 0 0 C 0 0 0 C

0 0 0 C 0 0 0 C

0 0 0 0 0 0 0 0
0 0 0 0 0 Id(1) 0 0
0 0 0 0 0 0 0 0
0 Is(MC) 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























,
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
























0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0
0 0 0 0 Is(CK) 0 0 0
0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


























;


























f̃1

f̃2

f̃3

f̃4

f̃5

f6

f̃7

f8

f9

f10

f11

f12

f13



















































. (3.13)

The triple (M<1>, C<1>,K<1>) in (3.13) can then again be transformed to the global
condensed form (3.12) and the reduction step is repeated, i.e., again, the derivatives of
certain equations are added to other equations to eliminate the coupling between equations.
Note, that the identity block of size s(MK) in the matrix M̃ is not eliminated in the first
reduction step, as this would require the second derivative of equation (k). This block is
eliminated in the second reduction step by differentiating equation (k) twice and eliminating
ẍ3 in equation (c). Continuing this process, we obtain a sequence of triples of matrix-
valued functions (M<i>(t), C<i>(t),K<i>(t)), i ∈ N0, with corresponding characteristic

values (ri, d
(1)
i , ai, s

(MC)
i ,s

(CK)
i , s

(MK)
i , s

(MCK)
i , ui, vi), where (M<0>(t), C<0>(t),K<0>(t)) =

(M(t), C(t),K(t)). During this reduction procedure the identity blocks of size s
(MK)
i are

decomposed into two blocks of size si and si−1, with s
(MK)
i = si + si−1, and s0 = s

(MK)
0 ,

in such a way that si−1 denotes the part of s
(MK)
i that can be eliminated in the (i + 1)-th

reduction step, while si denotes the part that cannot be eliminated until reduction step
i + 2. Here, we set s−1 = 0 and for the following we use the convention that characteristic
quantities with negative subscript are zero. The relations

rank (M<i+1>) = ri+1 = ri − s
(MCK)
i − s

(MC)
i − si−1,

rank (K<i+1>) ≥ ai+1 ≥ ai + s
(CK)
i + s

(MCK)
i

guarantee that after a finite number of steps µ, the strangeness s
(MCK)
µ , s

(MK)
µ , s

(CK)
µ

and s
(MC)
µ corresponding to (M<µ>(t), C<µ>(t),K<µ>(t)) vanish and the process becomes

stationary. We call µ the strangeness index or s-index of the second order system of DAEs
(3.6) and we call the final equivalent second order system of DAEs strangeness-free.

Remark 3.10. Here, we differ slightly from the index reduction procedure described in
[102, 135], where the identity block of size s(MK) is also completely eliminated in every
reduction step. Thus, for one reduction step one or two differentiations of equations are
required, depending on the occurrence of strangeness blocks. In this way, the index definition
does not correspond to the differentiability requirements for the right hand side. In our
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approach the right-hand side is only differentiated once in each elimination step before
the system is again transformed to global condensed form such that the strangeness index
corresponds to the differentiability requirements for the right hand side, which is the case
for all general index concepts.

Theorem 3.11. Consider the linear second order system (3.6), suppose that the regularity
conditions (3.11) hold, and let µ be the strangeness index of (3.6). If f ∈ Cµ(I, Rm),
then system (3.6) is equivalent (in the sense that there is a one-to-one correspondence
between the solution sets) to a strangeness-free system of second order differential-algebraic
equations of the form

¨̃x1 + C̃11(t) ˙̃x1 + C̃14(t) ˙̃x4 + K̃11(t)x̃1 + K̃12(t)x̃2 + K̃14(t)x̃4 = f̃1(t), ( d(2)
µ )

˙̃x2 + K̃21(t)x̃1 + K̃22(t)x̃2 + K̃24(t)x̃4 = f̃2(t), ( d(1)
µ )

x̃3 = f̃3(t), ( aµ )

0 = f̃4(t), ( vµ )

(3.14)

where the inhomogeneity f̃ := [f̃T
1 , . . . , f̃T

4 ]T is determined by f (0), . . . , f (µ). In particular,

d
(2)
µ , d

(1)
µ and aµ are the number of second order differential, first order differential, and

algebraic components of the unknown x̃ := [x̃T
1 , . . . , x̃T

4 ]T , while uµ is the dimension of the
undetermined vector x̃4, and vµ is the number of conditions in the last equation.

Proof. The proof is similar to the proof of [135, Theorem 2.12] with slight modifications
concerning the definition of the strangeness-index and the counting of the differentiations
(see Remark 3.10).

Using the strangeness-free form (3.14) we can analyze existence and uniqueness of solutions
and consistency of initial conditions for linear second order differential-algebraic systems
(3.6), see [102, 135]. Further, Theorem 3.11 allows an identification of those second order
derivatives of variables that can be replaced to obtain a first order system without changing
the smoothness requirements or increasing the index.

Corollary 3.12. Under the assumptions of Theorem 3.11, let µ be the strangeness index
of the matrix triple associated with the system (3.6) and let f ∈ Cµ(I, Rm). Then, the
solution set of system (3.6) is in one-to-one correspondence (without further smoothness
requirements) to the partial solution set given by the components x̃1, . . . , x̃4 of the system
of first order differential-algebraic equations

˙̃x5 + C̃11(t) ˙̃x1 + C̃14(t) ˙̃x4 + K̃11(t)x̃1 + K̃12(t)x̃2 + K̃14(t)x̃4 = f̃1(t),

˙̃x2 + K̃21(t)x̃1 + K̃22(t)x̃2 + K̃24(t)x̃4 = f̃2(t),

x̃3 = f̃3(t),

0 = f̃4(t),

˙̃x1 − x̃5 = 0.

(3.15)
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Proof. See [102].

Remark 3.13. The linear first order DAE (3.15) is strangeness-free and has the charac-

teristic values dµ = 2d
(2)
µ + d

(1)
µ , aµ, vµ and uµ.

We give an example to illustrate how we can derive an equivalent strangeness-free system
using the described index reduction procedure.

Example 3.14. Consider the linear second order DAE






1 0 0 0
0 t 0 0
0 0 0 0
0 0 0 0













ẍ1

ẍ2

ẍ3

ẍ4







+







0 0 0 t
t 0 0 0
0 0 1 0
0 0 0 0













ẋ1

ẋ2

ẋ3

ẋ4







+







0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0













x1

x2

x3

x4







=







f1(t)
f2(t)
f3(t)
f4(t)







, (3.16)

for t ∈ [t0, tf ] with t0 > 0, x = [x1, x2, x3, x4]
T and f = [f1, f2, f3, f4]

T . System (3.16) is
already given in global condensed form (3.12) with characteristic values

d
(2)
0 = 2, s

(CK)
0 = 1, s

(MCK)
0 = s

(MC)
0 = s

(MK)
0 = a0 = d

(1)
0 = v0 = u0 = 0.

One index redcution step consisting of differentiation of the last equation and elimination
of ẋ3 in the third equation yields the system







1 0 0 0
0 t 0 0
0 0 0 0
0 0 0 0













ẍ1

ẍ2

ẍ3

ẍ4







+







0 0 0 t
t 0 0 0
0 0 0 0
0 0 0 0













ẋ1

ẋ2

ẋ3

ẋ4







+







0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0













x1

x2

x3

x4







=







f1

f2

f3 − ḟ4

f4







,

with characteristic values

d
(2)
1 = 1, s

(MK)
1 = 1, a1 = 1, s

(MCK)
1 = s

(MC)
1 = s

(CK)
1 = d

(1)
1 = v1 = u1 = 0.

In the second reduction step nothing is changed, i.e.,

d
(2)
2 = 1, s

(MK)
2 = 1, a2 = 1, s

(MCK)
2 = s

(MC)
2 = s

(CK)
2 = d

(1)
2 = v2 = u2 = 0,

and in the last reduction step differentiating the third equation twice and eliminating ẍ1

in the first equation yields the system






0 0 0 0
0 t 0 0
0 0 0 0
0 0 0 0













ẍ1

ẍ2

ẍ3

ẍ4







+







0 0 0 t
t 0 0 0
0 0 0 0
0 0 0 0













ẋ1

ẋ2

ẋ3

ẋ4







+







0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0













x1

x2

x3

x4







=







f1 − f̈3 −
...
f 4

f2

f3 − ḟ4

f4







,

which is strangeness-free with characteristic values

d
(2)
3 = 1, d

(1)
2 = 1, a3 = 2, s

(MCK)
3 = s

(MC)
3 = s

(CK)
3 = s

(MK)
3 = v2 = u2 = 0,

and thus µ = 3.
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The sequence of characteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(MC)
i , s

(MK)
i , s

(CK)
i , ui, vi) that is

obtained during the stepwise index reduction procedure can be further characterized in
terms of ranks of block matrices of the matrix triple in order to get some insight into the
index reduction procedure described above.

Lemma 3.15. Let the functions M,C,K ∈ C(I, Rm,×n) be sufficiently smooth and let
the strangeness index µ be well-defined. Further, let the process leading to Theorem 3.11
yield a sequence (M<i>, C<i>,K<i>), i ∈ N0, with (M<0>, C<0>,K<0>) = (M,C,K) and

characteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(MC)
i , s

(MK)
i , s

(CK)
i , ui, vi) according to Lemma 3.8.

The triple (M<i>, C<i>,K<i>) of matrix-valued functions is globally equivalent to the triple





























































I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 I
s
(MC)
i

0 0 0 0 0 0 0

0 0 Isi−1 0 0 0 0 0 0
0 0 0 Isi

0 0 0 0 0
0 0 0 0 I

d
(2)
i

0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































,
































0 0 C<i>
13 C<i>

14 C<i>
15 0 0 C<i>

18 C<i>
19

0 0 C<i>
23 C<i>

24 C<i>
25 0 0 C<i>

28 C<i>
29

0 0 C<i>
33 C<i>

34 C<i>
35 0 0 C<i>

38 C<i>
39

0 0 C<i>
43 C<i>

44 C<i>
45 0 0 C<i>

48 C<i>
49

0 0 C<i>
53 C<i>

54 C<i>
55 0 0 C<i>

58 C<i>
59

0 0 0 0 0 I
s
(CK)
i

0 0 0

0 0 0 0 0 0 I
d
(1)
i

0 0

I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 I
s
(MC)
i

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
































, (3.17)
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

































0 K<i>
12 0 0 K<i>

15 0 K<i>
17 0 K<i>

19

0 K<i>
22 0 0 K<i>

25 0 K<i>
27 0 K<i>

29

0 K<i>
32 0 0 K<i>

35 0 K<i>
37 0 K<i>

39

0 K<i>
42 0 0 K<i>

45 0 K<i>
47 0 K<i>

49

0 K<i>
52 0 0 K<i>

55 0 K<i>
57 0 K<i>

59

0 K<i>
62 0 0 K<i>

65 0 K<i>
67 0 K<i>

69

0 K<i>
72 0 0 K<i>

75 0 K<i>
77 0 K<i>

79

0 K<i>
82 0 0 K<i>

85 0 K<i>
87 0 K<i>

89

0 K<i>
92 0 0 K<i>

95 0 K<i>
97 0 K<i>

99

0 0 0 0 0 0 0 Iai
0

0 0 0 0 0 I
s
(CK)
i

0 0 0

0 0 Isi−1 0 0 0 0 0 0

0 0 0 Isi
0 0 0 0 0

I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0





































































s
(MCK)
i

s
(MC)
i

si−1

si

d
(2)
i

s
(CK)
i

d
(1)
i

s
(MCK)
i

s
(MC)
i

ai

s
(CK)
i

si−1

si

s
(MCK)
i

vi

,

where s
(MK)
i is separated into s

(MK)
i = si + si−1 and the last block columns have size ui.

We define

C̃<i>
1j := C<i>

1j − K<i>
8j , j = 5, 9,

C̃<i>
2j := C<i>

2j − K<i>
9j , j = 5, 9,

K̃<i>
1j := K<i>

1j − K̇<i>
8j + K<i>

82 K<i>
9j + K<i>

87 K<i>
7j , j = 2, 5, 7, 9,

K̃<i>
2j := K<i>

2j − K̇<i>
9j + K<i>

92 K<i>
9j + K<i>

97 K<i>
7j , j = 2, 5, 7, 9,

C̃1 :=
[

C̃<i>T
15 C̃<i>T

25 C<i>T
35

]T
,

C̃2 :=
[

C̃<i>T
19 C̃<i>T

29 C<i>T
39

]T
,

as well as

k0 = d
(1)
0 + s

(CK)
0 , ki+1 = rank C̃2,

e0 = d
(1)
0 + s

(MC)
0 + s

(CK)
0 + s

(MCK)
0 , ei+1 = rank

([

C̃1 C̃2

])
.

Then, let U and V be nonsingular matrix-valued functions of size (s
(MCK)
i + s

(MC)
i +

si−1, s
(MCK)
i + s

(MC)
i + si−1) and (d

(2)
i + ui, d

(2)
i + ui), respectively, such that

UT
[

C̃1 C̃2

]
V =

[
Iei+1

0
0 0

]

.

Further, let U and V be partitioned into U =
[
U1 U2 U3

]
and V =

[
V1 V2 V3

]
such

that 



UT
1

UT
2

UT
3




[

C̃1 C̃2

] [
V1 V2 V3

]
=





Iei+1−ki+1
0 0

0 Iki+1
0

0 0 0



 ,
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and with a splitting of V3 into V3 =
[
V31 V32

]
with V31 of size (d

(2)
i + ui, d

(2)
i − ei+1 + ki+1)

and V32 of size (d
(2)
i + ui, ui − ki+1) we can define

[
K1 K2 K3 K4 K5 K6

]
:=

[
UT

3 0
0 I

]









K̃<i>
15 K̃<i>

17 K̃<i>
12 K̃<i>

19

K̃<i>
25 K̃<i>

27 K̃<i>
22 K̃<i>

29

K<i>
35 K<i>

37 K<i>
32 K<i>

39

K<i>
65 K<i>

67 K<i>
62 K<i>

69

K<i>
85 K<i>

87 K<i>
82 K<i>

89
















[V1 V31] 0 0 0
0 I

d
(1)
i

0 0

0 0 I
s
(MC)
i

0

0 0 0 [V2 V32]








,
(3.18)

where the identity matrix on the left-hand side is of size s
(CK)
i +s

(MCK)
i . Further, we define

b0 = a0, bi+1 = rank (
[
K6

]
),

p0 = a0 + s
(CK)
0 , pi+1 = rank (

[
K5 K6

]
),

t0 = a0 + s
(CK)
0 − s

(MK)
0 , ti+1 = rank (

[
K4 K5 K6

]
),

d0 = a0 + s
(CK)
0 , di+1 = rank (

[
K3 K4 K5 K6

]
),

h0 = a0 + s
(CK)
0 + s

(MK)
0 , hi+1 = rank (

[
K2 K3 K4 K5 K6

]
),

c0 = a0 + s
(MCK)
0 + s

(CK)
0 + s

(MK)
0 , ci+1 = rank (

[
K1 K2 K3 K4 K5 K6

]
),

w0 = v0, wi+1 = vi+1 − vi,

q0 = e0, qi+1 = ei+1 + ci − s
(CK)
i − s

(MCK)
i .

Then, we have

ri+1 = ri − s
(MCK)
i − s

(MC)
i − si−1,

ci+1 = bi+1 + s
(MCK)
i+1 + s

(CK)
i+1 + s

(MK)
i+1 − si,

ei+1 = ki+1 + s
(MC)
i+1 + s

(MCK)
i+1 ,

ai+1 = ai + s
(CK)
i + s

(MCK)
i + si−1 + bi+1 = c0 + · · · + ci+1 − s

(CK)
i+1 − s

(MK)
i+1 − s

(MCK)
i+1 ,

s
(MCK)
i+1 = ci+1 − hi+1,

s
(MC)
i+1 = ei+1 − ki+1 − ci+1 + hi+1,

si+1 = hi+1 − di+1,

s
(MK)
i+1 = si+1 + si,

s
(CK)
i+1 = di+1 − bi+1,

d
(2)
i+1 = ri+1 − s

(MCK)
i+1 − s

(MC)
i+1 − s

(MK)
i+1 = d

(2)
i − ei+1 + ki+1 − si+1,

d
(1)
i+1 = d

(1)
i + s

(MC)
i + ki+1 − s

(CK)
i+1

= q0 + · · · + qi+1 − c0 − · · · − ci − s
(MCK)
i+1 − s

(MC)
i+1 − s

(CK)
i+1 ,

wi+1 = 2s
(MCK)
i + s

(CK)
i + s

(MC)
i + si−1 − ei+1 − ci+1,

ui+1 = u0 − b1 − · · · − bi+1,

vi+1 = v0 + w1 + · · · + wi+1 = 2s
(MCK)
i + s

(CK)
i + s

(MC)
i + si−1 − ei+1 − ci+1 + vi.
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Proof. Form Lemma 3.9 it directly follows that each triple (M<i>, C<i>,K<i>), i ∈ N0 is

globally equivalent to the form (3.17). The identity blocks of size s
(MK)
i are decomposed

into two identity blocks of size si and si−1, such that in one differentiation and elimination
step the block of size si−1 can be eliminated. To prove the relations for the characteristic
quantities we first perform one differentiation and elimination step for system (3.17) and
thus get the matrix triple




























































0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 Isi

0 0 0 0 0
0 0 0 0 I

d
(2)
i

0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0






























,































0 0 0 0 C̃<i>
15 0 0 0 C̃<i>

19

0 0 0 0 C̃<i>
25 0 0 0 C̃<i>

29

0 0 0 0 C<i>
35 0 0 0 C<i>

39

0 0 0 0 C<i>
45 0 0 0 C<i>

49

0 0 0 0 C<i>
55 0 0 0 C<i>

59

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I

d
(1)
i

0 0

0 0 0 0 0 0 0 0 0
0 I

s
(MC)
i

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































,































0 K̃<i>
12 0 0 K̃<i>

15 0 K̃<i>
17 0 K̃<i>

19

0 K̃<i>
22 0 0 K̃<i>

25 0 K̃<i>
27 0 K̃<i>

29

0 K<i>
32 0 0 K<i>

35 0 K<i>
37 0 K<i>

39

0 K<i>
42 0 0 K<i>

45 0 K<i>
47 0 K<i>

49

0 K<i>
52 0 0 K<i>

55 0 K<i>
57 0 K<i>

59

0 K<i>
62 0 0 K<i>

65 0 K<i>
67 0 K<i>

69

0 K<i>
72 0 0 K<i>

75 0 K<i>
77 0 K<i>

79

0 K<i>
82 0 0 K<i>

85 0 K<i>
87 0 K<i>

89

0 K<i>
92 0 0 K<i>

95 0 K<i>
97 0 K<i>

99

0 0 0 0 0 0 0 Iai
0

0 0 0 0 0 I
s
(CK)
i

0 0 0

0 0 Isi−1 0 0 0 0 0 0
0 0 0 Isi

0 0 0 0 0
I
s
(MCK)
i

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
































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.

In the following, we omit the subscript i. Permutation of the resulting triple of matrix-
valued functions yields



3.1 Linear Second Order Differential-Algebraic Systems 47

























































I
d
(2)
i

0 0 0 0 0 0 0 0

0 0 0 0 Isi
0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





























,






























C55 0 0 C59 0 0 0 0 0
C45 0 0 C49 0 0 0 0 0

C̃15 0 0 C̃19 0 0 0 0 0

C̃25 0 0 C̃29 0 0 0 0 0
C35 0 0 C39 0 0 0 0 0
0 I

d
(1)
i

0 0 0 0 0 0 0

0 0 I
s
(MC)
i

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0






























,






























K55 K57 K52 K59 0 0 0 0 0
K45 K47 K42 K49 0 0 0 0 0

K̃15 K̃17 K̃12 K̃19 0 0 0 0 0

K̃25 K̃27 K̃22 K̃29 0 0 0 0 0
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K75 K77 K72 K79 0 0 0 0 0
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.

The so obtained triple has to be transformed to global condensed form (3.12). We can
restrict ourselves to the upper left blocks and use global equivalence transformations to
separate the corresponding nullspaces. In the following, we only specify the blocks we are
using in the transformations for convenience. Thus, we consider the triple of matrix-valued
functions
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=
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,

with C̃1 =
[

C̃T
15 C̃T

25 CT
35

]T
and C̃2 =

[

C̃T
19 C̃T

29 CT
39

]T
. Using equivalence transforma-

tions this triple is equivalent to the following triple

































Ie2
0 0 0 0 0

0 Ir1
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















,

















0 C 0 0 0 C

0 C 0 0 0 C

0 C 0 0 0 C

0 0 0 0 Ie1
0

Ie2
0 0 0 0 0

0 0 0 0 0 0
0 0 Id(1) 0 0 0
0 0 0 Is(MC) 0 0
0 0 0 0 0 0
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


,

with rank [C̃1 C̃2] = ei+1 = e1 + e2, e1 = ki+1, and r1 = d
(2)
i − e2. Rearanging the block

rows and summarizing the last two block rows using the definition in (3.18) yields
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, with rankK6 = r2,
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, with rank K̃5 = r3, and s2 = e1 − r3,
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, with rank K̃4 = r4, and s3 = s
(MC)
i − r4,
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, with rank K̃3 = r5, and s4 = d
(1)
i − r5,
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 C C 0 0 0 0 0 0 C C

0 C C 0 0 0 0 0 0 C C

0 C C 0 0 0 0 0 0 C C

0 C C 0 0 0 0 0 0 C C

0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 0 0 0 Is2 0 0

Ie2 0 0 0 0 0 0 0 0 0 0
0 0 0 Ir5 0 0 0 0 0 0 0
0 0 0 0 Is4 0 0 0 0 0 0
0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 0 0 0 Is3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

K 0 K 0 K 0 K 0 K 0 K

0 0 0 0 0 0 0 0 0 Ir2 0
0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 Ir5 0 0 0 0 0 0 0
0 Ir6 0 0 0 0 0 0 0 0 0

K̃1 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, with rank K̃2 = r6, r8 = r1 − r6,
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Ir7 0 0 0 0 0 0 0 0 0 0 0
0 Is6 0 0 0 0 0 0 0 0 0 0
0 0 Ir6 0 0 0 0 0 0 0 0 0
0 0 0 Ir8 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 C C 0 0 0 0 0 0 C C

0 0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 0 0 0 0 Is2 0 0

Ir7 0 0 0 0 0 0 0 0 0 0 0
0 Is6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Ir5 0 0 0 0 0 0 0
0 0 0 0 0 Is4 0 0 0 0 0 0
0 0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 0 0 0 0 Is3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K 0 K 0 K

0 0 0 0 0 0 0 0 0 0 Ir2 0
0 0 0 0 0 0 0 0 Ir3 0 0 0
0 0 0 0 0 0 Ir4 0 0 0 0 0
0 0 0 0 Ir5 0 0 0 0 0 0 0
0 0 Ir6 0 0 0 0 0 0 0 0 0

Ir7 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

with rank K̃1 = r7, and s6 = e2 − r7. With the given definitions we then have that
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r2 = bi+1, r6 = hi+1 − di+1,
r3 = pi+1 − bi+1, r7 = ci+1 − hi+1,
r4 = ti+1 − pi+1, e1 = ki+1,
r5 = di+1 − ti+1, e2 = ei+1 − ki+1,

and thus we get

ai+1 = ai + s
(CK)
i + s

(MCK)
i + si−1 + r2,

s
(MCK)
i+1 = r7,

s
(MC)
i+1 = s6 = e2 − r7,

s
(MK)
i+1 = r6 + si,

s
(CK)
i+1 = r5 + r4 + r3,

d
(2)
i+1 = r8 = d

(2)
i − e2 − r6,

d
(1)
i+1 = s2 + s3 + s4 = d

(1)
i + s

(MC)
i + e1 − r3 − r4 − r5,

wi+1 = vi+1 − vi

= 2s
(MCK)
i + s

(CK)
i + s

(MC)
i + si−1 − e1 − e2 − r2 − r3 − r4 − r5 − r6 − r7.

3.1.2 Derivative Array Approach

The algebraic approach described in the previous section allows for the theoretical analysis
of linear second order DAEs (3.6), but it cannot be used for the development of numerical
methods as neither the inductive process of the reduction to the strangeness-free formula-
tion (3.14) nor the condensed form (3.12) are obtained in a way that is feasible for numerical
methods, since we would need derivatives of computed transformation matrices. Therefore,
we look for other ways to compute the characteristic invariants of a given DAE as well as a
condensed form similar to (3.14) in a numerically stable procedure. The basic idea due to
Campbell [22] is to differentiate the differential-algebraic equation (3.6) a number of times
and put the original DAE and its derivatives into a large system. Then, purely local invari-
ants can be constructed via local equivalence transformations, which allow to determine
the global invariants including the strangeness index, wherever they are defined. Further,
it is also possible to derive a strangeness-free formulation using only local informations.
The great advantage of derivative arrays is that we can deal with them numerically, since
only the original data functions together with their derivatives are included.

In the following, we consider matrix-valued functions M,C,K ∈ C(I, Rm,n) that are suffi-
ciently smooth and we assume that the strangeness index µ is well-defined, i.e., the ranks
are constant in the considered interval and none of the invariant values changes its value
during the process. Differentiating the differential-algebraic equation (3.6) and putting the
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original DAE and its derivatives up to a sufficiently high order into a large system, in a sim-
ilar way as in Section 2.2.2, we obtain the derivative array, or inflated differential-algebraic
equation associated with the linear second order DAE (3.6) of the form

Ml(t)z̈l + Ll(t)żl + Nl(t)zl = gl(t), l ∈ N0, (3.19)

where Ml, Ll, Nl, zl and gl are defined as follows

[Ml]i,j :=

(
i

j

)

M (i−j) +

(
i

j + 1

)

C(i−j−1) +

(
i

j + 2

)

K(i−j−2), i, j = 0, . . . , l,

[Ll]i,j :=

{
C(i) + iK(i−1) for i = 0, . . . , l, j = 0,
0 otherwise,

(3.20)

[Nl]i,j :=

{
K(i) for i = 0, . . . , l, j = 0,
0 otherwise,

[zl]i := x(i), i = 0, . . . , l,

[gl]i := f (i), i = 0, . . . , l.

For l = 3, for example, the extended system (3.19) is of the form







M 0 0 0

Ṁ + C M 0 0

M̈ + 2Ċ + K 2Ṁ + C M 0

M (3) + 3C̈ + 3K̇ 3M̈ + 3Ċ + K 3Ṁ + C M













x
ẋ
ẍ

x(3)







(2)

+







C 0 0 0

Ċ + K 0 0 0

C̈ + 2K̇ 0 0 0

C(3) + 3K̈ 0 0 0













x
ẋ
ẍ

x(3)







(1)

+







K 0 0 0

K̇ 0 0 0

K̈ 0 0 0
K(3) 0 0 0













x
ẋ
ẍ

x(3)







=







f

ḟ

f̈
f (3)







.

For every l ∈ N0 and every t ∈ I, we can now determine the local characteristic values of
the triple (Ml(t),Ll(t),Nl(t)) by transforming to the local condensed form (3.10). We can
show that these local quantities at a fixed point t̂ ∈ I are invariant under global equivalence
transformations of the original triple (M(t), C(t),K(t)) of matrix-valued functions. To do
this, we need the following Lemmas.

Lemma 3.16. Let D = ABC be the product of three sufficiently smooth matrix valued
functions of appropriate dimensions. Then

D(i) =

i∑

j=0

i−j
∑

k=0

(
i

j

)(
i − j

k

)

A(j)B(k)C(i−j−k).

Proof. See [82, Lemma 3.28].
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Lemma 3.17. For all integers i, j, k, l with i ≥ 0, i ≥ j ≥ 0, i − j ≥ k ≥ 0, we have the
identities

(
i

k

)(
i − k

l

)(
i − k − l

j

)

=

(
i

j

)(
i − j

k

)(
i − j − k

l

)

,

(
i

k

)(
i − k

l

)(
i − k − l + 2

j + 2

)

=

(
i

j

)(
i − j

k

)(
i − j − k

l

)

+ 2

(
i

j + 1

)(
i − j − 1

k

)(
i − j − k − 1

l

)

+

(
i

j + 2

)(
i − j − 2

k

)(
i − j − k − 2

l

)

,

(
i

k

)(
i − k

l

)(
i − k − l + 1

j + 2

)

=

(
i

j + 1

)(
i − j − 1

k

)(
i − j − 1 − k

l

)

+

(
i

j + 2

)(
i − j − 2

k

)(
i − j − k − 2

l

)

,

(
i

k

)(
i − k

l

)(
i − k − l

j + 2

)

=

(
i

j + 2

)(
i − j − 2

k

)(
i − j − k − 2

l

)

.

Proof. The proof follows by straightforward calculations using the definition of the binomial
coefficient.

Now, we can show that the local quantities of the triple (Ml(t̂),Ll(t̂),Nl(t̂)) are invariant
under global equivalence transformations of the original triple (M(t), C(t),K(t)) of matrix-
valued functions.

Theorem 3.18. Consider two triples (M,C,K) and (M̃, C̃, K̃) of sufficiently smooth
matrix-valued functions that are globally equivalent via the transformation

M̃ = PMQ, C̃ = PCQ + 2PMQ̇, K̃ = PKQ + PCQ̇ + PMQ̈

according to Definition 3.4, with sufficiently smooth matrix-valued functions P and Q. Let
(Ml,Ll,Nl) and (M̃l, L̃l, Ñl), l ∈ N0, be the corresponding inflated triples constructed as
in (3.20) and introduce the block matrix functions

[Πl]i,j =
(

i

j

)
P (i−j), [Ψl]i,j =

{
i+2
2

Q(i+1) for i = 0, . . . , l, j = 0,
0 otherwise,

(3.21)

[Θl]i,j =
(

i+2
j+2

)
Q(i−j), [Σl]i,j =

{
Q(i+2) for i = 0, . . . , l, j = 0,
0 otherwise.

Then,

[M̃l(t), L̃l(t), Ñl(t)] = Πl(t)[Ml(t),Ll(t),Nl(t)]





Θl(t) 2Ψl(t) Σl(t)
0 Θl(t) Ψl(t)
0 0 Θl(t)



 (3.22)

for every t ∈ I, and the corresponding matrix triples are locally equivalent.
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Proof. First, we note that all matrix-valued functions Ml,Ll,Nl,M̃l, L̃l, Ñl,Πl,Ψl, Θl and
Σl are block lower triangular with the same block structure. Furthermore, Nl, Ñl,Ll, L̃l,
Ψl and Σl have nonzero blocks only in the first block column. Using Lemma 3.16 we obtain

M̃ (i) =
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

)
P (k1)M (k2)Q(i−k1−k2),

C̃(i) =
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [
P (k1)C(k2)Q(i−k1−k2) + 2P (k1)M (k2)Q(i+1−k1−k2)

]
,

K̃(i) =
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [
P (k1)K(k2)Q(i−k1−k2) + P (k1)C(k2)Q(i+1−k1−k2)

+P (k1)M (k2)Q(i+2−k1−k2)
]
.

Inserting the definitions, shifting and inverting the summations and applying Lemma 3.17
leads to

[ΠlMlΘl]i,j =

i∑

l1=j

l1∑

l2=j

[Πl]i,l1 [Ml]l1,l2 [Θl]l2,j

=

i∑

l1=j

l1∑

l2=j

(
i
l1

)
P (i−l1)

[(
l1
l2

)
M (l1−l2) +

(
l1

l2+1

)
C(l1−l2−1) +

(
l1

l2+2

)
K(l1−l2−2)

] (
l2+2
j+2

)
Q(l2−j)

=

i−j
∑

k1=0

k1+j
∑

l2=j

(
i

k1+j

)
P (i−k1−j)

[(
k1 + j

l2

)

M (k1+j−l2) +

(
k1 + j

l2 + 1

)

C(k1+j−l2−1)

+
(
k1+j
l2+2

)
K(k1+j−l2−2)

] (
l2+2
j+2

)
Q(l2−j)

=
(

i
j

)
i−j
∑

k1=0

i−j−k1∑

k2=0

(
i−j
k1

)(
i−j−k1

k2

)
P (k1)M (k2)Q(i−j−k1−k2)

+
(

i
j+1

)
i−j−1
∑

k1=0

i−j−1−k1∑

k2=0

(
i−j−1

k1

)(
i−j−1−k1

k2

) [

P (k1)C(k2)Q(i−j−1−k1−k2) + 2P (k1)M (k2)Q(i−j−k1−k2)
]

+
(

i
j+2

)
i−j−2
∑

k1=0

i−j−2−k1∑

k2=0

(
i−j−2

k1

)(
i−j−2−k1

k2

) [

P (k1)K(k2)Q(i−j−2−k1−k2)

+P (k1)C(k2)Q(i−j−1−k1−k2) + P (k1)M (k2)Q(i−j−k1−k2)
]

=
(

i
j

)
M̃ (i−j) +

(
i

j+1

)
C̃(i−j−1) +

(
i

j+2

)
K̃(i−j−2) = [M̃l]i,j .

In the same way we get

[ΠlLlΘl]i,0 + [2ΠlMlΨl]i,0 =
i∑

l1=0

[Πl]i,l1 [Ll]l1,0[Θl]0,0 + 2
i∑

l1=0

l1∑

l2=0

[Πl]i,l1 [Ml]l1,l2 [Ψl]l2,0
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=
i∑

l1=0

(
i
l1

)
P (i−l1)

[

C(l1) + l1K
(l1−1)

]

Q

+ 2
i∑

l1=0

l1∑

l2=0

(
i
l1

)
P (i−l1)

[(
l1
l2

)
M (l1−l2) +

(
l1

l2+1

)
C(l1−l2−1) +

(
l1

l2+2

)
K(l1−l2−2)

] l2 + 2

2
Q(l2+1)

=

i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [

P (k1)C(k2)Q(i−k1−k2) + 2P (k1)M (k2)Q(i+1−k1−k2)
]

+ i

i−1∑

k1=0

i−1−k1∑

k2=0

(
i−1
k1

)(
i−1−k1

k2

) [

P (k1)K(k2)Q(i−1−k1−k2)

+P (k1)C(k2)Q(i−k1−k2) + P (k1)M (k2)Q(i+1−k1−k2)
]

= C̃(i) + iK̃(i−1) = [L̃l]i,0,

and

[ΠlNlΘl]i,0 + [ΠlLlΨl]i,0 + [ΠlMlΣl]i,0 =

=
i∑

l1=0

[Πl]i,l1 [Nl]l1,0[Θl]0,0 +
i∑

l1=0

[Πl]i,l1 [Ll]l1,0[Ψl]0,0 +
i∑

l1=0

l1∑

l2=0

[Πl]i,l1 [Ml]l1,l2 [Σl]l2,0

=
i∑

l1=0

(
i
l1

)
P (i−l1)K(l1)Q +

i∑

l1=0

(
i
l1

)
P (i−l1)

[

C(l1) + l1K
(l1−1)

]

Q(1)

+

i∑

l1=0

l1∑

l2=0

(
i
l1

)
P (i−l1)

[(
l1
l2

)
M (l1−l2) +

(
l1

l2+1

)
C(l1−l2−1) +

(
l1

l2+2

)
K(l1−l2−2)

]

Q(l2+2)

=
i∑

k1=0

i−k1∑

k2=0

(
i

k1

)(
i−k1

k2

) [

P (k1)(K(k2)Q(i−k1−k2) + C(k2)Q(i+1−k1−k2) + M (k2)Q(i+2−k1−k2))
]

= K̃(i) = [Ñl]i,0.

As a consequence of Theorem 3.18 we have shown that the local characteristic values of the
inflated triple (Ml(t̂),Ll(t̂),Nl(t̂)) at a fixed point t̂, that in the following will be denoted

by (r̃l, d̃
(1)
l , ãl, s̃

(MCK)
l , s̃

(MK)
l , s̃

(CK)
l , s̃

(MC)
l , ũl, ṽl), are well-defined for equivalent triples of

matrix-valued functions and for each l ∈ N0. These quantities are numerically computable
via a number of numerical rank decisions using e.g. a singular value decomposition or
a rank revealing QR decomposition, see [54]. Next, we show how these local quantities
of the inflated triple (Ml(t̂),Ll(t̂),Nl(t̂)) are related to the global characteristic values

(ri, d
(1)
i , ai, s

(MCK)
i , s

(MK)
i , s

(CK)
i , s

(MC)
i , ui, vi) of the original triple (M,C,K) at the point

t̂. For convenience of representation we restrict ourselves in the following to the case that
the strangeness index is restricted by µ ≤ 2.
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Theorem 3.19. Let the functions M,C,K ∈ C(I, Rm,n) be sufficiently smooth with well-

defined strangeness index µ ≤ 2 and global characteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(CK)
i ,

s
(MC)
i , s

(MK)
i , ui, vi), i ∈ N0. Furthermore, let (Ml(t̂),Ll(t̂),Nl(t̂)) be the correspond-

ing inflated matrix triple at a fixed t̂ ∈ I with local characteristic values (r̃l, d̃
(1)
l , ãl,

s̃
(MCK)
l ,s̃

(CK)
l ,s̃

(MC)
l ,s̃

(MK)
l ,ũl,ṽl). Then, for l = 0, 1, 2, we have

rank [Ml] = r̃l = (l + 1)m −
l∑

i=0

qi −
l∑

i=0

ci −
l∑

i=0

vi,

rank [Ml,Ll] = (l + 1)m −
l∑

i=0

ci −
l∑

i=0

vi,

rank [Ml,Ll,Nl] = (l + 1)m −
l∑

i=0

vi,

(3.23)

using the definitions as in Lemma 3.15, and

d̃
(1)
l = kl − pl + bl,

ãl = bl = cl − s
(MCK)
l − s

(CK)
l − s

(MK)
l + sl−1,

s̃
(MCK)
l =

l∑

i=0

ci − bl−1 − pl −
l∑

i=1

(di − ti),

s̃
(CK)
l = bl−1 − bl + pl,

s̃
(MC)
l =

l∑

i=0

qi −
l∑

i=0

ci +
l∑

i=1

(di − ti) + pl − kl,

s̃
(MK)
l =

l∑

i=1

(di − ti),

ṽl =
l∑

i=0

vi,

ũl = (l + 1)u0 + (l + 1)a0 + lk0 −
l∑

i=0

ki −
l∑

i=0

bi.

(3.24)

Proof. Due to Theorem 3.18 we may assume without loss of generality that the triple
(M,C,K) is already given in the global condensed form (3.12). Then, for fixed t̂ ∈ I,
we have to determine the local characteristic quantities of (Ml(t̂),Ll(t̂),Nl(t̂)). In the
following, we will omit the argument t̂ and we use local equivalence transformations of the
form (3.9) on the inflated triple. For l = 0 it is immediately clear that

r̃0 = rankM0 = m − q0 − c0 − v0,
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rank [M0,L0] = m − a0 − s
(CK)
0 − s

(MCK)
0 − s

(MK)
0 − v0 = m − c0 − v0,

rank [M0,L0,N0] = m − v0,

and the local characteristic values of (M0,L0,N0) correspond to the global characteristic
values of (M,C,K). For l = 1 we have to consider the inflated triple

(M1,L1,N1) =

([
M 0

Ṁ + C M

]

,

[
C 0

Ċ + K 0

]

,

[
K 0

K̇ 0

])

,

with (M,C,K) in global condensed form (3.12). The identity blocks in the matrix M allow
to eliminate all other entries in the corresponding block rows of M1 by local equivalence
transformations. Further eliminations using the identity blocks of the global condensed
form and block decompositions yield the following matrix triple, where we only state the
first block columns of L1 and N1 since all other entries are zero













































































































0 . . . . . . . . .

. 0 . . . . . . . .

. 0 . . . . . . . .

. . I . . . . . . .

. . . I . . . . . .

. . . . I . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . 0 0 0 . . 0 0 0 I

. . 0 0 0 . . 0 0 0 I

. . 0 0 0 . . 0 0 0 I

. . 0 0 0 . . 0 0 0 I

. . . . . I . . . .

. . . . . . I . . .

I .

. I

. .

. .

. .

. .

. .























































, (3.25)
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





















































. 0 0 0 0 . 0 0 Ik1
0

. 0 0 Iẽ1
0 . 0 0 0 0

. 0 0 0 0 . 0 0 0 0

. . 0 0 C . . 0 0 C

. . 0 0 C . . 0 0 C

. . 0 0 C . . 0 0 C

. . . . . 0 . . . .

. . . . . . I . . .

0 .

. I

. .

. .

. .

. .

. .

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K 0 Ċ Ċ . K 0 Ċ Ċ

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. . . . . . . I . .

. . . . . I . . . .

. . I . . . . . .

I . . . . . . . . .

. . . . . . . . . .























































,
























































. K̃ . K̃ K̃ . K̃ . K̃ K̃

. K̃ . K̃ K̃ . K̃ . K̃ K̃

. K̃ . K̃ K̃ . K̃ . K̃ K̃

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. K . K K . K . K K

. . . . . . . I . .

. . . . . I . . . .

. . I . . . . . . .

I . . . . . . . . .

. . . . . . . . . .

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. K̇ . K̇ K̇ . K̇ . K̇ K̇

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .















































































































,

k1

ẽ1

s̃5

s̃6

ẽ1

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

s̃1

s̃2

s̃3

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

with dimensions s̃1 = s
(MCK)
0 , s̃2 = s

(MC)
0 , s̃3 = s

(MK)
0 , s̃4 = s

(CK)
0 , s̃5 = s

(MCK)
0 +s

(MC)
0 −e1,

s̃6 = s
(MK)
0 − e1 + k1, ẽ1 = e1 − k1, d̃1 = d

(1)
0 , and d̃2 = d

(2)
0 . Now, we can read off the

corresponding ranks as

r̃1 = rankM1 = 2m − c0 − 2v0 − e0 − 2s
(MCK)
0 − s

(MC)
0 − s

(CK)
0 − s

(MK)
0 − a0

= 2m − c0 − c1 − v0 − v1 − e0 − e1 − a0 − s
(MK)
0

= 2m − c0 − c1 − v0 − v1 − e0 − (e1 + c0 − s
(CK)
0 − s

(MCK)
0 ),

rank [M1,L1] = 2m − c0 − s
(CK)
0 − 2s

(MCK)
0 − 2v0 − s

(MC)
0 + e1

= 2m − c0 − c1 − v0 − v1,

rank [M1,L1,N1] = 2m − 2v0 − 2s
(MCK)
0 − s

(CK)
0 − s

(MC)
0 + e1 + c1

= 2m − v0 − v1.

Let Π ∈ R
2m×2m and Θ,Ψ,Σ ∈ R

2n×2n be block matrices, such that

(M̃1, L̃1, Ñ1) = (ΠM1Θ,ΠL1Θ + 2ΠM1Ψ,ΠN1Θ + ΠL1Ψ + ΠM1Σ)

is in the locally transformed form (3.25). Further, let Π and Θ be partitioned as

Π :=
[
ΠT

1 , . . . ,ΠT
28

]T
, Θ := [Θ1, . . . ,Θ18],
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corresponding to the row and column structure of the block matrices in (3.25). Then we
have

[ΠT
1 ,ΠT

2 ,ΠT
3 ,ΠT

7 , . . . ,ΠT
15,Π

T
24, . . . ,Π

T
28]

TM1 = 0,

M1[Θ8,Θ9,Θ10,Θ15, . . . ,Θ18] = 0,

[ΠT
3 ,ΠT

7 ,ΠT
9 ,ΠT

11, . . . ,Π
T
15,Π

T
28]

TL1 = 0,

[ΠT
1 ,ΠT

2 ,ΠT
3 ,ΠT

7 , . . . ,ΠT
15,Π

T
24, . . . ,Π

T
28]

TL1[Θ10,Θ15, . . . ,Θ18] = 0.

This means that the columns of the matrix V1 := [ΠT
1 ,ΠT

2 ,ΠT
3 ,ΠT

7 , . . . ,ΠT
15,Π

T
24, . . . ,Π

T
28]

form a basis of kernel(MT
1 ), the columns of V2 := [Θ8,Θ9,Θ10,Θ15, . . . ,Θ18] form a ba-

sis of kernel(M1), the columns of V3 := [ΠT
3 ,ΠT

7 ,ΠT
9 ,ΠT

11, . . . ,Π
T
15,Π

T
28] form a basis of

kernel(MT
1 ) ∩ kernel(LT

1 ), and the columns of V4 := [Θ10,Θ15, . . . ,Θ18] form a basis of
kernel(M1)∩kernel(V T

1 L1). Therefore, using Lemma 3.8 and with the definitions of Lemma
3.15 we have

ã1 = rank(V T
3 N1V4) = b1,

s̃
(MCK)
1 = dim(range(MT

1 ) ∩ range(LT
1 V1) ∩ range(N T

1 V3)) = c0 + c1 − b0 − d1 + t1 − p1,

s̃
(CK)
1 = rank(V T

3 N1V2) − ã1 = a0 + p1 − b1,

d̃
(1)
1 = rank(V T

1 L1V2) − s̃
(CK)
1 = k1 + a0 − p1 − a0 + b1 = k1 − p1 + b1,

s̃
(MC)
1 = rank(V T

1 L1) − s̃
(MCK)
1 − s̃

(CK)
1 − d̃

(1)
1 = q0 + q1 − c0 − c1 + d1 − t1 + p1 − k1,

s̃
(MK)
1 = rank(V T

3 N1) − ã1 − s̃
(MCK)
1 − s̃

(CK)
1 = d1 − t1,

ṽ1 = 2m − r̃1 − 2s̃
(CK)
1 − d̃

(1)
1 − 2s̃

(MCK)
1 − s̃

(MC)
1 − ã1 − s̃

(MK)
1 = v0 + v1,

ũ1 = 2n − r̃1 − s̃
(CK)
1 − d̃

(1)
1 − ã1 = 2u0 + a0 + k0 − k1 − b1.

Finally, for l = 2 we have to consider the inflated triple

(M2,L2,N2) =









M 0 0

Ṁ + C M 0

M̈ + 2Ċ + K 2Ṁ + C M



 ,





C 0 0

Ċ + K 0 0

C̈ + 2K̇ 0 0



 ,





K 0 0

K̇ 0 0

K̈ 0 0







 .

Again, the identities in the diagonal blocks of M2 allow to eliminate all another entries
in the corresponding block rows of M2 without altering L2 or N2. Further eliminations
using identity blocks in the global condensed form and block decompositions using local
equivalence transformations yield the matrix triple (M̃2, L̃2, Ñ2) of the form
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











































































































































































0 . . . . . . . . . . .

. 0 . . . . . . . . . .

. . 0 . . . . . . . . .

. . 0 . . . . . . . . .

. . 0 . . . . . . . . .

. . 0 . . . . . . . . .

. . . I . . . . . . . .

. . . . I . . . . . . .

. . . . . I . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . 0 0 0 0 . . 0 Ik1
0 0 0

. . 0 0 0 0 . . 0 0 0 0 0

. . 0 0 0 0 . . 0 0 0 0 I

. . 0 0 0 0 . . 0 0 0 0 I

. . . . . . 0 . . . . .

. . . . . . . I . . . .

0 .

. I

. .

. .

. .

. .

. .

. 0 0 0 0 0 . 0 0 0 0 0 . . 0 0 . . 0 0 I

. 0 0 0 0 0 . 0 0 0 0 0 . . 0 0 . . 0 0 I

. 0 0 0 0 0 . 0 0 0 0 0 . . 0 0 . . 0 0 I

. 0 0 0 0 0 . 0 0 0 0 0 . . 0 0 . . 0 0 I

. 0 . 0 0 0 . 0 . 0 0 0 . . . . I . . .

. 0 . 0 0 0 . 0 . 0 0 0 . . . . . I . .

. 0 . 0 0 0 . 0 . 0 0 0 I . . . . . . .

. 0 . 0 0 0 . 0 . 0 0 0 . I

. . . . . . . . I . . . . .

. . . . . . I . . . . . . .

. . I . . . . . . . . . . .

I . . . . . . . . . . . . .

. . . . . . . . . . . . . .







































































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



. 0 0 0 0 0 . 0 0 Ik1
0 0

. 0 0 Iẽ1
0 0 . 0 0 0 0 0

. 0 0 0 0 0 . 0 0 0 0 0

. 0 0 0 0 0 . 0 0 0 Ik2
0

. 0 0 0 Iẽ2
0 . 0 0 0 0 0

. 0 0 0 0 0 . 0 0 0 0 0

. . 0 C C C . . 0 C C C

. . 0 C C C . . 0 C C C

. . 0 C C C . . 0 C C C

. . . . . . 0 . . . . .

. . . . . . . I . . . .

0 . . . . . . . . . . .

. I . . . . . . . . . .

. .

. .

. .

. .

. .

. K̃ 0 ˙̃
C

˙̃
C

˙̃
C . K̃ 0 ˙̃

C
˙̃

C
˙̃

C

. K̃ 0 ˙̃
C

˙̃
C

˙̃
C . K̃ 0 ˙̃

C
˙̃

C
˙̃

C

. K 0 Ċ Ċ Ċ . K 0 Ċ Ċ Ċ

. K 0 Ċ Ċ Ċ . K 0 Ċ Ċ Ċ

. K . K K K . K . K K K

. K . K K K . K . K K K

. K . K K K . K . K K K
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. . . . . . I . . . . .

. . I . . . . . . . . .

I . . . . . . . . . . .

. . . . . . . . . . . .

. K̇ 0 C̈ C̈ C̈ . K̇ 0 C̈ C̈ C̈

. K̇ 0 C̈ C̈ C̈ . K̇ 0 C̈ C̈ C̈

. K̇ 0 C̈ C̈ C̈ . K̇ 0 C̈ C̈ C̈

. K̇ 0 C̈ C̈ C̈ . K̇ 0 C̈ C̈ C̈

. K̇ . K̇ K̇ K̇ . K̇ . K̇ K̇ K̇

. K̇ . K̇ K̇ K̇ . K̇ . K̇ K̇ K̇

. K̇ . K̇ K̇ K̇ . K̇ . K̇ K̇ K̇
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. . . . . . . . . . . .
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, (3.26)



3.1 Linear Second Order Differential-Algebraic Systems 63


























































































. K̃ . K̃ K̃ K̃ . K̃ . K̃ K̃ K̃
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,

k1

ẽ1

s̃7

k2

ẽ2

s̃8

ẽ1

ẽ2

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

s̃1

s̃2

s̃3

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

s̃1

s̃2

s̃3

d̃2

s̃4

d̃1

s̃1

s̃2

a0

s̃4

s̃3

s̃1

v0

with dimensions ẽ2 = e2 −k2, s̃7 = s
(MCK)
0 + s

(MC)
0 − e1 − e2, s̃8 = s

(MK)
0 − e1 +k1 − e2 +k2.

We can read off the corresponding ranks to be

r̃2 = rankM̃2 = 3m − q0 − 2c0 − 3v0 − 3s
(MCK)
0 − 2s

(MC)
0 − s

(CK)
0 − s

(MK)
0 + k1

= 3m − c0 − c1 − c2 − v0 − v1 − v2 − q0 − q1 − q2,
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rank [M̃2, L̃2] = 3m − c0 − 3v0 − 4s
(MCK)
0 − 2s

(MC)
0 − 2s

(CK)
0 − s

(MK)
0 + e1 + e2 + k1 + b1

= 3m − c0 − c1 − c2 − v0 − v1 − v2,

rank [M̃2, L̃2, Ñ2]

= 3m − 3v0 − 4s
(MCK)
0 − 2s

(MC)
0 − 2s

(CK)
0 − s

(MK)
0 + c1 + b1 + k1 + c2 + e1 + e2

= 3m − v0 − v1 − v2.

Again, let Π̃ ∈ R3m×3m and Θ̃, Ψ̃, Σ̃ ∈ R3n×3n be the corresponding block matrices that
locally transform the inflated triple (M2,L2,N2) to the form (3.26), i.e.,

(M̃2, L̃2, Ñ2) = (Π̃M2Θ̃, Π̃L2Θ̃ + 2Π̃M2Ψ̃, Π̃N2Θ̃ + Π̃L2Ψ̃ + Π̃M2Σ̃),

and Π̃ and Θ̃ be partitioned as

Π̃ :=
[
ΠT

1 , . . . ,ΠT
44

]T
, Θ̃ := [Θ1, . . . ,Θ28],

corresponding to the row and column structure of the block matrices in (3.26). Then we
have

[ΠT
1 , ...,ΠT

6 ,ΠT
10, ...,Π

T
18,Π

T
20,Π

T
23,Π

T
25,Π

T
27, ...,Π

T
31,Π

T
44]

TM2 = 0,

M2[Θ11,Θ12,Θ19,Θ20,Θ25, ...,Θ28] = 0,

such that the columns of V1 := [ΠT
1 , ...,ΠT

6 ,ΠT
10, ...,Π

T
18,Π

T
20,Π

T
23,Π

T
25,Π

T
27, ...,Π

T
31,Π

T
44] form

a basis of kernel(MT
2 ) and the columns of V2 := [Θ11,Θ12,Θ19,Θ20,Θ25, ...,Θ28] form a

basis of kernel(M2). Further decompositions of rows and columns of L̃2, where Π.,2, Θ.,2

denote the parts of the rows and columns of Π̃ and Θ̃, respectively, that corresponds to
null-rows or null-columns after the decomposition, yield

[ΠT
3 ,ΠT

6 ,ΠT
10,Π

T
12,Π

T
14, ...,Π

T
18,Π

T
20,2,Π

T
23,2,Π

T
25,2,Π

T
31,Π

T
44]

TL2 = 0,

as well as

V T
1 L2[Θ12,2,Θ19,Θ20,Θ25, ...,Θ28] = 0,

such that the columns of

V3 := [ΠT
3 ,ΠT

6 ,ΠT
10,Π

T
12,Π

T
14, ...,Π

T
18,Π

T
20,2,Π

T
23,2,Π

T
25,2,Π

T
31,Π

T
44]

form a basis of kernel(MT
2 ) ∩ kernel(LT

2 ), and the columns of the matrix V4 given by
V4 := [Θ12,2,Θ19,Θ20,Θ25, ...,Θ28] form a basis of kernel(M2) ∩ kernel(V T

1 L2). Therefore,
we have

rank(V T
1 L2) = q0 + q1 + q2,

rank(V T
3 N2) = c0 + c1 + c2,
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and

ã2 = rank(V T
3 N2V4) = b2,

s̃
(MCK)
2 = dim(range(MT

2 ) ∩ range(LT
2 V1) ∩ range(N T

2 V3))

= c0 + c1 + c2 − b1 − d1 + t1 − d2 + t2 − p2,

s̃
(CK)
2 = rank(V T

3 N2V2) − ã2 = b1 + p2 − b2,

d̃
(1)
2 = rank(V T

1 L2V2) − s̃
(CK)
2 = k2 + b1 − b1 − p2 + b2,

s̃
(MC)
2 = rank(V T

1 L2) − s̃
(MCK)
2 − s̃

(CK)
2 − d̃

(1)
2

= q0 + q1 + q2 − c0 − c1 − c2 + d1 − t1 + d2 − t2 − k2 + p2,

s̃
(MK)
2 = rank(V T

3 N2) − ã2 − s̃
(MCK)
2 − s̃

(CK)
2 = d1 − t1 + d2 − t2,

ṽ2 = 3m − r̃2 − 2s̃
(CK)
2 − d̃

(1)
2 − 2s̃

(MCK)
2 − s̃

(MC)
2 − ã2 − s̃

(MK)
2 = v0 + v1 + v2,

ũ2 = 3n − r̃2 − s̃
(CK)
2 − d̃

(1)
2 − ã2 = 3u0 + 2a0 + k0 − k1 − k2 − b1 − b2.

From the formulas (3.24) for the local characteristic values of the inflated triple (Ml,Ll,Nl)
we can determine the global characteristic values of the original matrix triple (M,C,K).

Corollary 3.20. Let the strangeness index µ of the matrix triple (M,C,K) be well-defined

with µ ≤ 2 and let (r̃l, d̃
(1)
l , ãl, s̃

(MCK)
l , s̃

(CK)
l , s̃

(MC)
l , s̃

(MK)
l , ũl, ṽl), l = 0, . . . , µ be the se-

quence of the local characteristic values of (Ml,Ll,Nl) for some t ∈ I. Then for the

sequence (ri, d
(1)
i , ai, s

(MCK)
i , s

(CK)
i , s

(MC)
i , s

(MK)
i , ui, vi) of the global characteristic values of

(M,C,K) it holds that

c0 = ã0 + s̃
(MCK)
0 + s̃

(CK)
0 + s̃

(MK)
0 ,

ci+1 = (ãi+1 − ãi) + (s̃
(MCK)
i+1 − s̃

(MCK)
i ) + (s̃

(CK)
i+1 − s̃

(CK)
i ) + (s̃

(MK)
i+1 − s̃

(MK)
i ),

q0 = d̃
(1)
0 + s̃

(MCK)
0 + s̃

(CK)
0 + s̃

(MC)
0 ,

qi+1 = (d̃
(1)
i+1 − d̃

(1)
i ) + (s̃

(MCK)
i+1 − s̃

(MCK)
i ) + (s̃

(CK)
i+1 − s̃

(CK)
i ) + (s̃

(MC)
i+1 − s̃

(MC)
i ),

v0 = m − c0 − q0 − r̃0, (3.27)

vi+1 = m − ci+1 − qi+1 − (r̃i+1 − r̃i),

s
(MCK)
i + s

(CK)
i + si = ci − ãi,

s
(MCK)
i + s

(MC)
i + si−1 = qi − d̃

(1)
i − s̃

(CK)
i .

Proof. The relations follow directly from Theorem 3.19 and from the definitions in Theorem
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3.15 since

ãi+1 − ãi = bi+1 − bi,

s̃
(MCK)
i+1 − s̃

(MCK)
i + s̃

(CK)
i+1 − s̃

(CK)
i = ci+1 − di+1 + ti+1 − bi+1 + bi,

s̃
(MK)
i+1 − s̃

(MK)
i = di+1 − ti+1,

d̃
(1)
i+1 − d̃

(1)
i = ki+1 − ki + pi − pi+1 + bi+1 − bi,

s̃
(MC)
i+1 − s̃

(MC)
i = qi+1 − ci+1 + di+1 − ti+1 + pi+1 − pi + ki − ki+1,

m − ci+1 − qi+1 − (r̃i+1 − r̃i) = m − ci+1 − qi+1 − m + qi+1 + ci+1 + vi+1 = vi+1,

ci − ãi = ci − ci + s
(MCK)
i + s

(CK)
i + s

(MK)
i − si−1 = s

(MCK)
i + s

(CK)
i + si,

qi − d̃
(1)
i − s̃

(CK)
i = qi − ki − bi−1 = s

(MCK)
i + s

(MC)
i + si−1.

The recursive formulas (3.27) enable the determination of the strangeness index µ in a
numerically computable way by determining the local characteristic values of the inflated
triple (Ml,Ll,Nl) for each time t ∈ I. The system is strangeness-free if all strangeness

parts vanish, and we have s
(MCK)
i = s

(CK)
i = s

(MK)
i = s

(MC)
i = 0 if and only if the sums

s
(MCK)
i + s

(MC)
i + si−1 and s

(MCK)
i + s

(CK)
i + si vanish since all summands are nonnegative

integer values. For the characteristic values of the strangeness-free system we then get

aµ =

µ
∑

i=0

ci = rank [Mµ,Lµ,Nµ] − rank [Mµ,Lµ],

d(1)
µ =

µ
∑

i=0

qi −

µ−1
∑

i=0

ci

= rank [Mµ,Lµ] − r̃µ + rank [Mµ−1,Lµ−1] − rank [Mµ−1,Lµ−1,Nµ−1],

vµ = ṽµ − ṽµ−1,

d(2)
µ = m − aµ − d(1)

µ − vµ.

(3.28)

Next, we want to extract a strangeness-free triple (M̂, Ĉ, K̂) from the inflated system with

characteristic values r̂ = d
(2)
µ , d̂(1) = d

(1)
µ , â = aµ, û = uµ, v̂ = vµ and ŝ(MCK) = ŝ(CK) =

ŝ(MK) = ŝ(MC) = 0 using only local information from (Mµ(t),Lµ(t),Nµ(t)).

Theorem 3.21. Consider a linear second order differential-algebraic system (3.6) with
well-defined strangeness-index µ ≤ 2. Then the inflated triple (Mµ,Lµ,Nµ) associated
with (M,C,K) has the following properties:

1. For all t ∈ I it holds that

rankMµ(t) = (µ + 1)m − aµ − ṽµ − d(1)
µ −

µ−1
∑

i=0

ci,
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such that there exists a smooth matrix function Z with orthonormal columns and size
((µ + 1)m, aµ + ṽµ + d

(1)
µ +

∑µ−1
i=0 ci) satisfying

ZTMµ = 0.

2. For all t ∈ I it holds that

rank [Mµ(t),Lµ(t)] = (µ + 1)m − aµ − ṽµ,

rank [Mµ(t),Lµ(t),Nµ(t)] = (µ + 1)m − ṽµ,

such that without loss of generality Z can be partitioned into Z = [Z2, Z3, Z4], with Z2

of size ((µ+1)m, d
(1)
µ +

∑µ−1
i=0 ci), Z3 of size ((µ+1)m, aµ) and Z4 of size ((µ+1)m, ṽµ)

such that

ZT
3 Lµ = 0, ZT

4 Lµ = 0, ZT
4 Nµ = 0.

3. For all t ∈ I we have

rank (ZT
3 Nµ

[
In 0 . . . 0

]T
) = aµ,

rank (ZT
2 Lµ

[
In 0 . . . 0

]T
) = d(1)

µ +

µ−1
∑

i=0

ci,

such that there exists a smooth matrix function T3 with orthonormal columns and
size (n, n − aµ), with n − aµ = d

(2)
µ + d

(1)
µ + uµ satisfying

ZT
3 Nµ

[
In 0 · · · 0

]T
T3 = 0.

4. For all t ∈ I we have

rank (ZT
2 Lµ

[
In 0 . . . 0

]T
T3) = d(1)

µ ,

such that there exists a smooth matrix function Z1 of size (d
(1)
µ +

∑µ−1
i=0 ci, d

(1)
µ ) with

orthonormal columns such that

rank (ZT
1 ZT

2 Lµ

[
In 0 · · · 0

]T
) = d(1)

µ .

Furthermore, there exists a smooth matrix function T2 of size (n − aµ, n − aµ − d
(1)
µ )

with orthonormal columns, such that

ZT
1 ZT

2 Lµ

[
In 0 · · · 0

]T
T3T2 = 0.

5. For all t ∈ I it holds that rank (MT3T2) = d
(2)
µ . This implies the existence of a smooth

matrix function Z0 with orthonormal columns and size (m, d
(2)
µ ) such that ZT

0 M has

constant rank d
(2)
µ .
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Proof. By assumption, the strangeness index is well-defined and the ranks of Mµ, Lµ and
Nµ are constant in I with

rank [Mµ,Lµ,N ]µ = (µ + 1)m − ṽµ,

rank [Mµ,Lµ] = (µ + 1)m − aµ − ṽµ,

rankMµ = (µ + 1)m − aµ − ṽµ − d(1)
µ −

µ−1
∑

i=0

ci,

due to Theorem 3.19 and Corollary 3.20 (see also the relations (3.28)). Thus, there exists

a continuous matrix-valued function Z of size ((µ + 1)m, aµ + ṽµ + d
(1)
µ +

∑µ−1
i=0 ci), whose

columns form a basis of corangeMµ, i.e., ZTMµ = 0. Without loss of generality the matrix

Z can be partitioned into Z = [Z2, Z3, Z4], with Z2 of size ((µ+ 1)m, d
(1)
µ +

∑µ−1
i=0 ci), Z3 of

size ((µ + 1)m, aµ) and Z4 of size ((µ + 1)m, ṽµ), such that

ZT
3 Lµ = 0, ZT

4 Lµ = 0, ZT
4 Nµ = 0,

i.e., the columns of the matrices Z4 and Z3 form bases of corange ([Mµ,Lµ,Nµ]), and
corange ([Mµ,Lµ]), respectively. First, we note that multiplication of (3.19) for l = µ by
ZT

3 gives
ZT

3 Nµzµ = ZT
3 gµ.

The only nontrivial entries in Nµ are in the first block column belonging to the original
unknown x. Hence, we get purely algebraic equations for x. Lemma 3.8 and (3.24) give
that

rank (ZT
3 Nµ

[
In 0 . . . 0

]T
) = ãµ + s̃(MCK)

µ + s̃(CK)
µ + s̃(MK)

µ = aµ, (3.29)

thus, with Z3 we obtain the complete set of algebraic equations. Next, we must get d
(1)
µ

first order differential equations and d
(2)
µ second order differential equations to complete

these algebraic equations to a strangeness-free differential-algebraic system. In a similar
way multiplication of (3.19) with the matrix ZT

2 yields

ZT
2 Lµżµ + ZT

2 Nµzµ = ZT
2 gµ.

Again, the only non-zero entries of Lµ are in the first block column belonging to the first
order derivative ẋ. Lemma 3.8 and (3.24) give

rank (ZT
2 Lµ) = d̃(1)

µ + s̃(CK)
µ + s̃(MC)

µ + s̃(MCK)
µ =

µ
∑

i=0

qi = d(1)
µ +

µ−1
∑

i=0

ci.

Note that in each step of the iterative procedure the number of equations with second order
derivatives of the unknown function is reduced. Therefore, the second order differential
equations we are looking for must be already present in the original system.
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So far we have shown the first three parts of Theorem 3.21. To show part 4 and 5 of
the Theorem we distinguish between systems of strangeness index µ = 0, 1 and 2. Let
(M̃, C̃, K̃) be a normal form of the triple (M,C,K) according to (3.12) with corresponding
inflated triples (M̃µ, L̃µ, Ñµ). Due to Theorem 3.18, there exist matrices Π,Θ,Ψ, and Σ
such that

M̃µ = ΠMµΘ, L̃µ = ΠLµΘ + 2ΠMµΨ, Ñµ = ΠNµΘ + ΠLµΨ + ΠMµΣ,

according to (3.22). For µ = 0 the triple (M̃0, L̃0, Ñ0) is of the form













I
d
(2)
µ

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0







,







C 0 C C
0 I

d
(1)
µ

0 0

0 0 0 0
0 0 0 0







,







K K 0 K
K K 0 K
0 0 Iaµ

0
0 0 0 0













. (3.30)

Let Π and Θ be partitioned as Π := [ΠT
1 ,ΠT

2 ,ΠT
3 ,ΠT

4 ]T and Θ := [Θ1,Θ2,Θ3,Θ4] according
to (3.30). Then, setting

Z2 = ΠT
2 , Z3 = ΠT

3 , Z4 = ΠT
4 ,

yields

ZT
4 M0 = 0, ZT

4 L0 = 0, ZT
4 N0 = 0,

ZT
3 M0 = 0, ZT

3 L0 = 0, ZT
2 M0 = 0,

as well as

rank (ZT
3 N0) = rank

[
0 0 Iaµ

0
]

= aµ,

rank (ZT
2 L0) = rank

[

0 I
d
(1)
µ

0 0
]

= d(1)
µ .

Further, setting T3 = [Θ1,Θ2,Θ4] we get

rank (ZT
2 L0T3) = rank

[

0 I
d
(1)
µ

0
]

= d(1)
µ ,

and with Z1 = I
d
(1)
µ

and T2 =





I
d
(2)
µ

0

0 0
0 Iuµ



 we get

ZT
1 ZT

2 L0T3T2 = 0,

and

rank (MT3T2) = rank







I
d
(2)
µ

0

0 0
0 0
0 0







= d(2)
µ .
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Finally, setting ZT
0 =

[

I
d
(2)
µ

0 0 0
]

yields

rank (ZT
0 M) = rank

[

I
d
(2)
µ

0 0 0
]

= d(2)
µ .

In the case µ = 1 the triple (M̃1, L̃1, Ñ1) is in the form (3.25) given in the proof of Theorem
3.19. Let Π and Θ be partitioned as

Π :=
[
ΠT

1 , . . . ,ΠT
28

]T
, Θ := [Θ1, . . . ,Θ18],

corresponding to the structure of block matrices in (3.25). Then, setting

Z = [ΠT
1 ,ΠT

2 ,ΠT
3 ,ΠT

7 , . . . ,ΠT
15,Π

T
24, . . . ,Π

T
28],

Z4 = [ΠT
3,2,Π

T
7,2,Π

T
9,2,Π

T
15,Π

T
28],

Z3 = [ΠT
3,1,Π

T
7,1,Π

T
9,1,Π

T
11, . . . ,Π

T
14],

Z2 = [ΠT
1 ,ΠT

2 ,ΠT
8 ,ΠT

10,Π
T
24, . . . ,Π

T
27],

where again Π.,1 and Π.,2 denote the parts of Π. that after one more block decomposition
of the matrices in (3.25) corresponds to the range and nullspace of block rows, respectively
(see also the proof of Theorem 3.19), we have

rank (ZT
3 N1) = c0 + c1 = aµ,

rank (ZT
2 L1) = e1 + d

(1)
0 + s

(MC)
0 + c0 = d(1)

µ + c0.

Setting T3 = [Θ2,2,Θ4,2,Θ5,2,Θ7,2,Θ9,2,Θ10,2] we get

rank (ZT
2 L1

[
In 0

]T
T3) = d

(1)
0 + s

(MC)
0 + e1 = d(1)

µ ,

and further choosing Z1 such that Z2Z1 = [ΠT
1 ,ΠT

2 ,ΠT
8 ,ΠT

10] we have

rank (ZT
1 ZT

2 L1) = d(1)
µ .

If we choose T2 such that T3T2 = [Θ5,2,Θ10,2], then we have

ZT
1 ZT

2 L1

[
In 0

]T
T3T2 = 0,

and

rank(MT3T2) = d
(2)
0 = d(2)

µ .

Finally, there exists a smooth matrix function Z0 of size (m, d
(2)
µ ) with orthonormal columns

such that

rank (ZT
0 M) = d(2)

µ .
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For s-index µ = 2 the triple (M̃2, L̃2, Ñ2) is in the form (3.26) and Π and Θ are partitioned
into

Π :=
[
ΠT

1 , . . . ,ΠT
44

]T
, Θ := [Θ1, . . . ,Θ28]

according to the block structure of (3.26). Then, by setting

Z = [ΠT
1 , . . . ,ΠT

6 ,ΠT
10, . . . ,Π

T
18,Π

T
20,Π

T
23,Π

T
25,Π

T
27, . . . ,Π

T
31,Π

T
44],

Z4 = [ΠT
3,2,Π

T
6,2,Π

T
10,2,Π

T
12,2,Π

T
18,Π

T
20,3,Π

T
23,3,Π

T
25,3,Π

T
31,Π

T
44],

Z3 = [ΠT
3,1,Π

T
6,1,Π

T
10,1,Π

T
12,1,Π

T
14, . . . ,Π

T
17,Π

T
20,2,Π

T
23,2,Π

T
25,2],

Z2 = [ΠT
1 ,ΠT

2 ,ΠT
4 ,ΠT

5 ,ΠT
11,Π

T
13,Π

T
20,1,Π

T
23,1,Π

T
25,1,Π

T
27, . . . ,Π

T
30],

we have

rank (ZT
3 N2) = c0 + c1 + c2 = aµ,

rank (ZT
2 L2) = e1 + e2 + d

(1)
0 + s

(MC)
0 + c0 + b1 = d

(1)
2 + c0 + c1 − s1 = d(1)

µ + c0 + c1.

Further, setting T3 = [Θ2,2,Θ4,2,Θ5,2,Θ6,2,Θ8,2,Θ10,2,Θ11,2,Θ12,2] yields

ZT
3 N2

[
In 0 0

]T
T3 = 0

and we get

rank (ZT
2 L2

[
In 0 0

]T
T3) = d

(1)
2 .

In a similar way as before, choosing Z1 such that Z2Z1 = [ΠT
1 ,ΠT

2 ,ΠT
4 ,ΠT

5 ,ΠT
11,Π

T
13] we

have

rank (ZT
1 ZT

2 L2) = d(1)
µ ,

and if we choose T2 such that T3T2 = [Θ5,2,Θ10,2] we have

ZT
1 ZT

2 L2

[
In 0 0

]T
T3T2 = 0,

as well as

rank(MT3T2) = d(2)
µ .

Again, there exists a smooth matrix function Z0 of size (m, d
(2)
µ ) with orthonormal columns

such that

rank (ZT
0 M) = d(2)

µ .
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From the results of Theorem 3.21 we can construct a triple of matrix-valued functions

(M̂, Ĉ, K̂) =













M̂1

0
0
0







,







Ĉ1

Ĉ2

0
0







,







K̂1

K̂2

K̂3

0













, (3.31)

with entries

M̂1 = ZT
0 M, Ĉ1 = ZT

0 C, K̂1 = ZT
0 K,

Ĉ2 = ZT
1 ZT

2 Lµ

[
In 0 · · · 0

]T
, K̂2 = ZT

1 ZT
2 Nµ

[
In 0 · · · 0

]T
,

K̂3 = ZT
3 Nµ

[
In 0 · · · 0

]T
,

which has the same size as the original triple (M,C,K). We can show that this triple is
strangeness-free with the same characteristic values as the strangeness-free system (3.14).

Theorem 3.22. Let the strangeness index µ of (M,C,K) be well-defined with µ ≤ 2

and global characteristic values (ri, d
(1)
i , ai, s

(MCK)
i , s

(MC)
i , s

(MK)
i , s

(CK)
i , ui, vi), i = 0, . . . , µ.

Then, the triple (M̂, Ĉ, K̂), constructed as in (3.31), has a well-defined strangeness index
µ̂ = 0 and the global characteristic values of (M̂(t), Ĉ(t), K̂(t)) are given by

(r̂, d̂(1), â, ŝ(MCK), ŝ(MC), ŝ(MK), ŝ(CK), v̂) = (d(2)
µ , d(1)

µ , aµ, 0, 0, 0, 0, vµ)

uniformly for all t ∈ I.

Proof. In the following, we omit the argument t. By construction the columns of T3

defined in Theorem 3.21 form a basis of kernel K̂3 and the columns of T2 form a basis of
kernel (Ĉ2T3). We consider the matrix T = T3T2. Because M̂1 has full row rank we can
split T without loss of generality into T =

[
T ′

1 T ′
4

]
in such a way that M̂1T

′
1 is nonsingular.

Choosing T ′
3 such that K̂3T

′
3 is also nonsingular and T ′

2 such that Ĉ2T
′
2 is nonsingular and

K̂3T
′
2 = 0 we get a nonsingular matrix T̂ =

[
T ′

1 T ′
2 T ′

3 T ′
4

]
. By multiplication with this

matrix from the right we get the following local equivalence

(M̂, Ĉ, K̂) =













M̂1

0
0
0







,







Ĉ1

Ĉ2

0
0







,







K̂1

K̂2

K̂3

0













∼













M̂1T
′
1 M̂1T

′
2 M̂1T

′
3 M̂1T

′
4

0 0 0 0
0 0 0 0
0 0 0 0







,







Ĉ1T
′
1 Ĉ1T

′
2 Ĉ1T

′
3 Ĉ1T

′
4

Ĉ2T
′
1 Ĉ2T

′
2 Ĉ2T

′
3 Ĉ2T

′
4

0 0 0 0
0 0 0 0







,







K̂1T
′
1 K̂1T

′
2 K̂1T

′
3 K̂1T

′
4

K̂2T
′
1 K̂2T

′
2 K̂2T

′
3 K̂2T

′
4

K̂3T
′
1 K̂3T

′
2 K̂3T

′
3 K̂3T

′
4

0 0 0 0












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∼













M̂1T
′
1 M̂1T

′
2 M̂1T

′
3 M̂1T

′
4

0 0 0 0
0 0 0 0
0 0 0 0







,







Ĉ1T
′
1 Ĉ1T

′
2 Ĉ1T

′
3 Ĉ1T

′
4

0 Ĉ2T
′
2 0 0

0 0 0 0
0 0 0 0







,







K̂1T
′
1 K̂1T

′
2 K̂1T

′
3 K̂1T

′
4

K̂2T
′
1 K̂2T

′
2 K̂2T

′
3 K̂2T

′
4

0 0 K̂3T
′
3 0

0 0 0 0













∼













M̂1T
′
1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0







,







⋆ ⋆ ⋆ ⋆

0 Ĉ2T
′
2 0 0

0 0 0 0
0 0 0 0







,







⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

0 0 K̂3T
′
3 0

0 0 0 0













∼













I
d
(2)
µ

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0







,







⋆ ⋆ ⋆ ⋆
0 I

d
(1)
µ

0 0

0 0 0 0
0 0 0 0







,







⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
0 0 Iaµ

0
0 0 0 0













.

From the last triple we obtain r̂ = d
(2)
µ , d̂(1) = d

(1)
µ , â = aµ, ŝ(MCK) = ŝ(MC) = ŝ(MK) =

ŝ(CK) = 0 and v̂ = vµ from Lemma 3.8.

Thus, we have derived an index reduction method that allows us to extract a strangeness-
free triple from the original triple of matrix-valued functions and its derivatives. The
matrix-valued functions Z0, Z1, Z2 and Z3 as given in Theorem 3.21 can be determined
numerically via numerical rank decisions, e.g., using a singular value decomposition or a
rank revealing QR decomposition, see e.g. [54]. Setting the inhomogeneities f̂1 = ZT

0 f ,
f̂2 = ZT

1 ZT
2 gµ, f̂3 = ZT

3 gµ and f̂4 = 0 accordingly (assuming that the system is solvable)
we obtain a differential-algebraic system

M̂(t)ẍ + Ĉ(t)ẋ + K̂(t)x = f̂(t), (3.32)

from the inflated differential-algebraic equation (3.19). This system is strangeness-free
and has the same size and also the same solution set as the original system (3.6) since
only transformations from the left are involved. Setting f̂4 = 0 in (3.32) can be seen
as a regularization, since we replace an probably unsolvable problem by a solvable one.
Concluding, we give an example to illustrate the index reduction procedure.

Example 3.23. Consider the linear second order system




t 0 0
0 1 1
0 t t



 ẍ +





1 0 0
0 0 0
0 0 0



 ẋ +





1 0 0
0 1 0
0 1 + t 1



x = f(t), (3.33)

for t ∈ [t0, t1] with t0 > 0. This system has a strangeness index µ = 2 and the characteristic

values of (3.33) are d
(2)
µ = 1, d

(1)
µ = 0, aµ = 2, vµ = 0 and uµ = 0. The matrix triple
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corresponding to the extended system (3.19) is given by

(M2(t),L2(t),N2(t)) =
































t 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 t t 0 0 0 0 0 0

2 0 0 t 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 1 1 0 t t 0 0 0

1 0 0 3 0 0 t 0 0
0 1 0 0 0 0 0 1 1
0 1 + t 1 0 2 2 0 t t

















,

















1 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 1 + t 1

0 0 0
0 0 0
0 2 0

















,

















1 0 0
0 1 0
0 1 + t 1

0 0 0
0 0 0
0 1 0

0 0 0
0 0 0
0 0 0

































.

We have

rank [M2(t),L2(t),N2(t)] = 9 = (µ + 1)m − ṽµ,

rank [M2(t),L2(t)] = 7 = (µ + 1)m − aµ − ṽµ,

rank [M2(t)] = 6 = (µ + 1)m − d(1)
µ − c0 − c1 − aµ − ṽµ,

independent of t ∈ I and we can choose

ZT
3 =

[
0 −1 0 0 −2 0 0 −t 1
0 −t 1 0 0 0 0 0 0

]

,

ZT
2 =

[
0 −1 0 0 −t 1 0 0 0

]
,

T3 =
[
1 0 0

]T
, T2 = 1.

Then, we have

rank (ZT
3 N2

[
In 0 0

]T
) = rank

([
0 −1 0
0 1 1

])

= 2 = aµ,

rank (ZT
2 L2

[
In 0 0

]T
) = rank

([
0 1 1

])
= 1 = d(1)

µ + c0 + c1,

rank (ZT
2 L2

[
In 0 0

]T
T3) = rank

([
0
])

= 0 = d(1)
µ ,

rank(MT3T2) = rank
([

t 0 0
]T
)

= 1 = d(2)
µ .

Finally, choosing ZT
0 =

[
1 0 0

]
we get a strangeness-free system of the form





t 0 0
0 0 0
0 0 0



 ẍ +





1 0 0
0 0 0
0 0 0



 ẋ +





1 0 0
0 −1 0
0 1 1



x =





f1

−f2 − 2ḟ2 − tf̈2 + f̈3

−tf2 + f3



 ,

with the same solution as the original system (3.33).
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Remark 3.24. The derivative array approach presented in this section can also be extended
to arbitrary high order differential-algebraic systems of the form (3.2). The theoretical
analysis and the condensed forms given in Section 3.1.1 have been generalized to linear k-th
order systems in [102, 135]. The inflated system corresponding to (3.19) can be obtained in
the same way by differentiating the original k-th order system and ordering the derivatives
of the coefficient matrices in such a way that only the leading coefficient matrix has a lower
triangular block structure and all the other coefficient matrices of the inflated system have
entries only in the first block columns. Then, the results of Theorem 3.18 can also be proven
for k-th order systems and a Hypothesis similar to Theorem 3.21 can be formulated that
allows an index reduction for linear k-th order systems by choosing suitable projections in
the same way as for linear second order systems.

3.2 Nonlinear Second Order Differential-Algebraic Equations

With the results that we have obtained in Section 3.1.2 we can now study general nonlinear
second order DAEs of the form

F (t, x, ẋ, ẍ) = 0, (3.34)

where F ∈ C(I×Dx ×Dẋ ×Dẍ, R
m) with open sets Dx, Dẋ, Dẍ ⊆ Rn. To analyze nonlinear

problems of the form (3.34) we linearize the system along a solution in the same way as
it is done for nonlinear first order systems, see e.g. [23], and apply the ideas derived for
linear second order DAEs. We consider the linearization of the nonlinear DAE (3.34) in a
function space along a solution x̄. For x = x̄ + x̂ we get

F (t, x̄ + x̂, ˙̄x + ˙̂x, ¨̄x + ¨̂x) = 0,

and from the Taylor expansion it follows that

F (t, x̄, ˙̄x, ¨̄x) + F;x(t, x̄, ˙̄x, ¨̄x)x̂ + F;ẋ(t, x̄, ˙̄x, ¨̄x) ˙̂x + F;ẍ(t, x̄, ˙̄x, ¨̄x)¨̂x + Φ = 0.

Here, Φ sums up all expressions that contain higher order terms, i.e., all terms containing
nonlinear expressions of x̂ and x̂(i), i ≥ 0. Neglecting the higher order terms Φ, we get a
linearization of (3.34) in the form (3.6) with

M(t, x̄, ˙̄x, ¨̄x) = F;ẍ(t, x̄, ˙̄x, ¨̄x), C(t, x̄, ˙̄x, ¨̄x) = F;ẋ(t, x̄, ˙̄x, ¨̄x),

K(t, x̄, ˙̄x, ¨̄x) = F;x(t, x̄, ˙̄x, ¨̄x), f(t, x̄, ˙̄x, ¨̄x) = −F (t, x̄, ˙̄x, ¨̄x),
(3.35)

and x in (3.6) now corresponds to x̂. Note, that f(t, x̄, ˙̄x, ¨̄x) = 0 if x̄ is a solution of the
system (3.34). We can show that the linearization of the nonlinear system (3.34) along a
solution and differentiation of the system commute.

Theorem 3.25. Consider a nonlinear second order DAE (3.34) that is sufficiently smooth
on a compact interval I and a solution x̄ of (3.34). Further, suppose that µ is well-defined
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for (3.34) in a neighborhood of (t, x̄, ˙̄x, ¨̄x, w̄) for t ∈ I, where w̄ = (x̄(3), . . . , x̄(µ+2)). Then,
the derivatives of the linearized DAE

M(t)¨̂x + C(t) ˙̂x + K(t)x̂ = f(t), (3.36)

where x̂ = x − x̄ and M,C,K given as in (3.35), are well-defined and identical to the
linearized derivatives of the original DAE (3.34) along the solution x̄.

Proof. The derivatives of the linearized equation (3.36) are given by

di

dti
(M ¨̂x + C ˙̂x + Kx̂ − f) =

i∑

j=0

[(
i

j

)
M (i−j) +

(
i

j+1

)
C(i−j−1) +

(
i

j+2

)
K(i−j−2)

]

x̂(j+2)

+ [C(i) + iK(i−1)] ˙̂x + K(i)x̂ − f (i), (3.37)

using the formulas (3.20). On the other hand, the first time derivative of the original
equation (3.34) is given by

d

dt
F (t, x, ẋ, ẍ) = F;t(t, x, ẋ, ẍ) + F;x(t, x, ẋ, ẍ)ẋ + F;ẋ(t, x, ẋ, ẍ)ẍ + F;ẍ(t, x, ẋ, ẍ)x(3).

Setting x = x̄ + x̂ and linearization along x̄ yields

d

dt
F (t, x, ẋ, ẍ) =F;t + F;txx̂ + F;tẋ

˙̂x + F;tẍ
¨̂x + F;x( ˙̄x + ˙̂x) + F;xxx̂( ˙̄x + ˙̂x)

+ F;xẋ
˙̂x( ˙̄x + ˙̂x) + F;xẍ

¨̂x( ˙̄x + ˙̂x) + F;ẋ(¨̄x + ¨̂x) + F;ẋxx̂(¨̄x + ¨̂x)

+ F;ẋẋ
˙̂x(¨̄x + ¨̂x) + F;ẋẍ

¨̂x(¨̄x + ¨̂x) + F;ẍ(x̄
(3) + x̂(3)) + F;ẍxx̂(x̄(3) + x̂(3))

+ F;ẍẋ
˙̂x(x̄(3) + x̂(3)) + F;ẍẍ

¨̂x(x̄(3) + x̂(3)) + Φ

=F;ẍx̂
(3) + [F;ẋ + F;ẍt + F;ẍx ˙̄x + F;ẍẋ ¨̄x + F;ẍẍx̄

(3)]¨̂x

+ [F;x + F;ẋt + F;ẋx ˙̄x + F;ẋẋ ¨̄x + F;ẋẍx̄
(3)] ˙̂x

+ [F;tx + F;xx ˙̄x + F;xẋ ¨̄x + F;xẍx̄
(3)]x̂

+ [F;t + F;x ˙̄x + F;ẋ ¨̄x + F;ẍx̄
(3)] + Φ,

=Mx̂(3) + (C + Ṁ)¨̂x + (K + Ċ) ˙̂x + K̇x̂ − ḟ + Φ,

where we have omitted the function arguments, i.e., all terms are functions in (t, x̄, ˙̄x, ¨̄x),
and higher order terms are again summarized in Φ. Neglecting the higher order terms this
is just the derivative of the linearized equation (3.36) given in (3.37) for i = 1. The proof
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for arbitrary i > 1 follows by induction as

di

dti
F (t, x, ẋ, ẍ) =

d

dt

(
di−1

dti−1
F (t, x, ẋ, ẍ)

)

=
d

dt

{
i−1∑

j=0

[(
i−1
j

)
M (i−1−j) +

(
i−1
j+1

)
C(i−j−2) +

(
i−1
j+2

)
K(i−j−3)

]

x̂(j+2)

+[C(i−1) + (i − 1)K(i−2)] ˙̂x + K(i−1)x̂ − f (i−1) + Φ
}

=
i∑

j=0

[(
i

j

)
M (i−j) +

(
i

j+1

)
C(i−j−1) +

(
i

j+2

)
K(i−j−2)

]

x̂(j+2)

+ [C(i) + iK(i−1)] ˙̂x + K(i)x̂ − f (i) + Φ.

We can now use the derivative array approach derived in Section 3.1.2 to analyze the
nonlinear system (3.34) similar as in Section 2.2.2. First of all, we gather the original
equation (3.34) and its derivatives up to order l ∈ N0 into an inflated system

Fl(t, x, ẋ, . . . , x(l+2)) = 0, (3.38)

where the derivative array Fl of level l has the form

Fl(t, x, ẋ, . . . , x(l+2)) =








F (t, x, ẋ, ẍ)
d
dt

F (t, x, ẋ, ẍ)
...

dl

dtl
F (t, x, ẋ, ẍ)








.

Further, we define the Jacobians

Ml(t, x, ẋ, . . . , x(l+2)) = Fl;ẍ,...,x(l+2)(t, x, ẋ, . . . , x(l+2)),

Ll(t, x, ẋ, . . . , x(l+2)) = [Fl;ẋ(t, x, ẋ, . . . , x(l+2)), 0, . . . , 0],

Nl(t, x, ẋ, . . . , x(l+2)) = [Fl;x(t, x, ẋ, . . . , x(l+2)), 0, . . . , 0]

(3.39)

analogous to (3.19). Then, we can formulate the following Hypothesis, as a generalization
of Theorem 3.21, that contains the requirements on the nonlinear system such that a
reformulation as reduced system with separated differential and algebraic parts is possible.

Hypothesis 3.26. Consider a nonlinear second order differential-algebraic system (3.34).

There exist integers µ, r, aµ, d
(2)
µ , d

(1)
µ , vµ and uµ such that the solution set

Lµ = {(t, x, ẋ, . . . , x(µ+2)) ∈ R
(µ+3)n+1|Fµ(t, x, ẋ, . . . , x(µ+2)) = 0} (3.40)

associated with (3.34) is nonempty and such that for every point (t0, x0, . . . , x
(µ+2)
0 ) ∈ Lµ,

there exists a (sufficiently small) neighborhood in which the following properties hold:
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1. The set Lµ ⊆ R(µ+3)n+1 forms a manifold of dimension (µ + 3)n + 1 − r.

2. We have rankFµ;x,ẋ,...,x(µ+2) = r and rankFµ;ẋ,...,x(µ+2) = r − aµ on Lµ.

3. We have corankFµ;x,ẋ,...,x(µ+2) − corankFµ−1;x,ẋ,...,x(µ+1) = vµ on Lµ.

4. We have

rankMµ = r − aµ − d(1)
µ −

µ−1
∑

i=0

ci,

on Lµ such that there exist smooth matrix functions Z2, Z3 of pointwise maximal rank

defined on Lµ, with Z2 of size ((µ+1)m, d
(1)
µ +

∑µ−1
i=0 ci), and Z3 of size ((µ+1)m, aµ)

satisfying

ZT
2 Mµ = 0, ZT

3 Mµ = 0, ZT
3 Lµ = 0,

on Lµ.

5. We have

rank (ZT
3 Nµ

[
In 0 . . . 0

]T
) = aµ,

rank (ZT
2 Lµ

[
In 0 . . . 0

]T
) = d(1)

µ +

µ−1
∑

i=0

ci,

on Lµ such that there exists a smooth matrix function T3 with orthonormal columns

and size (n, n − aµ), with n − aµ = d
(2)
µ + d

(1)
µ + uµ, satisfying

ZT
3 Nµ

[
In 0 · · · 0

]T
T3 = 0.

6. We have

rank (ZT
2 Lµ

[
In 0 . . . 0

]T
T3) = d(1)

µ ,

on Lµ such that there exists a smooth matrix function Z1 defined on Lµ of size (d
(1)
µ +

∑µ−1
i=0 ci, d

(1)
µ ) and with orthonormal columns such that

rank (ZT
1 ZT

2 Lµ

[
In 0 · · · 0

]T
) = d(1)

µ

on Lµ. Furthermore, there exists a smooth matrix function T2 of size (n − aµ, n −

aµ − d
(1)
µ ) with orthonormal columns such that

ZT
1 ZT

2 Lµ

[
In 0 · · · 0

]T
T3T2 = 0.
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7. We have rank (F;ẍT3T2) = d
(2)
µ = m − d

(1)
µ − aµ − vµ on Lµ such that there exists

a smooth matrix function Z0 defined on Lµ of size (m, d
(2)
µ ) and pointwise maximal

rank satisfying rank ZT
0 F;ẍT3T2 = d

(2)
µ .

Again, we call the smallest possible µ for which the DAE (3.34) satisfies Hypothesis 3.26
the strangeness index of (3.34) and a nonlinear system (3.34) with vanishing strangeness
index µ = 0 is called strangeness-free. Also in the nonlinear case the Hypothesis 3.26 is
invariant under equivalence transformations of the original system (3.34).

Lemma 3.27. Let F as in (3.34) satisfy Hypothesis 3.26 with characteristic values µ, aµ,

d
(2)
µ , d

(1)
µ , and vµ, and let F̃ be given by

F̃ (t, x̃, ˙̃x, ¨̃x) = F (t, x, ẋ, ẍ), (3.41)

with

x = Q(t, x̃),

ẋ = Q;t(t, x̃) + Q;x̃(t, x̃) ˙̃x,

ẍ = Q;tt(t, x̃) + 2Q;tx̃(t, x̃) ˙̃x + Q;x̃x̃(t, x̃) ˙̃x2 + Q;x̃(t, x̃)¨̃x,

(3.42)

with sufficiently smooth function Q ∈ C(I × Rn, Rn), where Q(t, ·) is bijective for every
t ∈ I and the Jacobian Q;x̃(t, x̃) is nonsingular for every (t, x̃) ∈ I × Rn. Then, F̃ satisfies

Hypothesis 3.26 with characteristic values µ, aµ, d
(2)
µ , d

(1)
µ , and vµ.

Proof. Let Lµ and L̃µ be the solution sets as defined in Hypothesis 3.26 corresponding to F
and F̃ , respectively. Since Q(t, ·) is bijective and smooth, for every z̃ = (t, x̃, . . . , x̃(µ+2)) ∈
L̃µ we have that z = (t, x, . . . , x(µ+2)) ∈ Lµ and vice versa. Setting

M̃(t, x̃, ˙̃x, ¨̃x) = F̃;¨̃x(t, x̃, ˙̃x, ¨̃x),

C̃(t, x̃, ˙̃x, ¨̃x) = F̃; ˙̃x(t, x̃, ˙̃x, ¨̃x),

K̃(t, x̃, ˙̃x, ¨̃x) = F̃;x̃(t, x̃, ˙̃x, ¨̃x),

according to (3.35) and using (3.42), we get

M̃(t, x̃, ˙̃x, ¨̃x) = F;ẍ(t, x, ẋ, ẍ)Q;x̃(t, x̃),

C̃(t, x̃, ˙̃x, ¨̃x) = F;ẋ(t, x, ẋ, ẍ)Q;x̃(t, x̃) + F;ẍ(t, x, ẋ, ẍ)[2Q;tx̃(t, x̃) + 2Q;x̃x̃(t, x̃) ˙̃x],

K̃(t, x̃, ˙̃x, ¨̃x) = F;x(t, x, ẋ, ẍ)Q;x̃(t, x̃) + F;ẋ(t, x, ẋ, ẍ)[Q;tx̃(t, x̃) + Q;x̃x̃(t, x̃) ˙̃x]

+ F;ẍ(t, x, ẋ, ẍ)[Q;ttx̃(t, x̃) + 2Q;tx̃x̃(t, x̃) ˙̃x + Q;x̃x̃x̃(t, x̃) ˙̃x2 + Q;x̃x̃(t, x̃)¨̃x].

Together with (3.35) this can be written as
[
M̃(t, x̃, ˙̃x, ¨̃x) C̃(t, x̃, ˙̃x, ¨̃x) K̃(t, x̃, ˙̃x, ¨̃x)

]

=
[
M(t, x, ẋ, ẍ) C(t, x, ẋ, ẍ) K(t, x, ẋ, ẍ)

]





Q;x̃(t, x̃) 2 d
dt

Q;x̃(t, x̃) d2

dt2
Q;x̃(t, x̃)

0 Q;x̃(t, x̃) d
dt

Q;x̃(t, x̃)
0 0 Q;x̃(t, x̃)



 .
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This relation has exactly the form of a global equivalence transformation (3.8) replacing Q
by Q;x̃(t, x̃). Since the corresponding inflated triples (Mµ,Lµ,Nµ) and (M̃µ, L̃µ, Ñµ) are
built according to (3.20), we get

[

M̃µ(z̃) L̃µ(z̃) Ñµ(z̃)
]

=
[
Mµ(z) Lµ(z) Nµ(z)

]





Θµ(z̃) 2Ψµ(z̃) Σµ(z̃)
0 Θµ(z̃) Ψµ(z̃)
0 0 Θµ(z̃)





according to (3.22), where we only have to replace Q by Q;x̃(t, x̃) in (3.21). Then, the
invariance of Hypothesis 3.26 follows immediately from Theorem 3.21.

Lemma 3.28. Let F as in (3.34) satisfy Hypothesis 3.26 with characteristic values µ, aµ,

d
(2)
µ , d

(1)
µ , and vµ, and let F̃ be given by

F̃ (t, x, ẋ, ẍ) = P (t, x, ẋ, ẍ, F (t, x, ẋ, ẍ)), (3.43)

with sufficiently smooth function P ∈ C(I×R
n×R

n×R
n×R

n, Rn), where P (t, x, ẋ, ẍ, ·) is
bijective with P (t, x, ẋ, ẍ, 0) = 0, and P;w(t, x, ẋ, ẍ, ·) is nonsingular for every (t, x, ẋ, ẍ) ∈
I×Rn ×Rn ×Rn, where P;w denotes the derivative of P with respect to the fifth argument.

Then, F̃ satisfies Hypothesis 3.26 with characteristic values µ, aµ, d
(2)
µ , d

(1)
µ , and vµ.

Proof. Let Lµ and L̃µ be the solution sets as defined in Hypothesis 3.26 corresponding
to F and F̃ , respectively. For every (t, x, ẋ, ẍ) ∈ L0 with F (t, x, ẋ, ẍ) = 0 it follows that
F̃ (t, x, ẋ, ẍ) = P (t, x, ẋ, ẍ, 0) = 0. In the same way, for (t, x, ẋ, ẍ, x(3)) ∈ L1 with

F1(t, x, ẋ, ẍ, x(3)) =

[
F (t, x, ẋ, ẍ)
d
dt

F (t, x, ẋ, ẍ)

]

= 0,

it follows that

F̃1(t, x, ẋ, ẍ, x(3)) =

[
F̃ (t, x, ẋ, ẍ)
d
dt

F̃ (t, x, ẋ, ẍ)

]

=

[
P (t, x, ẋ, ẍ, 0)

d
dt

P (t, x, ẋ, ẍ, F (t, x, ẋ, ẍ))

]

= 0.

Thus, by induction it follows that L̃µ = Lµ. Setting

M̃(t, x, ẋ, ẍ) = F̃;ẍ(t, x, ẋ, ẍ),

C̃(t, x, ẋ, ẍ) = F̃;ẋ(t, x, ẋ, ẍ),

K̃(t, x, ẋ, ẍ) = F̃;x(t, x, ẋ, ẍ),

it follows that

M̃(t, x, ẋ, ẍ) = P;ẍ(t, x, ẋ, ẍ, F (t, x, ẋ, ẍ)) + P;w(t, x, ẋ, ẍ, F (t, x, ẋ, ẍ))F;ẍ(t, x, ẋ, ẍ),

C̃(t, x, ẋ, ẍ) = P;ẋ(t, x, ẋ, ẍ, F (t, x, ẋ, ẍ)) + P;w(t, x, ẋ, ẍ, F (t, x, ẋ, ẍ))F;ẋ(t, x, ẋ, ẍ),

K̃(t, x, ẋ, ẍ) = P;x(t, x, ẋ, ẍ, F (t, x, ẋ, ẍ)) + P;w(t, x, ẋ, ẍ, F (t, x, ẋ, ẍ))F;x(t, x, ẋ, ẍ).
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If we restrict to the set Lµ, we have P;ẍ(t, x, ẋ, ẍ, 0) = 0, P;ẋ(t, x, ẋ, ẍ, 0) = 0, and
P;x(t, x, ẋ, ẍ, 0) = 0, such that we obtain

[

M̃(t, x, ẋ, ẍ) C̃(t, x, ẋ, ẍ) K̃(t, x, ẋ, ẍ)
]

= P;w(t, x, ẋ, ẍ, 0)
[
M(t, x, ẋ, ẍ) C(t, x, ẋ, ẍ) K(t, x, ẋ, ẍ)

]

on Lµ, which is a global equivalence transformation of the form (3.8). The corresponding
inflated triples (Mµ,Lµ,Nµ) and (M̃µ, L̃µ, Ñµ) are built according to (3.20) such that we
get

[

M̃µ(z) L̃µ(z) Ñµ(z)
]

= Πµ(z)
[
Mµ(z) Lµ(z) Nµ(z)

]
,

with z = (t, x, ẋ, . . . , x(µ+2)) ∈ Lµ according to (3.22), where we only must replace P by
P;w(t, x, ẋ, ẍ, 0) in (3.21). Then, the invariance of Hypothesis 3.26 follows immediately from
Theorem 3.21.

With the help of Hypothesis 3.26 we can now extract a strangeness-free system similar as
in Section 2.2.2. Let zµ,0 = (t0, x0, ẋ0, . . . , x

(µ+2)
0 ) ∈ Lµ be fixed. Then we have Fµ(zµ,0) = 0

by definition. By assumption Lµ ⊆ R
(µ+3)n+1 is a manifold of dimension (µ + 3)n + 1 − r

that can locally be parameterized by (µ+3)n+1−r parameters. These parameters can be
chosen from (t, x, ẋ, . . . , x(µ+2)) in such a way that discarding the associated columns from
Fµ;t,x,ẋ,...,x(µ+2)(zµ,0) does not lead to a rank drop. Because of Part 2 of Hypothesis 3.26
Fµ;x,ẋ,...,x(µ+2) already has maximal rank r, such that t can always be chosen as a parameter.
Since

corank([Lµ(zµ,0)
[
In 0 . . . 0

]T
Mµ(zµ,0)]) = aµ,

rank(Z3(zµ,0)
TNµ(zµ,0)

[
In 0 . . . 0

]T
) = aµ,

we can choose n − aµ parameters out of x. Without restriction x can be written as

(x1, x2, x3, x4), with x1 ∈ Rd
(2)
µ , x2 ∈ Rd

(1)
µ , x3 ∈ Raµ , x4 ∈ Rn−aµ−d

(2)
µ −d

(1)
µ , and we can

choose (x1, x2, x4) as these n − aµ parameters. Note, that discarding the columns of
Fµ;x,...,x(µ+2) belonging to x1, x2, x4 does not lead to a rank drop. In particular, due to
the full rank assumption the matrix ZT

3 Fµ;x3 is then nonsingular. The remaining parame-
ters q ∈ R(µ+2)n+aµ−r associated with the columns of Fµ;t,x,...,x(µ+2)(zµ,0) that we can remove

without having a rank drop, must then be chosen out of (ẋ, ẍ, . . . , x(µ+2)).
Let (t0, x1,0, x2,0, x4,0, q0) be that part of zµ,0 that corresponds to the selected parameters
(t, x1, x2, x4, q). Then, the implicit function theorem (Theorem 2.9) implies that there
exists a neighborhood V ⊆ R(µ+3)n+1−r of (t0, x1,0, x2,0, x4,0, q0), and a neighborhood Ũ ⊆
R(µ+3)n+1 of zµ,0 such that

U = Lµ ∩ Ũ = {θ(t, x1, x2, x4, q) | (t, x1, x2, x4, q) ∈ V},

where θ : V → U is a diffeomorphism. Thus, the equation

Fµ(t, x, ẋ, . . . , x(µ+2)) = 0
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can be locally solved according to

(t, x, ẋ, . . . , x(µ+2)) = θ(t, x1, x2, x4, q),

for some (t, x1, x2, x4, q) ∈ U. In particular, there exist locally defined functions G corre-
sponding to x3, and J corresponding to (ẋ, ẍ, . . . , x(µ+2)) such that

Fµ(t, x1, x2, G(t, x1, x2, x4, q), x4, J(t, x1, x2, x4, q)) = 0

on V. Setting v = (ẋ, ẍ, . . . , x(µ+2)) and with Z3 as defined by Hypothesis 3.26, it follows
that

d

dq
(ZT

3 Fµ) = (ZT
3;x3

Fµ + ZT
3 Fµ;x3)G;q + (ZT

3;vFµ + ZT
3 Fµ;v)J;q = ZT

3 Fµ;x3G;q = 0,

on V, since Fµ = 0 and ZT
3 Fµ;v = ZT

3 [Lµ[In 0 . . . 0]T Mµ] = 0. By construction the
variables in x3 were selected such that ZT

3 Fµ;x3 is nonsingular. Hence,

G;q(t, x1, x2, x4, q) = 0

for all (t, x1, x2, x4, q) ∈ V, implying the existence of a function R such that

x3 = G(t, x1, x2, x4, q) = G(t, x1, x2, x4, q0) = R(t, x1, x2, x4),

and

Fµ(t, x1, x2, R(t, x1, x2, x4), x4, J(t, x1, x2, x4, q)) = 0

on V. In a similar way we get that

d

dx1
(ZT

3 Fµ) =(ZT
3;x1

Fµ + ZT
3 Fµ;x1) + (ZT

3;x3
Fµ + ZT

3 Fµ;x3)R;x1 + (ZT
3;vFµ + ZT

3 Fµ;v)J;x1

=ZT
3 Fµ;x1 + ZT

3 Fµ;x3R;x1 = 0,

d

dx2
(ZT

3 Fµ) =(ZT
3;x2

Fµ + ZT
3 Fµ;x2) + (ZT

3;x3
Fµ + ZT

3 Fµ;x3)R;x2 + (ZT
3;vFµ + ZT

3 Fµ;v)J;x2

=ZT
3 Fµ;x2 + ZT

3 Fµ;x3R;x2 = 0,

d

dx4
(ZT

3 Fµ) =(ZT
3;x4

Fµ + ZT
3 Fµ;x4) + (ZT

3;x3
Fµ + ZT

3 Fµ;x3)R;x4 + (ZT
3;vFµ + ZT

3 Fµ;v)J;x4

=ZT
3 Fµ;x4 + ZT

3 Fµ;x3R;x4 = 0

on V, again using that Fµ = 0, and ZT
3 Fµ;v = 0. Thus,

ZT
3 Nµ

[
In 0 . . . 0

]T








I
d
(2)
µ

0 0

0 I
d
(1)
µ

0

R;x1 R;x2 R;x4

0 0 Iuµ








= 0,
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with uµ = n − d
(2)
µ − d

(1)
µ − aµ. Following Hypothesis 3.26 we can therefore choose T3 as

T3(t, x1, x2, x4) =








I
d
(2)
µ

0 0

0 I
d
(1)
µ

0

R;x1 R;x2 R;x4

0 0 Iuµ








.

Further, since

corank(Mµ(zµ,0)) = aµ + d(1)
µ +

µ−1
∑

i=0

ci,

rank (Z2(zµ,0)
TLµ(zµ,0)

[
In 0 . . . 0

]T
) = d(1)

µ +

µ−1
∑

i=0

ci,

we can choose n − d
(1)
µ −

∑µ−1
i=0 ci parameters out of ẋ. Without restriction we can write

x3 as (x3,0, x3,1, . . . , x3,µ) with x3,i ∈ Rci , i = 0, . . . , µ, and choose (ẋ1, ẋ3,µ, ẋ4) as these

n − d
(1)
µ −

∑µ−1
i=0 ci parameters. Then again, discarding the columns of Fµ;x,ẋ,...,x(µ+2) be-

longing to ẋ1, ẋ3,µ, ẋ4 does not lead to a rank drop, and due to the full rank assump-
tions the matrix ZT

2 Fµ;ẋ2,ẋ3,0,...,ẋ3,µ−1 is nonsingular. Now, the remaining parameters p ∈

R(µ+1)n+aµ+d
(1)
µ +

Pµ−1
i=0 ci−r must be chosen out of (ẍ, . . . , x(µ+2)).

Let (t0, x1,0, x2,0, x4,0, ẋ1,0, ẋ3µ,0, ẋ4,0, p0) be that part of zµ,0 that corresponds to the selected
parameters (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p). The implicit function theorem then implies that
there exists a neighborhood V2 ⊆ R

(µ+3)n+1−r of (t0, x1,0, x2,0, x4,0, ẋ1,0, ẋ3µ,0, ẋ4,0, p0), and
a neighborhood Ũ2 ⊆ R(µ+3)n+1 of zµ,0 such that

U2 = Lµ ∩ Ũ2 = {θ2(t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p) | (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p) ∈ V2},

where θ2 : V2 → U2 is a diffeomorphism. In particular, there exist locally defined functions
H corresponding to (ẋ2, ẋ3,0, . . . , ẋ3,µ−1), and W corresponding to (ẍ, . . . , x(µ+2)) such that

Fµ(t, x1, x2,R(t, x1, x2, x4), x4, ẋ1, (3.44)

H(t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p), ẋ3,µ, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p)) = 0

on V2. Setting y = (ẍ, . . . , x(µ+2)) and with Z2 as defined by Hypothesis 3.26 it follows
that

d

dp
(ZT

2 Fµ) = (ZT
2;ẋ2,ẋ3,0,...,ẋ3,µ−1

Fµ + ZT
2 Fµ;ẋ2,ẋ3,0,...,ẋ3,µ−1)H;p + (ZT

2;yFµ + ZT
2 Fµ;y)W;p

= ZT
2 Fµ;ẋ2,ẋ3,0,...,ẋ3,µ−1H;p = 0,

on V2, since Fµ = 0 and ZT
2 Fµ;y = 0. By construction ZT

2 Fµ;ẋ2,ẋ3,0,...,ẋ3,µ−1 is nonsingular.
Hence,

H;p(t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p) = 0
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for all (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p) ∈ V2. From Part 6 of Hypothesis 3.26 we have

rank (ZT
2 Fµ;ẋT3) = d(1)

µ ,

and there exists a matrix function Z1 such that

rank (ZT
1 ZT

2 Fµ;ẋ) = d(1)
µ .

Defining Z̃2 = Z2Z1, then Z̃T
2 Fµ;ẋ2 is nonsingular due to construction and

d

dp
(Z̃T

2 Fµ) = Z̃T
2 Fµ;ẋ2,ẋ3,0,...,ẋ3,µ−1H;p = 0

on V2. This implies the existence of a function S such that

ẋ2 = H(t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p)

= H(t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0)

= S(t, x1, x2, x4, ẋ1, ẋ4),

and

Fµ(t, x1, x2, R(t, x1, x2, x4), x4, ẋ1, S(t, x1, x2, x4, ẋ1, ẋ4), R;t(t, x1, x2, x4)

+ R;x1(t, x1, x2, x4)ẋ1 + R;x2(t, x1, x2, x4)S(t, x1, x2, x4, ẋ1, ẋ4)

+ R;x4(t, x1, x2, x4)ẋ4, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p)) = 0

on V2, replacing ẋ3 by d
dt

R(t, x1, x2, x4). Further, we have

d
dẋ1

(Z̃T
2 Fµ) = (Z̃T

2;ẋ1
Fµ + Z̃T

2 Fµ;ẋ1) + (Z̃T
2;ẋ2

Fµ + Z̃T
2 Fµ;ẋ2)S;ẋ1

+ (Z̃T
2;ẋ3

Fµ + Z̃T
2 Fµ;ẋ3)(R;x1 + R;x2S;ẋ1) + (Z̃T

2;yFµ + Z̃T
2 Fµ;y)W;ẋ1

= Z̃T
2 Fµ;ẋ1 + Z̃T

2 Fµ;ẋ2S;ẋ1 + Z̃T
2 Fµ;ẋ3(R;x1 + R;x2S;ẋ1) = 0,

d
dẋ4

(Z̃T
2 Fµ) = (Z̃T

2;ẋ4
Fµ + Z̃T

2 Fµ;ẋ4) + (Z̃T
2;ẋ2

Fµ + Z̃T
2 Fµ;ẋ2)S;ẋ4

+ (Z̃T
2;ẋ3

Fµ + Z̃T
2 Fµ;ẋ3)(R;x4 + R;x2S;ẋ4) + (Z̃T

2;yFµ + Z̃T
2 Fµ;y)W;ẋ4

= Z̃T
2 Fµ;ẋ4 + Z̃T

2 Fµ;ẋ2S;ẋ4 + Z̃T
2 Fµ;ẋ3(R;x4 + R;x2S;ẋ4) = 0,

on V2, again using that Fµ = 0 and Z̃T
2 Fµ;y = 0. Thus,

Z̃T
2 Lµ

[
In 0 . . . 0

]T







I
d
(2)
µ

0

S;ẋ1 S;ẋ4

R;x1 + R;x2Sẋ1 R;x4 + R;x2Sẋ4

0 Iuµ







= 0,

and following Hypothesis 3.26 we can choose T2 as

T2(t, x1, x2, x4, ẋ1, ẋ4) =





I
d
(2)
µ

0

S;ẋ1 S;ẋ4

0 Iuµ



 .
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Finally, Part 7 of Hypothesis 3.26 yields a matrix-valued function Z0 which only depends
on the original variables (t, x, ẋ, ẍ). Due to the full rank assumption we can choose the
neighborhood V2 so small that we can take a constant Z0. Altogether, setting

F̂1(t, x, ẋ, ẍ) = ZT
0 F (t, x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4, ẍ1, ẍ2, ẍ3, ẍ4),

F̂2(t, x, ẋ) = Z̃T
2 Fµ(t, x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0)),

F̂3(t, x) = ZT
3 Fµ(t, x1, x2, x3, x4, J(t, x1, x2, x4, q0)),

we then get the corresponding reduced differential-algebraic equation

F̂ (t, x, ẋ, ẍ) =





F̂1(t, x, ẋ, ẍ)

F̂2(t, x, ẋ)

F̂3(t, x)



 = 0. (3.45)

We can show that this reduced system is strangeness-free.

Theorem 3.29. The reduced differential-algebraic system (3.45) satisfies Hypothesis 3.26

with characteristic values µ = 0, r = aµ + d
(1)
µ + d

(2)
µ , aµ, d

(2)
µ , d

(1)
µ , and vµ.

Proof. By construction, we have F̂ (t0, x0, ẋ0, ẍ0) = 0 for all (t0, x0, ẋ0, ẍ0) part of zµ,0 ∈ Lµ,
thus the system (3.45) has at least one solution. Moreover, for all (t, x, ẋ, ẍ) satisfying
F̂ (t, x, ẋ, ẍ) = 0 it follows that

F̂;ẍ(t, x, ẋ, ẍ) =





ZT
0 F;ẍ(t, x, ẋ, ẍ)

0
0



 ,

F̂;ẋ(t, x, ẋ, ẍ) =





ZT
0 F;ẋ(t, x, ẋ, ẍ)

Z̃T
2 Fµ;ẋ(t, x, ẋ,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0))

0



 ,

F̂;x(t, x, ẋ, ẍ) =





ZT
0 F;x(t, x, ẋ, ẍ)

Z̃T
2 Fµ;x(t, x, ẋ,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0))

ZT
3 Fµ;x(t, x, J(t, x1, x2, x4, q0))



 .

We have

rank F̂;x,ẋ,ẍ = rank (ZT
0 F;ẍ + Z̃T

2 Fµ;ẋ + ZT
3 Fµ;x) = d(2)

µ + d(1)
µ + aµ,

rank F̂;ẋ,ẍ = rank (ZT
0 F;ẍ + Z̃T

2 Fµ;ẋ) = d(2)
µ + d(1)

µ ,

rank F̂;ẍ = rank (ZT
0 F;ẍ) = d(2)

µ ,

which gives Part 2, Part 3 and Part 4 of Hypothesis 3.26. Since

rank F̂3;x = rank (ZT
3 Fµ;x) = aµ,
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and since

d

dx3
F̂3(t, x) = ZT

3 Fµ;x3(t, x, J(t, x1, x2, x4, q0))

is nonsingular, the implicit function theorem implies that

F̂3(t, x1, x2, x3, x4) = ZT
3 Fµ(t, x1, x2, x3, x4, J(t, x1, x2, x4, q0)) = 0

holds if and only if x3 = R(t, x1, x2, x4). Hence,

F̂;x(t, x, ẋ, ẍ) =





ZT
0 F;x(t, x, ẋ, ẍ)

Z̃T
2 Fµ;x(t, x, ẋ,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0))

ZT
3 Fµ;x(t, x1, x2, R(t, x1, x2, x4), x4, J(t, x1, x2, x4, q0))



 ,

provided that F̂ (t, x, ẋ, ẍ) = 0, and the kernel of the third block row is given by the span
of the columns of T3. Further, since

rank F̂2;ẋ = rank (Z̃T
2 Fµ;ẋ) = d(1)

µ ,

and

F̂2;ẋ2 = Z̃T
2 Fµ;ẋ2(t, x, ẋ,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0))

is nonsingular, the implicit function theorem implies that

F̂2(t, x1, x2,x3, x4, ẋ1, ẋ2, ẋ3, ẋ4) =

Z̃T
2 Fµ(t, x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0)) = 0

holds if and only if ẋ2 = S(t, x1, x2, x4, ẋ1, ẋ4). Hence,

F̂;ẋ(t, x, ẋ, ẍ) =




ZT
0 F;ẋ(t, x, ẋ, ẍ)

Z̃T
2 Fµ;ẋ(t, x1, x2, x3, x4, ẋ1, S(t, x1, x2, x4, ẋ1, ẋ4), ẋ3, ẋ4, W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p0))

0



 ,

provided that F̂ (t, x, ẋ, ẍ) = 0, and the kernel of the second block row is given by the span
of the columns of T3T2. Finally, because of

F̂;ẍ(t, x, ẋ, ẍ)T3T2 =





ZT
0 F;ẍT3T2

0
0



 ,

and since ZT
0 F;ẍT3T2 is nonsingular and of rank d

(2)
µ , the reduced system also satisfies Part

7 of Hypothesis 3.26.
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Since the condition F̂3(t, x) = 0 is locally equivalent via the implicit function theorem to a
relation x3 = R(t, x1, x2, x4) we get from (3.45) the system

F̂1(t, x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4, ẍ1, ẍ2, ẍ3, ẍ4) = 0,

F̂2(t, x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4) = 0,

x3 − R(t, x1, x2, x4) = 0.

(3.46)

Using the last equation of (3.46) and its derivatives, we can replace every occurrence of x3,
ẋ3 and ẍ3, to obtain

F̂2(t, x1, x2, R(t, x1, x2, x4), x4, ẋ1, ẋ2,
d
dt

R(t, x1, x2, x4), ẋ4) = 0. (3.47)

Since

d

dẋ
F̂2 = Z̃T

2 [Fµ;ẋ1 + Fµ;ẋ3R;x1 ,Fµ;ẋ2 + Fµ;ẋ3R;x2 ,Fµ;ẋ4 + Fµ;ẋ3R;x4 ] = Z̃T
2 Fµ;ẋT3

is nonsingular due to Hypothesis 3.26, we can locally solve (3.47) for ẋ2, i.e.,

ẋ2 = S(t, x1, x2, x4, ẋ1, ẋ4). (3.48)

With (3.48) we can also eliminate ẋ2 and ẍ2 in F̂1(t, x, ẋ, ẍ), i.e., we get

F̂1(t, x, ẋ, ẍ) = (3.49)

ZT
0 F (t, x1, x2, R(t, x1, x2, x4), x4, ẋ1, S(t, x1, x2, x4, ẋ1, ẋ4), R;t(t, x1, x2, x4)

+ R;x1(t, x1, x2, x4)ẋ1 + R;x2(t, x1, x2, x4)S(t, x1, x2, x4, ẋ1, ẋ4) + R;x4(t, x1, x2, x4)ẋ4,

ẋ4, ẍ1, S;t(t, x1, x2, x4, ẋ1, ẋ4) + S;x1(t, x1, x2, x4, ẋ1, ẋ4)ẋ1

+ S;x2(t, x1, x2, x4, ẋ1, ẋ4)S(t, x1, x2, x4, ẋ1, ẋ4) + S;x4(t, x1, x2, x4, ẋ1, ẋ4)ẋ4

+ S;ẋ1(t, x1, x2, x4, ẋ1, ẋ4)ẍ1 + S;ẋ4(t, x1, x2, x4, ẋ1, ẋ4)ẍ4,
d2

dt2
R(t, x1, x2, x4), ẍ4) = 0,

with

d2

dt2
R(t, x1, x2, x4) = R;tt + R;tx1 ẋ1 + R;tx2S + R;tx4 ẋ4

+ (R;tx1 + R;x1x1 ẋ1 + R;x1x2S + R;x1x4 ẋ4)ẋ1 + R;x1ẍ1

+ (R;tx2 + R;x1x2 ẋ1 + R;x2x2S + R;x2x4 ẋ4)S

+ R;x2(S;t + S;x1 ẋ1 + S;x2S + S;x4 ẋ4 + S;ẋ1 ẍ1 + S;ẋ4 ẍ4)

+ (R;tx4 + R;x1x4 ẋ1 + R;x4x2S + R;x4x4 ẋ4)ẋ4 + R;x4ẍ4.

Since

d
dẍ

F̂1 = ZT
0 [F;ẍ1 + F;ẍ2S;ẋ1 + F;ẍ3(R;x1 + R;x2S;ẋ1), F;ẍ4 + F;ẍ2S;ẋ4 + F;ẍ3(R;x4 + R;x2S;ẋ4)]

= ZT
0 F;ẍT3T2
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is nonsingular due to Part 7 of Hypothesis 3.26 the system (3.49) can be locally solved for
ẍ1, i.e.,

ẍ1 = T (t, x1, x2, x4, ẋ1, ẋ4, ẍ4).

In this way, we have obtained a decoupled strangeness-free differential-algebraic system of
the form

ẍ1 = T (t, x1, x2, x4, ẋ1, ẋ4, ẍ4),

ẋ2 = S(t, x1, x2, x4, ẋ1, ẋ4),

x3 = R(t, x1, x2, x4),

(3.50)

with d
(2)
µ second order differential equations, d

(1)
µ first order differential equations, and aµ

algebraic equations. The variables x4 ∈ C2(I, Ruµ) of size uµ = n − d
(2)
µ − d

(1)
µ − aµ can

be chosen arbitrarily, i.e., they can be interpreted as controls. Then, the resulting system
has locally a unique solution for x1, x2 and x3, provided that consistent initial values are
given.

Theorem 3.30. Let F as in (3.34) be sufficiently smooth and satisfy Hypothesis 3.26 with

characteristic values µ, r, aµ, d
(1)
µ , d

(2)
µ , vµ, and uµ = n − d

(2)
µ − d

(1)
µ − aµ. Then every suf-

ficiently smooth solution of (3.34) also solves the reduced differential-algebraic equations

(3.45) and (3.50) consisting of d
(2)
µ second order differential equations, d

(1)
µ first order dif-

ferential equations, and aµ algebraic equations.

Proof. If x∗ is a sufficiently smooth solution of (3.34), then it must also solve the reduced
differential-algebraic equations (3.45) and (3.50), since

(t, x∗(t), ẋ∗(t), . . . , ( d
dt

)µ+2x∗(t)) ∈ Lµ

for every t ∈ I. If there are no free solution components then (3.50) fixes a unique solution
when we prescribe initial values for x1, ẋ1 and x2, such that locally there can be only
one solution of (3.34) satisfying the given initial conditions. Thus, if there are no free
solution components and the initial condition is consistent then the solution exists and is
unique.

Theorem 3.31. Let F as in (3.34) be sufficiently smooth and satisfy Hypothesis 3.26 with

characteristic values µ, aµ, d
(2)
µ , d

(1)
µ , vµ and with characteristic values (µ+1) (replacing µ),

aµ, d
(2)
µ , d

(1)
µ , vµ. Let zµ+1,0 ∈ Lµ+1 be given and let the parameterization p in (3.44) for

Fµ+1 include ẍ4. Then, for every function x4 ∈ C2(I, Rn−aµ−d
(2)
µ −d

(1)
µ ) with x4(t0) = x4,0,

ẋ4(t0) = ẋ4,0, and ẍ4(t0) = ẍ4,0, the reduced differential-algebraic equations (3.45) and
(3.50) have unique solutions x1, x2 and x3 satisfying x1(t0) = x1,0, ẋ1(t0) = ẋ1,0 and
x2(t0) = x2,0. Moreover, the so obtained function x = (x1, x2, x3, x4) locally solves the
original problem (3.34).
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Proof. By assumption, there exists a parameterization (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p) locally
with respect to zµ+1,0 ∈ Lµ+1, where p is chosen out of (ẍ, . . . , x(µ+3)), with

Fµ+1(t, x1, x2,R(t, x1, x2, x4), x4, ẋ1,

S(t, x1, x2, x4, ẋ1, ẋ4), ẋ3, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p)) ≡ 0.

This includes the equation

Fµ(t, x1, x2,R(t, x1, x2, x4), x4, ẋ1, (3.51)

S(t, x1, x2, x4, ẋ1, ẋ4), ẋ3, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p)) ≡ 0,

with trivial dependence on x(µ+3), as well as the equation

d
dt
Fµ(t, x1, x2,R(t, x1, x2, x4), x4, ẋ1, (3.52)

S(t, x1, x2, x4, ẋ1, ẋ4), ẋ3, ẋ4,W (t, x1, x2, x4, ẋ1, ẋ3,µ, ẋ4, p)) ≡ 0.

Equation (3.51) implies that

Fµ;t + Fµ;x3R;t + Fµ;ẋ2S;t + Fµ;yW;t ≡ 0, (3.53a)

Fµ;x1,x2,x4 + Fµ;x3R;x1,x2,x4 + Fµ;ẋ2S;x1,x2,x4 + Fµ;yW;x1,x2,x4 ≡ 0, (3.53b)

Fµ;ẋ1,ẋ3,ẋ4 + Fµ;ẋ2S;ẋ1,ẋ4 + Fµ;yW;ẋ1,ẋ3µ,ẋ4 ≡ 0, (3.53c)

Fµ;yW;p ≡ 0, (3.53d)

with y = (ẍ, . . . , x(µ+3)), where we have again omitted the function arguments. The relation
d
dt
Fµ = 0 has the form

Fµ;t + Fµ;xẋ + Fµ;ẋẍ + Fµ;y






x(3)

...
x(µ+3)




 = 0,

such that inserting the parameterization equation (3.52) can be written as

Fµ;t + Fµ;x1 ẋ1 + Fµ;x2 ẋ2 + Fµ;x3 ẋ3 + Fµ;x4 ẋ4+

Fµ;ẋ1W1 + Fµ;ẋ2W2 + Fµ;ẋ3W3 + Fµ;ẋ4W4 + Fµ;yW5 ≡ 0,

where Wi, i = 1, . . . , 5, are the parts of W corresponding to ẍ1, ẍ2, ẍ3, ẍ4 and the remaining
variables, respectively. Multiplication with ZT

3 (corresponding to Hypothesis 3.26 with

characteristic values µ, aµ, d
(2)
µ , d

(1)
µ , vµ) gives

ZT
3 Fµ;t + ZT

3 Fµ;x1 ẋ1 + ZT
3 Fµ;x2 ẋ2 + ZT

3 Fµ;x3 ẋ3 + ZT
3 Fµ;x4 ẋ4 ≡ 0.

Inserting the relations (3.53) and observing that ZT
3 Fµ;x3 is nonsingular, we find that

ZT
3 Fµ;x3(ẋ3 − R;t − R;x1 ẋ1 − R;x2 ẋ2 − R;x4 ẋ4) ≡ 0,
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or

ẋ3 = R;t + R;x1ẋ1 + R;x2 ẋ2 + R;x4 ẋ4, (3.54)

and multiplication with Z̃T
2 = ZT

1 ZT
2 (corresponding to Hypothesis 3.26 with characteristic

values µ, aµ, d
(2)
µ , d

(1)
µ , vµ) gives

Z̃T
2 Fµ;t + Z̃T

2 Fµ;x1 ẋ1 + Z̃T
2 Fµ;x2 ẋ2 + Z̃T

2 Fµ;x3 ẋ3 + Z̃T
2 Fµ;x4 ẋ4+

Z̃T
2 Fµ;ẋ1 ẍ1 + Z̃T

2 Fµ;ẋ2 ẍ2 + Z̃T
2 Fµ;ẋ3 ẍ3 + Z̃T

2 Fµ;ẋ4 ẍ4 ≡ 0.

Further, inserting the relations (3.53) and observing that Z̃T
2 Fµ;ẋ2 is nonsingular, we find

that

Z̃T
2 Fµ;ẋ2(ẍ2 − S;t − S;x1 ẋ1 − S;x2 ẋ2 − S;x4 ẋ4 − S;ẋ1 ẍ1 − S;ẋ4 ẍ4) ≡ 0

using (3.54), or

ẍ2 = S;t + S;x1 ẋ1 + S;x2 ẋ2 + S;x4 ẋ4 + S;ẋ1 ẍ1 + S;ẋ4 ẍ4.

In summary, the derivative array equation Fµ+1 = 0 implies that

ZT
0 F (t, x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4, ẍ1, ẍ2, ẍ3, ẍ4) = 0, (3.55a)

ẋ2 = S(t, x1, x2, x4, ẋ1, ẋ2), (3.55b)

ẍ2 = S;t + S;x1 ẋ1 + S;x2 ẋ2 + S;x4 ẋ4 + S;ẋ1 ẍ1 + S;ẋ4 ẍ4, (3.55c)

x3 = R(t, x1, x2, x4), (3.55d)

ẋ3 = R;t + R;x1ẋ1 + R;x2 ẋ2 + R;x4 ẋ4, (3.55e)

and elimination of x3, ẋ2, ẋ3, ẍ2 and ẍ3 from (3.55a) gives

ẍ1 = T (t, x1, x2, x4, ẋ1, ẋ4, ẍ4).

In particular, this shows that ẍ1, and ẍ2 are not part of the parameterization. Since ẍ4

is part of the parameterization p, the following construction is possible. Let x4 = x4(t),
ẋ4 = ẋ4(t) and ẍ4 = ẍ4(t), and let p = p(t) be arbitrary but consistent to the choice of ẍ4

and to the initial value zµ+1,0. Further, let x1 = x1(t), x2 = x2(t) and x3 = x3(t) be the
solutions of the initial value problem

ZT
0 F (t, x1, x2, x3, x4(t), ẋ1, ẋ2, ẋ3, ẋ4(t), ẍ1, ẍ2, ẍ3, ẍ4(t)) = 0,

ẋ2 = S(t, x1, x2, x4(t), ẋ1, ẋ2),

x3 = R(t, x1, x2, x4(t)),

x1(t0) = x1,0, ẋ1(t0) = ẋ1,0, x2(t0) = x2,0.

Although ẍ1 and ẍ2 are not part of the parameterization, we automatically get ẍ1 = ẍ1(t)
and ẍ2 = ẍ2(t). Thus, we have

Fµ+1(t,x1(t), x2(t), x3(t), x4(t), ẋ1(t), ẋ2(t), ẋ3(t), ẋ4(t), ẍ1(t),

ẍ2(t), ẍ3(t), ẍ4(t),W5(t, x1(t), x2(t), x4(t), ẋ1(t), ẋ3,µ(t), ẋ4(t), p(t))) ≡ 0
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for all t in a neighborhood of t0, or

F (t, x1(t), x2(t), x3(t), x4(t), ẋ1(t), ẋ2(t), ẋ3(t), ẋ4(t), ẍ1(t), ẍ2(t), ẍ3(t), ẍ4(t)) ≡ 0

for the first block of the derivative array.

Finally, we give an example to illustrate the index reduction procedure in the case of
nonlinear second order DAEs.

Example 3.32. We consider the nonlinear second order differential-algebraic system

ẍ1 = x1x2,

x1ẋ3 = x2 − 1,

0 = x3 − 1,

(3.56)

with x = [x1, x2, x3]
T ∈ C(I, R3). We have x3(t) = 1 for all t ∈ I such that ẋ3 = 0 and

x2(t) = 1. Thus, system (3.56) consists of two algebraic equations and one second order
differential equations. The nonlinear derivative array of level 0 is given by

F0(x, ẋ, ẍ) =





ẍ1 − x1x2

x1ẋ3 − x2 + 1
x3 − 1



 = 0,

and we have

F0;xẋẍ =





−x2 −x1 0 0 0 0 1 0 0
ẋ3 −1 0 0 0 x1 0 0 0
0 0 1 0 0 0 0 0 0



 = 0.

The solution set

L0 = {(x, ẋ, ẍ) ∈ R
3,3 | ẍ1 = x1x2, x1ẋ3 = x2 − 1, x3 = 1},

forms a manifold of dimension 3 = 3n − r = 9 − r and further we have

rankF0;xẋẍ = 3 = r,

rankF0;ẋẍ = 2,

rankF0;ẍ = 1,

such that the Hypothesis 3.26 is not satisfied for µ = 0. Increasing µ by one yields the
derivative array of level 1

F1(x, ẋ, ẍ, x(3)) =











ẍ1 − x1x2

x1ẋ3 − x2 + 1
x3 − 1

x
(3)
1 − ẋ1x2 − x1ẋ2

ẋ1ẋ3 + x1ẍ3 − ẋ2

ẋ3











= 0,
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with

F1;xẋẍx(3) =











−x2 −x1 0 0 0 0 1 0 0 0 0 0
ẋ3 −1 0 0 0 x1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

−ẋ2 −ẋ1 0 −x2 −x1 0 0 0 0 1 0 0
ẍ3 0 0 ẋ3 −1 ẋ1 0 0 x1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0











= 0.

The solution set L1 = {(x, ẋ, ẍ, x(3)) ∈ R3,4 | ẍ1 = x1x2, x1ẋ3 = x2 − 1, x3 = 1, x
(3)
1 =

ẋ1x2 + x1ẋ2, ẋ1ẋ3 + x1ẍ3 = ẋ2, ẋ3 = 0} of the derivative array F1 forms a manifold of
dimension 6 = 12 − r and we have

rankF1;xẋẍx(3) = 6 = r,

rankF1;ẋẍx(3) = 4 = r − aµ,

rankF1;ẍx(3) = 3 = r − aµ − d(1)
µ − c0.

Furthermore, we have corankF1;xẋẍx(3) − corankF0;xẋẍ = 0 − 0 = 0 = vµ, and choosing

ZT
2 =

[
0 0 0 0 0 1

]
and ZT

3 =

[
0 0 1 0 0 0
0 1 0 0 0 −x1

]

yields

rank (ZT
3 N1[In 0]T ) = rank

([
0 0 1
ẋ3 −1 0

])

= rank

([
0 0 1
0 −1 0

])

= 2,

rank (ZT
2 L1[In 0]T ) = rank

([
0 0 1

])
= 1,

on L1. We can chose T3 =
[
1 0 0

]T
such that ZT

3 N1[In 0]T T3 = 0 and

rank (ZT
2 L1[In 0]T T3) = 0 = d(1)

µ ,

yielding a matrix Z1 = ∅1,0 of size (1, 0) and a matrix T2 = 1 of size (1, 1). Finally, we have

rank (F;ẍT3T2) = rank









1
0
0







 = 1 = d(2)
µ ,

and with ZT
0 =

[
1 0 0

]
we have rank (ZT

0 F;ẍT3T2) = rank ([1]) = 1. Thus, Hypothesis
3.26 is satisfied for µ = 1, i.e., system (3.56) has strangeness index 1, and we can obtain a
reduced second order differentail-algebraic system by

F̂ (x, ẋ, ẍ) =

[
ZT

0 F (x, ẋ, ẍ)
ZT

3 F1(x, ẋ, ẍ, x(3))

]

=





ẍ1 − x1x2

x3 − 1
−x2 + 1



 = 0.



3.3 Trimmed First Order Formulation 93

3.3 Trimmed First Order Formulation

In the numerical solution of higher order differential-algebraic systems either the direct
numerical solution of the higher order system by appropriate numerical methods, or a
suitable transformation into a first order system is required. Since most of the numerical
methods suited for the solution of DAEs are constructed for first order systems and these
methods are well-studied, in general a transformation into a first order system is desired.
Furthermore, for a robust solution the numerical methods require differential-algebraic
systems of low index, such that on the one hand an index reduction, and on the other hand
an order reduction is required. In this section we consider linear second order differential-
algebraic equations with variable coefficients of the form (3.6) and discuss different ways to
obtain a first order formulation for the second order system that can be solved numerically.
Finally, a so-called trimmed first order formulation is derived that allows to construct a
strangeness-free first order system for linear second order DAEs of arbitrary high index in
a numerical feasible way.

The standard way to obtain a strangeness-free first order formulation for a second order
system (3.6) is to introduce new variables v = ẋ for the derivatives to transform the second
order system (3.6) into a first order system, and then apply the usual index reduction
procedures to the first order system. The corresponding first order formulation (also called
companion form) is given by

[
M(t) 0

0 I

] [
v̇
ẋ

]

=

[
−C(t) −K(t)

I 0

] [
v
x

]

+

[
f(t)
0

]

. (3.57)

This is a linear first order DAE of the form (2.5) with matrices

E(t) =

[
M(t) 0

0 I

]

, A(t) =

[
−C(t) −K(t)

I 0

]

of size (m+n, 2n), and right-hand side b(t) =
[
f(t)T 0

]T
, with unknowns y =

[
vT xT

]T
.

To obtain a strangeness-free system in a numerical feasible way the derivative arrays defined
in (2.22) can be used. Then, by determining suitable projections as defined in Theorem
2.41 an equivalent strangeness-free system

Ê(t)ẏ = Â(t)y + b̂(t),

of the form (2.24) can be constructed. Many difficulties may arise using this approach as
have been described in Chapter 1. The most critical is a possible increase in the index of
the DAE that yields higher smoothness requirements for the inhomogeneity f(t) and even
can cause the loss of solvability of the system, see e.g. [102]. For k-th order linear DAEs
it has been shown in [102] that if µ is the strangeness index of the tuple of matrix-valued
functions associated with the k-th order DAE system, then the maximal possible increase
in the strangeness index µ̃ of the first order system obtained by the classical order reduction
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procedure is µ̃ ≤ µ+k−1. Further, the resulting first order system is much larger than the
original system, and structures in the coefficient matrices are destroyed. Another drawback
of this approach is that the condition number of the first order system (3.57) may increase
compared to the original second order system, see e.g. [142].

Example 3.33. We consider again the linear second order system (3.33) given in Example
3.23 of strangeness index µ = 2. The companion form (3.57) of the second order system
(3.33) is given by










t 0 0 0 0 0
0 1 1 0 0 0
0 t t 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





















v̇1

v̇2

v̇3

ẋ1

ẋ2

ẋ3











=











−1 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 −1 − t −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





















v1

v2

v3

x1

x2

x3











+











f1

f2

f3

0
0
0











, (3.58)

for t ∈ [t0, t1] with t0 > 0. In comparison to the solution of (3.33) this system has the
additional solution components

[
v2

v3

]

=

[

ḟ2 − f
(3)
3 + tf

(3)
2 + 3f̈2

ḟ3 − (t + 1)ḟ2 − f2 + f
(3)
3 − tf

(3)
2 − 3f̈2

]

,

i.e., the third derivative of the inhomogeneity f is required, and thus system (3.58) is of
strangeness index µ̃ = 3.

To overcome these problems in the classical order reduction, we can first compute the
strangeness-free condensed form (3.14) for the second order system and transform the
strangeness-free form (3.14) to a first order system

Ẽ(t) ˙̃y = Ã(t)ỹ + b̃(t)

of the form (3.15) afterwards as has been proposed in [102], see also Corollary 3.12. In
this way, we can obtain a first order formulation that is strangeness-free without further
smoothness requirements or increasing the index.

Example 3.34. For the linear second order DAE (3.33) given in Example 3.23 transfor-
mation into global condensed form (3.12) yields





t 0 0
0 1 0
0 0 0









¨̃x1

¨̃x2

¨̃x3



+





1 0 0
0 0 0
0 0 0









˙̃x1

˙̃x2

˙̃x3



+





1 0 0
0 1 −1
0 1 0









x̃1

x̃2

x̃3



 =





f1

f2

−tf2 + f3



 ,

with
[
x̃1 x̃2 x̃3

]T
=
[
x1 x2 + x3 x3

]T
. After applying two index reduction steps we

obtain a system in the strangeness-free form (3.14) given by




t 0 0
0 0 0
0 0 0









¨̃x1

¨̃x2

¨̃x3



+





1 0 0
0 0 0
0 0 0









˙̃x1

˙̃x2

˙̃x3



+





1 0 0
0 1 −1
0 1 0









x̃1

x̃2

x̃3



 =





f1

f2 + tf̈2 − 2ḟ2 − f̈3

−tf2 + f3



 .
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Following Corollary 3.12 the corresponding first order formulation is given by







1 0 0 t
0 0 0 0
0 0 0 0
1 0 0 0













˙̃x1

˙̃x2

˙̃x3

˙̃x4







+







1 0 0 0
0 1 −1 0
0 1 0 0
0 0 0 −1













x̃1

x̃2

x̃3

x̃4







=







f1

f2 + tf̈2 − 2ḟ2 − f̈3

−tf2 + f3

0







,

which is strangeness-free and of minimal increased size.

The drawback of this approach is that there is no computational feasible method to com-
pute the condensed form (3.14), except if the structure can be used, since the derivatives
of computed transformation matrices are used during the transformations. Further, the
strangeness-free system (3.14), and consequently also the first order formulation (3.15), do
not have the same solution x as the original second order system (3.6), but a transformed
solution x̃ = Q−1x. Nevertheless, Corollary 3.12 suggests that first index reduction and
then order reduction should be used for a proper treatment of second order systems.
Thus, in the following we will use the index reduction based on derivative arrays derived
in Section 3.1.2 to obtain a strangeness-free second order system which can then be used
to obtain a trimmed first order formulation in a numerical feasible way. Using the inflated
system (3.19) associated with the second order system (3.6) we can determine projections
Z4, Z3, Z2, Z1, and Z0 as defined in Theorem 3.21 to obtain locally a strangeness-free second
order system

M̂(t)ẍ + Ĉ(t)ẋ + K̂(t)x = f̂(t), (3.59)

with matrix triple of the form

(M̂, Ĉ, K̂) =













M̂1

0
0
0







,







Ĉ1

Ĉ2

0
0







,







K̂1

K̂2

K̂3

0













.

To find a suitable first order formulation, we first have to identify the second order differen-
tial variables. As the matrices M̂1, Ĉ2 and K̂3 have full row rank due to construction (see
Theorem 3.21) there exists a pointwise orthogonal matrix-valued function Q ∈ C(I, Rn×n)
that is sufficiently smooth, such that





M̂1

Ĉ2

K̂3



Q =





M11 0 0 0
C21 C22 0 0
K31 K32 K33 0



 , (3.60)

where the matrix-valued functions M11 of size d
(2)
µ × d

(2)
µ , C22 of size d

(1)
µ × d

(1)
µ and K33 of

size aµ × aµ are pointwise nonsingular. With the corresponding basis transformation

x = Qx̂, ẋ = Q ˙̂x + Q̇x̂, ẍ = Q¨̂x + 2Q̇ ˙̂x + Q̈x̂,
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we get the equivalent system







M11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

M̂Q







¨̂x1

¨̂x2

¨̂x3

¨̂x4







+







C11 C12 C13 C14

C21 C22 0 0
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

ĈQ+2M̂Q̇







˙̂x1

˙̂x2

˙̂x3

˙̂x4







+







K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 0
0 0 0 0







︸ ︷︷ ︸

K̂Q+ĈQ̇+M̂Q̈







x̂1

x̂2

x̂3

x̂4







=








f̂1

f̂2

f̂3

f̂4








︸ ︷︷ ︸

f̂

,

(3.61)

where the second order differential variables x̂1 are explicitly specified. By introducing the
new variable v̂ = ˙̂x1 we can transform the system (3.61) into first order form









M11 C11 C12 C13 C14

0 C21 C22 0 0
0 0 0 0 0
0 0 0 0 0
0 I 0 0 0


















˙̂v
˙̂x1
˙̂x2
˙̂x3
˙̂x4










+









0 K11 K12 K13 K14

0 K21 K22 K23 K24

0 K31 K32 K33 0
0 0 0 0 0
−I 0 0 0 0

















v̂

x̂1

x̂2

x̂3

x̂4









=










f̂1

f̂2

f̂3

f̂4

0










. (3.62)

Here, we have

v̂ =
[
I 0 0 0

]
˙̂x =

[
I 0 0 0

]
(Q̇T x + QT ẋ) = Q̇T

1 x + QT
1 ẋ = d

dt
(QT

1 x),

˙̂v = d2

dt2
(QT

1 x),

with Q1 = Q
[
I 0 0 0

]T
. Therefore, system (3.62) is equivalent to

[
M̂Q1 ĈQ + 2M̂Q̇

0 J

] [
d2

dt2
(QT

1 x)
d
dt

(QT x)

]

+

[
0 K̂Q + ĈQ̇ + M̂Q̈

−I 0

] [
d
dt

(QT
1 x)

QT x

]

=

[

f̂

0

]

, (3.63)

with J =
[
I 0 0 0

]
. Now, introducing another variable v = QT

1 ẋ = d
dt

(QT
1 x)− Q̇T

1 x, the
first equation of (3.63) becomes

M̂Q1v̇ + (Ĉ + M̂(Q1Q̇
T
1 + 2Q̇QT ))ẋ + (K̂ + M̂(Q1Q̈

T
1 + 2Q̇Q̇T + Q̈QT ))x = f̂ ,

where we have used that Q̇QT + QQ̇T = 0, as Q is orthogonal. Thus, we get a first order
system in the original variable x and in v of the form

[

M̂Q1 C̃
0 QT

1

] [
v̇
ẋ

]

+

[
0 K̃
−I 0

] [
v
x

]

=

[

f̂
0

]

,
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with

C̃ = Ĉ + M̂(Q1Q̇
T
1 + 2Q̇QT ) = Ĉ + M̂(Q1Q̇

T
1 − 2QQ̇T ),

K̃ = K̂ + M̂(Q1Q̈
T
1 + 2Q̇Q̇T + Q̈QT ) = K̂ + M̂(Q1Q̈

T
1 − QQ̈T ),

using that Q̈QT + 2Q̇Q̇T + QQ̈T = 0. In addition, it holds that

Q1Q̇
T
1 − 2QQ̇T = QJT JQ̇T − 2QQ̇T = Q







−I 0 0 0
0 −2I 0 0
0 0 −2I 0
0 0 0 −2I







Q̇T ,

Q1Q̈
T
1 − QQ̈T = QJT JQ̈T − QQ̈T = Q







0 0 0 0
0 −I 0 0
0 0 −I 0
0 0 0 −I







Q̈T ,

such that we get

C̃ = Ĉ − M̂Q







I 0 0 0
0 2I 0 0
0 0 2I 0
0 0 0 2I







Q̇T = Ĉ −







M11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







Q̇T = Ĉ − M̂QQ̇T ,

K̃ = K̂ − M̂Q







0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I







Q̈T = K̂.

Altogether, we have derived a first order formulation in the original variable x and v, only
using the coefficient matrices of the strangeness-free formulation (3.59) and the orthogonal
transformation matrix Q. Due to construction this first order system denoted by

Ě(t)ẏ = Ǎ(t)y + b̌(t)

is strangeness-free.

Lemma 3.35. Consider a linear second order differential-algebraic system (3.59) that is
strangeness-free, with matrix-valued functions M̂, Ĉ, K̂ ∈ C(I, Rm,n), and right-hand side
f̂ ∈ C(I, Rm). Further, let Q ∈ C1(I, Rn,n) be an orthogonal matrix-valued function that
decomposes M̂, Ĉ, K̂ as in (3.60). Then, the trimmed first order formulation

[

M̂Q1 Ĉ + M̂Q̇QT

0 QT
1

] [
v̇
ẋ

]

=

[

0 −K̂
I 0

] [
v
x

]

+

[

f̂
0

]

, (3.64)

is also strangeness-free, with Q1 = Q[I 0 0 0]T , and the characteristic values are given by

dµ = 2d
(2)
µ + d

(1)
µ , aµ, vµ and uµ.
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Proof. The proof follows directly from the construction of the trimmed first order formu-
lation (3.64). Setting x̂ = QT x and v̂ = d

dt
(QT

1 x) = v + Q̇T
1 x, we obtain









M11 C11 C12 C13 C14

0 C21 C22 0 0
0 0 0 0 0
0 0 0 0 0
0 I

d
(2)
µ

0 0 0


















˙̂v
˙̂x1

˙̂x2

˙̂x3

˙̂x4










+









0 K11 K12 K13 K14

0 K21 K22 K23 K24

0 K31 K32 K33 0
0 0 0 0 0

−I
d
(2)
µ

0 0 0 0

















v̂
x̂1

x̂2

x̂3

x̂4









=










f̂1

f̂2

f̂3

f̂4

0










,

which is clearly strangeness-free, since M11, C22, K33 are nonsingular.

Thus, from Lemma 3.35 and the previous discussion we can obtain a strangeness-free first
order formulation directly from the coefficients of the strangeness-free second order system
(3.59). The trimmed first order formulation (3.64) is of minimal possible size and no further
smoothness requirements for the inhomogeneity are required.

Example 3.36. In Example 3.23 we have computed an equivalent strangeness-free formu-
lation





t 0 0
0 0 0
0 0 0



 ẍ +





1 0 0
0 0 0
0 0 0



 ẋ +





1 0 0
0 −1 0
0 1 1



x =





f1

−f2 − 2ḟ2 − tf̈2 + f̈3

−tf2 + f3





for the linear second order system (3.33) using the derivative array approach. Then, fol-
lowing Lemma 3.35 a trimmed first order formulation for system (3.33) is given by







t 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0













v̇
ẋ1

ẋ2

ẋ3







=







0 −1 0 0
0 0 1 0
0 0 −1 −1
1 0 0 0













v
x1

x2

x3







+







f1

−f2 − 2ḟ2 − tf̈2 + f̈3

−tf2 + f3

0







,

which is strangeness-free and has the same solution components x1, x2, and x3 as the
original system (3.33).

In the previous discussion we have seen that we can follow different strategies to obtain a
strangeness-free first order formulation for a linear second order DAEs of the form (3.6). In
general, one should carefully choose the best suited transformation for the given problem.
The main difference in the presented approaches is the chronological order of index and
order reduction. In the classical approach first a transformation into a first order system is
used, and then a strangeness-free formulation is extracted using index reduction techniques.
On the other hand, the index reduction can be carried out at first to obtain a strangeness-
free second order system, e.g., by transforming to condensed form (3.14), or by using the
derivative arrays (3.19), and in a second step this strangeness-free system is transformed
into a first order system. In the previous discussion we have seen that for an appropriate
treatment of higher order differential-algebraic system the index reduction should be carried
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(derivative array)
reductionindex

reduction
order

order reduction

index reduction

differentiation

differentiation (condensed form)
index reduction

(derivative array)
reductionorder

(M,C,K)

(M̃, C̃, K̃)

(M̂, Ĉ, K̂) (Mµ,Nµ)

(Mµ,Lµ,Nµ) (E,A)

(Ê, Â)(Ě, Ǎ) (Ẽ, Ã)

Figure 3.1: Order and index reduction for second order DAE

out at first followed by an order reduction to obtain a strangeness-free first order system.
The different strategies are depicted in Figure 3.1.

For constant coefficient higher order differential-algebraic systems the transformation into a
first order system corresponds to the linearization of matrix polynomials. In this way higher
order differential-algebraic systems are closely related to polynomial eigenvalue problems.
The linearization of matrix polynomials is treated in [53, 95]. In [95] large classes of
linearizations for matrix polynomials are proposed, which preserve the structure of the
matrices as well as the Jordan structure of infinite eigenvalues, corresponding to the index
of the DAE. Moreover, different linearizations can have very different condition numbers
depending on the magnitude of the eigenvalues, see e.g. [142]. The conditioning of the
linearizations introduced in [95] is treated in [63], where it is shown that for any given
eigenvalue, we can find a linearization of the matrix polynomial, that will be about as well
conditioned as the original problem for that eigenvalue. Analogous to the linearization of
matrix polynomials we can find transformations of time-invariant higher order differential-
algebraic systems into first order systems, which do not increase the index of the system
(corresponding to the preservation of the Jordan structures of infinite eigenvalues), which
preserve certain structures in the system, and lead to first order systems that are as well-
conditioned as the original problem.

3.4 Explicit Representation of Solutions

For linear second order DAEs with constant coefficients of the form

Mẍ + Cẋ + Kx = f(t), (3.65)
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with M,C,K ∈ Rn,n and f ∈ C(I, Rn), the trimmed first order formulation (3.64) derived
in Section 3.3 allows an explicit representation of solutions of the system in terms of the
coefficients M,C,K and the inhomogeneity f . For convenience, we restrict ourselves in
this section to the square case m = n and assume regularity of the system.
Starting from the corresponding regular strangeness-free system (3.59) we can find an
orthogonal matrix Q ∈ Rn,n as in (3.60) that transforms the system (3.59) into an equivalent
strangeness-free system of the form




M11 0 0
0 0 0
0 0 0









¨̂x1

¨̂x2

¨̂x3



+





C11 C12 C13

C21 C22 0
0 0 0









˙̂x1

˙̂x2

˙̂x3



+





K11 K12 K13

K21 K22 K23

K31 K32 K33









x̂1

x̂2

x̂3



 =





f̂1

f̂2

f̂3



 , (3.66)

with x = Qx̂. In the study of matrix polynomials so-called unimodular transformations are
used as a class of equivalent transformations, such as adding the λa multiple of one row
or column to another without increasing the degree of the polynomial. The analogon of
these transformations in the context of higher order differential-algebraic systems has been
studied in [102]. These unimodular transformations can be reformulated using the concept
of differential polynomials, see [66, 92]. Let R[Di] be the set of i-th order differential
polynomials with coefficients in R, i.e.,

R[Di] :=

{

a0 + a1
d

dt
+ a2

d2

dt2
+ · · · + ai

di

dti
| ak ∈ R, k = 0, 1, . . . , i

}

.

Since we do not want to increase the order of the differential-algebraic equation, we consider
only the following restricted transformations.

Definition 3.37 (Opu-equivalence). Two differential-algebraic systems Mẍ+Cẋ+Kx =
f and M̌ẍ + Čẋ + Ǩx = f̌ are called order preserving unimodularily equivalent, or opu-
equivalent, if there exists a P ∈ R[D2]

n,n with constant nonzero determinant such that

P (Mẍ + Cẋ + Kx − f) = M̌ẍ + Čẋ + Ǩx − f̌ .

The concept of opu-equivalence transformations requires that the order of differentiation
does not increase. Thus, opu-equivalence transformations are nothing else than differentia-
tions of equations and elimination of derivatives in the differential-algebraic system as used
in the index reduction procedure described in Section 3.1.1. Now, using an opu-equivalence
transformation with

P =





I 0 − d
dt

C13K
−1
33

0 I 0
0 0 I



 ,

we can eliminate the block C13 in (3.66) without altering the solution of the system and
get the opu-equivalent system




M11 0 0
0 0 0
0 0 0





︸ ︷︷ ︸

M̌=PM̂Q





¨̂x1

¨̂x2

¨̂x3



+





Č11 Č12 0
C21 C22 0
0 0 0





︸ ︷︷ ︸

Č=PĈQ





˙̂x1

˙̂x2

˙̂x3



+





K11 K12 K13

K21 K22 K23

K31 K32 K33





︸ ︷︷ ︸

Ǩ=PK̂Q





x̂1

x̂2

x̂3



 =





f̌1

f̂2

f̂3





︸ ︷︷ ︸

f̌=P f̂

, (3.67)
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where Č11 = C11 − C13K
−1
33 K31, Č12 = C12 − C13K

−1
33 K32 and f̌1 = f̂1 − C13K

−1
33

˙̂
f3. Now,

starting from the system
M̌ ¨̂x + Č ˙̂x + Ǩx̂ = f̌ ,

given by (3.67) we can form the trimmed first order formulation (3.64) as described in
Section 3.3 to get the first order system

[
0 QT

1

M̂Q1 ČQT

] [
v̇
ẋ

]

=

[
I 0

0 −K̂

] [
v
x

]

+

[
0

f̌

]

, (3.68)

where in addition we have changed the rows of the system which does not change the
solution of the DAE. System (3.68) is a linear first order differential-algebraic system of

the form (2.6) with E,A ∈ Rn+d
(2)
µ ,n+d

(2)
µ , b ∈ C(I, Rn+d

(2)
µ ) and unknown y given by

E =

[
0 QT

1

M̂Q1 ČQT

]

, A =

[
I 0

0 −K̂

]

, b =

[
0

f̌

]

, y =

[
v
x

]

. (3.69)

Since the DAE (3.65) is assumed to be regular, also the matrix pair (E,A) is regular,
and the problem (3.68) is uniquely solvable for consistent initial values v0, x0. Due to the
regularity, we can find a λ such that (λE −A) is nonsingular and by multiplying equation
(3.68) with (λE −A)−1 we get an equivalent system of the form (2.10) that allows to give
an explicit formula for the solution of (3.68) using Theorem 2.31. This solution is of the
form

y(t) = eÊDÂ(t−t0)ÊDÊy0 +

∫ t

t0

eÊDÂ(t−s)ÊDb̂(s)ds − (I − ÊDÊ)
ν−1∑

i=0

(ÊÂD)iÂD b̂(i)(t)

for some y0 ∈ R
n, where Ê = (λE − A)−1E, Â = (λE − A)−1A, and b̂ = (λE − A)−1b. To

get an explicit solution representation we first need to determine the index ν of the matrix
Ê. For linear first order DAEs with constant coefficients of the form (2.6) it is well-known
that the index ν = ind(E,A) of the matrix pair (E,A) equals the differentiation index νd,
see e.g. [59]. Further, it holds that for regular DAEs with well-defined strangeness index
µ the differentiation index νd is also well-defined with

νd =

{

0 for aµ = 0,

µ + 1 for aµ 6= 0,

see e.g. [82, Corollary 3.47]. If aµ = 0, then we have ν = ind(E,A) = νd = 0, and E is
invertible due to the absence of the nilpotent block in the Weierstraß canonical form (2.8).
Otherwise, if aµ 6= 0, then we have ν = ind(E,A) = νd = 1 for the regular matrix pencil
(E,A), as the trimmed first order formulation is strangeness-free due to Lemma 3.35. In
this case the matrix pair (E,A) is equivalent to its Weierstrass canonical form (2.8), i.e.,

(E,A) ∼

([
I 0
0 0

]

,

[
J 0
0 I

])

,
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where N = 0 as ν = 1. Further, we have ind(Ê) = ind(Ê, I) and

(Ê, I) = ((λE − A)−1E, I) ∼ (E, λE − A) ∼

([
I 0
0 0

]

,

[
λI − J 0

0 −I

])

,

where λI − J is in Jordan canonical form, such that we have ind(Ê) = 1.
With this results the solution of the original second order system (3.65) is either given by

x(t) =
[
0 I

]
(

eE−1A(t−t0)y0 +

∫ t

t0

eE−1A(t−s)E−1b(s)ds

)

, (3.70)

if aµ = 0 in the first order system (3.68), or by

x(t) =
[
0 I

]
(

eÊDÂ(t−t0)ÊDÊy0 +

∫ t

t0

eÊDÂ(t−s)ÊDb̂(s)ds − (I − ÊDÊ)ÂDb̂(t)

)

, (3.71)

if aµ 6= 0 in (3.68), for an initial value y0 = [ẋ0, x0]. In the first case we have

E−1 =

[
−M−1

11 (C11 − C12C
−1
22 C21) M−1

11 −M−1
11 C12C

−1
22

Q1 − Q2C
−1
22 C21 0 Q2C

−1
22

]

,

E−1A =

[
M−1

11 (C12C
−1
22 C21 − C11) M−1

11 [(K11 − C12C
−1
22 K21)Q

T
1 + (K12 − C12C

−1
22 K22)Q

T
2 ]

Q1 − Q2C
−1
22 C21 Q2C

−1
22 K21Q

T
1 + Q2C

−1
22 K22Q

T
2

]

,

E−1b =





M−1
11 (f̂1 − C12C

−1
22 f̂2)

0

Q2C
−1
22 f̂2



 ,

such that the solution (3.70) can be formulated only using the coefficient of the original
system and the matrix Q =

[
Q1 Q2

]
.

For the second case, i.e., if aµ 6= 0 in (3.68), we need to describe the products ÊDÂ, ÊDÊ,

ÊDb̂, and ÂD b̂ in terms of the coefficients M,C,K of the original second order system
(3.65). First of all, we assume that E and A in (3.69) commute, i.e., EA = AE. In this
case the solution (3.71) can be formulated directly in terms of E and A and we only have
to compute the Drazin inverses ED and AD. The Drazin inverse of the matrix A is simply
given by

AD =

[
I 0

0 −K̂D

]

. (3.72)

The Drazin inverse of E is given in the following Lemma.

Lemma 3.38. Consider the matrix E ∈ R
n+d

(2)
µ ,n+d

(2)
µ with

E =

[
0 QT

1

M̂Q1 ČQT

]

=







0 I 0 0
M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T ,
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as in (3.69) with ν = ind (E) = 1 coming from the trimmed first order formulation (3.64),

with Q̂ =

[
I 0
0 Q

]

∈ Rn+d
(2)
µ ,n+d

(2)
µ and orthogonal Q = [Q1 Q2 Q3] ∈ Rn,n. Then the Drazin

inverse of E is given by

ED =

[
−M−1

11 (Č11 − Č12C
−1
22 C21) M−1

11 −M−1
11 Č12C

−1
22 0

Q1 − Q2C
−1
22 C21 0 Q2C

−1
22 0

]

. (3.73)

Proof. We have to verify the axioms (2.2) of the Drazin inverse. First, we have

EDE =

[
−M−1

11 (Č11 − Č12C
−1
22 C21) M−1

11 −M−1
11 Č12C

−1
22 0

Q1 − Q2C
−1
22 C21 0 Q2C

−1
22 0

]







0 I 0 0
M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T

=

[
I 0 0 0
0 Q1 Q2 0

]







I 0
0 QT

1

0 QT
2

0 QT
3







=

[
I 0
0 Q1Q

T
1 + Q2Q

T
2

]

,

with Q1Q
T
1 + Q2Q

T
2 =





I 0 0
0 I 0
0 0 0



 and

EED =







0 I 0 0
M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T

[
−M−1

11 (Č11 − Č12C
−1
22 C21) M−1

11 −M−1
11 Č12C

−1
22 0

Q1 − Q2C
−1
22 C21 0 Q2C

−1
22 0

]

=







0 I 0 0
M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0













−M−1
11 (Č11 − Č12C

−1
22 C21) M−1

11 −M−1
11 Č12C

−1
22 0

I 0 0 0
−C−1

22 C21 0 C−1
22 0

0 0 0 0







=







I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0







.

As ν = ind(E) = 1 it follows that EDEE = E and EDEED = ED.

With the Drazin inverses (3.72) and (3.73) we have

EDA =

[
−M−1

11 (Č11 − Č12C
−1
22 C21) M−1

11 (Č12C
−1
22 K̂2 − K̂1)

Q1 − Q2C
−1
22 C21 −Q2C

−1
22 K̂2

]

,

EDb =

[
M−1

11 (f̌1 − Č12C
−1
22 f̂2)

Q2C
−1
22 f̂2

]

, ADb =

[
0

−K̂Df̌

]

,
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such that for the solution representation (3.71) we get

x(t) =
[
0 I

]
eEDA(t−t0)

[
v0

(Q1Q
T
1 + Q2Q

T
2 )x0

]

+
[
0 I

]
∫ t

t0

eEDA(t−s)

[
M−1

11 (f̌1 − Č12C
−1
22 f̂2)

Q2C
−1
22 f̂2

]

ds + Q3Q
T
3 K̂Df̌ .

To get a solution representation in the case that E and A do not commute we first consider
a regular and homogeneous linear differential-algebraic system

Eẏ(t) = Ay(t), y(t0) = y0, (3.74)

with index ν = ind(E,A) = 1 and E,A as in (3.69). Then, for a consistent initial value
y0, the unique solution of (3.74) is given by

y(t) = eÊDÂ(t−t0)ÊDÊy0

due to Theorem 2.31. By differentiation we can see that this unique solution also solves
the ordinary differential equation

ẏ(t) = ÊDÂy(t), with y(t0) = ÊDÊy0. (3.75)

This ordinary differential equation is also called the Drazin ODE, see [34, 45]. Thus,
if we can transform the homogeneous system (3.74) into the corresponding Drazin ODE
(3.75), we can get a representation for the Drazin inverse ÊDÂ. Further, consistency
conditions for the initial value yield a representation for ÊDÊ. Since the Drazin inverse of
a matrix Ê is unique and the products ÊDÂ and ÊDÊ are independent of the choice of
the parameter λ, see [26], also the representation of ÊDÂ and ÊDÊ are unique. Using the
basis transformation

Q̂T

[
v
x

]

=
[
vT xT

1 xT
2 xT

3

]T
, (3.76)

where Q̂ =

[
I 0
0 Q

]

, and Q chosen as in (3.60), the homogeneous differential-algebraic

system (3.74) is equivalent to

ẋ1 = v,

M11v̇ + Č11ẋ1 + Č12ẋ2 + K11x1 + K12x2 + K13x3 = 0,

C21ẋ1 + C22ẋ2 + K21x1 + K22x2 + K23x3 = 0,

K31x1 + K32x2 + K33x3 = 0.
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Since M11, C22, K33 are invertible due to the choice of Q we have

ẋ1 = v,

v̇ = −M−1
11 (Č11ẋ1 + Č12ẋ2 + K11x1 + K12x2 + K13x3),

ẋ2 = −C−1
22 (C21ẋ1 + K21x1 + K22x2 + K23x3),

x3 = −K−1
33 (K31x1 + K32x2).

(3.77)

Differentiating the last equation in (3.77) once and eliminating all derivatives on the right-
hand side yields

ẋ1 =v,

v̇ = − M−1
11 [Č11v − Č12C

−1
22 (C21v + K21x1 + K22x2 + K23x3) + K11x1 + K12x2 + K13x3],

ẋ2 = − C−1
22 (C21v + K21x1 + K22x2 + K23x3), (3.78)

ẋ3 = − K−1
33 (K31v − K32C

−1
22 (C21v + K21x1 + K22x2 + K23x3)).

Further, we can eliminate all occurrences of x3 using the last equation in (3.77) to get

ẋ1 = v,

v̇ = M−1
11 [(Č12C

−1
22 C21 − Č11)v + (Č12C

−1
22 Y21 − Y11)x1 + (Č12C

−1
22 Y22 − Y12)x2],

ẋ2 = −C−1
22 C21v − C−1

22 Y21x1 − C−1
22 Y22x2,

ẋ3 = K−1
33 [(K32C

−1
22 C21 − K31)v + K32C

−1
22 Y21x1 + K32C

−1
22 Y22x2],

where we have defined

Y11 = K11 − K13K
−1
33 K31, Y21 = K21 − K23K

−1
33 K31,

Y12 = K12 − K13K
−1
33 K32, Y22 = K22 − K23K

−1
33 K32.

Further, defining

V1 = Č12C
−1
22 C21 − Č11, V4 = K32C

−1
22 C21 − K31,

V2 = Č12C
−1
22 Y21 − Y11, V5 = K32C

−1
22 Y21,

V3 = Č12C
−1
22 Y22 − Y12, V6 = K32C

−1
22 Y22,

we get an ordinary differential equation







v̇

ẋ1

ẋ2

ẋ3







=







M−1
11 V1 M−1

11 V2 M−1
11 V3 0

I 0 0 0

−C−1
22 C21 −C−1

22 Y21 −C−1
22 Y22 0

K−1
33 V4 K−1

33 V5 K−1
33 V6 0













v

x1

x2

x3







.
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Reversing the basis transformation (3.76) yields a system of the form

[
v̇

ẋ

]

= Q̂







M−1
11 V1 M−1

11 V2 M−1
11 V3 0

I 0 0 0

−C−1
22 C21 −C−1

22 Y21 −C−1
22 Y22 0

K−1
33 V4 K−1

33 V5 K−1
33 V6 0







Q̂T

[
v

x

]

=

[
M−1

11 V1 M−1
11 V2Q

T
1 + M−1

11 V3Q
T
2

Q1 − Q2C
−1
22 C21 + Q3K

−1
33 V4 −Q2C

−1
22 (Y21Q

T
1 + Y22Q

T
2 ) + Q3K

−1
33 (V5Q

T
1 + V6Q

T
2 )

] [
v

x

]

in the original variables v and x. Due to the algebraic equations, consistent initial values
have to satisfy

[
v(t0)
x(t0)

]

= Q̂







I 0 0 0
0 I 0 0
0 0 I 0
0 −K−1

33 K31 −K−1
33 K32 0







Q̂T

[
v0

x0

]

,

=

[
I 0
0 I − Q3K

−1
33 (K31Q

T
1 + K32Q

T
2 + K33Q

T
3 )

] [
v0

x0

]

,

=

[
I 0

0 I − Q3K
−1
33 K̂3

] [
v0

x0

]

.

Altogether, we have derived the Drazin ODE and consistency conditions for initial values
for the homogeneous system (3.74).

Lemma 3.39. Consider a regular linear differential-algebraic system (3.74) with index
ν = ind(E,A) = 1 and E,A given by (3.69) and assume that a consistent initial value y0

is given. Further, consider the corresponding Drazin ODE derived by differentiations

ẏ = Sy, y(t0) = Hy0,

with

S =

[
M−1

11 V1 M−1
11 V2Q

T
1 + M−1

11 V3Q
T
2

Q1 − Q2C
−1
22 C21 + Q3K

−1
33 V4 −Q2C

−1
22 (Y21Q

T
1 + Y22Q

T
2 ) + Q3K

−1
33 (V5Q

T
1 + V6Q

T
2 )

]

,

H =

[
I 0

0 I − Q3K
−1
33 (K31Q

T
1 + K32Q

T
2 + K33Q

T
3 )

]

.

Then, it holds that

ÊDÂ = S and ÊDÊ = H,

and furthermore, ÊDÂ and ÊDÊ are unique.
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Proof. As the matrix pair (E,A) is regular there exists a λ such that (λE − A) is nonsin-
gular. Setting Ê = (λE −A)−1E and Â = (λE −A)−1A, the products ÊDÂ and ÊDÊ are
independent of the choice of the parameter λ, see [26]. Further, the Drazin inverse ÊD is
unique such that also the products ÊDÂ and ÊDÊ are unique. We have

λÊDÊ − ÊDÂ = ÊD(λÊ − Â) = ÊD(λ(λE − A)−1E − (λE − A)−1A) = ÊD.

Thus, to prove that ÊDÂ = S and ÊDÊ = H we have to verify the conditions (2.2) of the
Drazin inverse for ÊD = λH − S.
In order to get a nonsingular λE − A we can choose λ ∈ R such that λC22 + (K22 −

K23K
−1
33 K32) = λC22 + Y22 is invertible. At first, we compute Ê = (λE − A)−1E via block

inversion. We have

Ê =

([
−I [λI 0 0]

λM̂Q1 λČ + K̂Q

]

Q̂T

)−1 [
0 [I 0 0]

M̂Q1 Č

]

Q̂T

= Q̂







−I λI 0 0

λM11 λČ11 + K11 λČ12 + K12 K13

0 λC21 + K21 λC22 + K22 K23

0 K31 K32 K33







−1 





0 I 0 0

M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T

= Q̂













I 0 0 0

−λM11 I 0 K13K
−1
33

0 0 I K23K
−1
33

0 0 0 I













−I 0 0 0
0 λ(λM11 + Č11) + Y11 λČ12 + Y12 0
0 λC21 + Y21 λC22 + Y22 0
0 0 0 K33













I −λI 0 0
0 I 0 0
0 0 I 0

0 K−1
33 K31 K−1

33 K32 I













−1 





0 I 0 0

M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T

= Q̂







I λI 0 0
0 I 0 0
0 0 I 0

0 −K−1
33 K31 −K−1

33 K32 I













−I 0 0 0
0 A11 A12 0
0 A21 A22 0

0 0 0 K−1
33













I 0 0 0

λM11 I 0 −K13K
−1
33

0 0 I −K23K
−1
33

0 0 0 I













0 I 0 0

M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T =: Q̂M1M2M3M4Q̂
T ,

where
[
A11 A12

A21 A22

]

=

[
λ2M11 + λČ11 + Y11 λČ12 + Y12

λC21 + Y21 λC22 + Y22

]−1

=

[
I 0

−X−1
1 (λC21 + Y21) I

] [
X−1

2 −X−1
2 (λČ12 + Y12)X

−1
1

0 X−1
1

]

=

[
X−1

2 −X−1
2 (λČ12 + Y12)X

−1
1

−X−1
1 (λC21 + Y21)X

−1
2 X−1

1 (λC21 + Y21)X
−1
2 (λČ12 + Y12)X

−1
1 + X−1

1

]

,
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with nonsingular matrices
X1 = λC22 + Y22,

and
X2 = λ2M11 + λČ11 + Y11 − (λČ12 + Y12)X

−1
1 (λC21 + Y21)

due to construction and due to the choice of λ. To verify the first condition (2.2a) we need
to show that ÊÊD = Ê(λH − S) = (λH − S)Ê = ÊDÊ = H. If we set

(λH − S) =:

[
H11 H12

H21 H22

]

,

with

H11 =λI − M−1
11 V1,

H12 = − M−1
11 [V2Q

T
1 + V3Q

T
2 ],

H21 = − Q1 + Q2C
−1
22 C21 − Q3K

−1
33 V4,

H22 =λI + Q2C
−1
22 (Y21Q

T
1 + Y22Q

T
2 ) − Q3K

−1
33 [(V5 + λK31)Q

T
1

+ (V6 + λK32)Q
T
2 + λK33Q

T
3 ],

then we get

Ê(λH − S) = Q̂M1M2M3M4Q̂
T

[
H11 H12

H21 H22

]

= Q̂M1M2M3M4







H11 H12

QT
1 H21 QT

1 H22

QT
2 H21 QT

2 H22

QT
3 H21 QT

3 H22







= Q̂M1M2M3







0 I 0 0

M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0













H11 H12

−I λQT
1

C−1
22 C21 λQT

2 + C−1
22 (Y21Q

T
1 + Y22Q

T
2 )

−K−1
33 V4 λQT

3 − K−1
33 [(V5 + λK31)Q

T
1 + (V6 + λK32)Q

T
2 + λK33Q

T
3 ]







= Q̂M1M2







I 0 0 0

λM11 I 0 −K13K
−1
33

0 0 I −K23K
−1
33

0 0 0 I













−I λQT
1

λM11 (λČ11 + Y11)Q
T
1 + (λČ12 + Y12)Q

T
2

0 (λC21 + Y21)Q
T
1 + (λC22 + Y22)Q

T
2

0 0







= Q̂M1







−I 0 0 0
0 A11 A12 0
0 A21 A22 0

0 0 0 K−1
33













−I λQT
1

0 (λ2M11 + λČ11 + Y11)Q
T
1 + (λČ12 + Y12)Q

T
2

0 (λC21 + Y21)Q
T
1 + (λC22 + Y22)Q

T
2

0 0







= Q̂







I λI 0 0
0 I 0 0
0 0 I 0

0 −K−1
33 K31 −K−1

33 K32 I













I −λQT
1

0 A11X4 + A12X5

0 A21X4 + A22X5

0 0






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= Q̂







I λ(−QT
1 + QT

1 )
0 QT

1

0 QT
2

0 −K−1
33 [(K31A11 + K32A21)X4 + (K31A12 + K32A22)X5]







=

[
I 0

0 Q1Q
T
1 + Q2Q

T
2 − Q3K

−1
33 (K31Q

T
1 + K32Q

T
2 )

]

= H,

where

X4 = (λ2M11 + λČ11 + Y11)Q
T
1 + (λČ12 + Y12)Q

T
2 ,

X5 = (λC21 + Y21)Q
T
1 + (λC22 + Y22)Q

T
2 ,

and using that

A11X4 + A12X5 = QT
1 ,

A21X4 + A22X5 = QT
2 .

On the other hand, we have

(λH − S)Ê =

[
H11 H12

H21 H22

]

Q̂M1M2M3M4Q̂
T

=

[
H11 H12Q1 H12Q2 0
H21 H22Q1 H22Q2 0

]







I λI 0 0
0 I 0 0
0 0 I 0

0 −K−1
33 K31 −K−1

33 K32 I







M2M3M4Q̂
T

=

[
H11 λH11 + H12Q1 H12Q2 0
H21 λH21 + H22Q1 H22Q2 0

]







−I 0 0 0
0 A11 A12 0
0 A21 A22 0

0 0 0 K−1
33







M3M4Q̂
T

=

[
−H11 M−1

11 −M−1
11 Č12C

−1
22 0

−H21 0 (Q2 − Q3K
−1
33 K32)C

−1
22 0

]

M3M4Q̂
T

=

[
−H11 M−1

11 −M−1
11 Č12C

−1
22 0

−H21 0 (Q2 − Q3K
−1
33 K32)C

−1
22 0

]







I 0 0 0

λM11 I 0 −K13K
−1
33

0 0 I −K23K
−1
33

0 0 0 I







M4Q̂
T

=

[
−H11 + λI M−1

11 −M−1
11 Č12C

−1
22 M−1

11 (Č12C
−1
22 K23 − K13)K

−1
33 )

−H21 0 (Q2 − Q3K
−1
33 K32)C

−1
22 −(Q2 − Q3K

−1
33 K32)C

−1
22 K23K

−1
33

]







0 I 0 0

M11 Č11 Č12 0
0 C21 C22 0
0 0 0 0







Q̂T
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=

[
I −H11 + λI + M−1

11 (Č11 − Č12C
−1
22 C21) 0 0

0 −H21 + (Q2 − Q3K
−1
33 K32)C

−1
22 C21 Q2 − Q3K

−1
33 K32 0

]

Q̂T

=

[
I 0

0 −H21Q
T
1 + (Q2 − Q3K

−1
33 K32)C

−1
22 C21Q

T
1 + (Q2 − Q3K

−1
33 K32)Q

T
2

]

=

[
I 0

0 Q1Q
T
1 + Q2Q

T
2 − Q3K

−1
33 (K31Q

T
1 + K32Q

T
2 )

]

= H,

where we have used that

(λH11 + H12Q1)A11 + H12Q2A21 = M−1
11 ,

(λH11 + H12Q1)A12 + H12Q2A22 = −M−1
11 Č12C

−1
22 ,

(λH21 + H22Q1)A11 + H22Q2A21 = 0,

(λH21 + H22Q1)A12 + H22Q2A22 = (Q2 − Q3K
−1
33 K32)C

−1
22 .

Further, the structure of H implies that SH = HS = S and H2 = H. Thus, for the second
condition (2.2b) we have

ÊDÊÊD = (λH − S)Ê(λH − S) = (λH − S)H = λH − S = ÊD.

Finally, for the third condition (2.2c) we have

(λH − S)Ê2 = Ê(λH − S)Ê = ÊH = (λE − A)−1EH

= (λE − A)−1

[
0 QT

1

M̂Q1 ČQT (I − Q3K
−1
33 (K31Q

T
1 + K32Q

T
2 + K33Q

T
3 )

]

= (λE − A)−1

[
0 QT

1

M̂Q1 ČQT − ČQT Q3K
−1
33 K̂3

]

= Ê.

Thus, for the linear homogeneous DAE (3.74) we have the explicit solution representation

y(t) = eS(t−t0)Hy0 = eS(t−t0)

[
v0

(I − Q3K
−1
33 K̂3)x0

]

,

where S and H are given as in Lemma 3.39, and y0 =
[
vT
0 xT

0

]T
, and for the solution x(t)

of the corresponding homogeneous second order system (3.65) we therefore have

x(t) =
[
0 I

]
eS(t−t0)

[
v0

(I − Q3K
−1
33 K̂3)x0

]

.

From the well-known principle that two solutions of a linear inhomogeneous problem differ
only by a solution of the corresponding homogeneous problem, we only need to append a
particular solution of the corresponding inhomogeneous problem to describe all solutions
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of the inhomogeneous problem. Thus, for an inhomogeneous problem (3.68) of index ν = 1
we get the solution representation

y(t) = eS(t−t0)Hy0 +

∫ t

t0

eS(t−s)(λH − S)b̂(s)ds − (I − H)ÂDb̂(t),

with

I − H =

[
0 0

0 Q3K
−1
33 K̂3

]

, Hy0 =

[
v0

(I − Q3K
−1
33 K̂3)x0

]

,

as well as

(λH − S)(λE − A)−1b(s) =

[
H11 H12

H21 H22

]

Q̂M1M2M3b(s)

=

[
M−1

11 (f̌1 − Č12C
−1
22 f̂2 + (Č12C

−1
22 K23 + K13)K

−1
33 f̂3)

(Q2 − Q3K
−1
33 K32)C

−1
22 (f̂2 − K23K

−1
33 f̂3)

]

,

following from the proof of Lemma 3.39. Further, we have

(I − H)ÂDb̂(t) = ÂD(I − H)b̂(t) = ÂD

[
0 0

0 Q3K
−1
33 K̂3

]

(λE − A)−1b(t)

= ÂD

[
0 0

0 Q3K
−1
33 K̂3

]

Q̂M1M2M3b(t)

= ÂD

[
0

Q3K
−1
33 f̂3(t)

]

.

Therefore, for the solution x(t) of the original second order system (3.65) we have

x(t) =
[
0 I

]
{

eS(t−t0)

[
v0

(I − Q3K
−1
33 K̂3)x0

]

− ÂD

[
0

Q3K
−1
33 f̂3

]

+

∫ t

t0

eS(t−s)

[
M−1

11 (f̌1 − Č12C
−1
22 f̂2 + (Č12C

−1
22 K23 + K13)K

−1
33 f̂3)

(Q2 − Q3K
−1
33 K32)C

−1
22 (f̂2 − K23K

−1
33 f̂3)

]

ds

}

.

(3.79)

Remark 3.40. For the solution representation (3.79) the Drazin inverse ÂD is required.
In most applications the matrix K̂ might be nonsingular or K̂ = I meaning that E and A
in (3.69) commute such that ÂD is simply given by (3.72).

3.5 Future Work

In the previous discussion we have restricted to second order differential-algebraic systems.
In general, all presented concepts can also be extended to arbitrary high order systems of
the form (3.2). The theoretical analysis and the condensed forms given in Section 3.1.1
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have been generalized to linear k-th order DAEs (3.2) in [102, 135], where in particular
a strangeness-free canonical form as in Theorem 3.11 and a first order formulation as in
Corollary 3.12 are derived. Also the derivative array approach presented in Section 3.1.2 can
be generalized to linear k-th order DAEs, see also Remark 3.24, and by linearization along
solution trajectories also nonlinear k-th order systems of the form (3.1) can be handled in
the same way as in Section 3.2. Further, given a strangeness-free linear k-th order system,
the trimmed order reduction formalism derived in Section 3.3 can be applied successively to
the k-th order system to reduce the order by one in each reduction step. In this process the
derivative of order (k − 1) of the transformation matrix Q, chosen similar as in (3.60), will
occur. In the constant coefficient case that corresponds to the theory of matrix polynomials,
structure preserving staircase forms for matrix tuples are given in [20], that allow trimmed
linearizations for arbitrary high order systems in the context of matrix polynomials. For
the variable coefficient case it is not clear if such structure preserving staircase forms exist
and how trimmed first order formulations can be derived in this case.
Furthermore, it remains to prove Theorem 3.19, and consequently also Corollary 3.20,
Theorem 3.21 and Theorem 3.22, for arbitrary strangeness index µ > 2. To do this another
global canonical form analogous to the form given in [82, Theorem 3.21] might be helpful.
Here, we only state the following conjecture.

Conjecture. Let the strangeness-index of (M,C,K) with M,C,K ∈ C(I, Rm,n) be well-
defined. Then (M,C,K) is globally equivalent to a matrix triple of the form













I
d
(2)
µ

0 0 0

0 C 0 F
0 D 0 G
0 E 0 H







,







⋆ 0 ⋆ ⋆
0 I

d
(1)
µ

0 J

0 0 0 K
0 0 0 L







,







⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆ 0
0 0 0 0
0 0 0 Iaµ













,

with

X =








0 Xµ ⋆
. . . . . .

. . . X1

0








, Y =








0 Yµ,µ ⋆
...

...
. . .

0 Y1,µ . . . Y1,1

0 0 . . . 0








,

for X ∈ {C,D,E, J,K,L}, Y ∈ {F,G,H}, where the blocks Ki, Li, Ci, Di, Ei have sizes
wi×ci−1, ci×ci−1, qi×qi−1, wi×qi−1, and ci×qi−1, respectively, and J =

[
0 ⋆ . . . ⋆

]
is

partitioned accordingly. Further, the blocks Gi,j, Hi,j and Fi,j have sizes wi× cj−1, ci× cj−1

and qi × cj−1, respectively. In particular, we have the full row rank condition

rank





Cµ Fµ,µ Jµ

Dµ Gµ,µ Kµ

Eµ Hµ,µ Lµ



 = 2s
(MCK)
µ−1 + s

(MC)
µ−1 + s

(MK)
µ−1 + s

(CK)
µ−1 = cµ + wµ + qµ.



Chapter 4

Structured Differential-Algebraic Systems

In many technical applications the arising differential-algebraic equations exhibit certain
structures as e.g. the equations of motions of multibody systems (1.1), the circuit equations
(1.4), or linear systems as in (1.2) or (1.3), where the coefficient matrices are structured,
see also Chapter 1. In the numerical solution of these systems the structural information
can be used to develop efficient index reduction and solution methods. The equations of
motion of multibody systems (1.1) have been an important research topic for many years
and efficient methods for the index reduction and for the numerical solution have been
developed, see e.g. [14, 34, 50, 137]. Also index reduction methods for electrical circuit
equations (1.4) have been studied [6, 7, 8, 36]. But, the development of structure preserving
index reduction methods for linear time-variant systems with symmetries in the coefficient
matrices has remained open.
In general, the structure of a system reflects a physical property of the system that should
be preserved during the numerical solution. In the case of linear DAEs with constant
coefficient of the form (2.6), for example, the algebraic structure of the problem forces
the eigenvalues of the corresponding eigenvalue problem to lie in certain regions in the
complex plane (e.g., on the unit circle or the real axis) or to occur in different kind of
pairings. If such a system is solved numerically without considering the structure then
these physical properties are obscured and we might get physically meaningless results as
rounding errors can cause eigenvalues to wander out of their required region, see e.g. [37].
In this field, mainly from the point of view of generalized eigenvalue problems, structure
preserving canonical forms as well as structure preserving solution methods for matrix pairs
have been investigated, see e.g. [20, 70, 132]. These results can be applied for differential-
algebraic systems with constant coefficients, but they do not allow the treatment of time-
variant differential-algebraic systems. Another important aspect in the numerical solution
of structured differential-algebraic systems is that the structure of the system can be used
for an efficient the solution of the linear systems arising in each integration step, which
usually has the highest computational effort during the numerical integration.

In this chapter we consider linear differential-algebraic systems with variable coefficients
of the form (2.5) where the coefficient matrices E(t) and A(t) are symmetric, e.g. as in
the linearized equations of motions of mechanical systems (1.2), see also [53, 155, 156], or
in the semidiscretization of the Stokes equation and the linearized Navier-Stokes equation
[149]. On the other hand, we consider linear systems of the form (2.5) that have a self-
adjoint structure as in linear-quadratic optimal control problems (1.3), see also [10, 83], or
in gyroscopic mechanical systems [65, 89]. In Section 4.1 we review structured condensed

113



114 Structured Differential-Algebraic Systems

forms for symmetric matrix pairs that are extended to the case of pairs of symmetric
matrix-valued functions in Section 4.2. Analogous structure preserving condensed forms
for pairs of Hermitian matrix-valued function have also been derived in [153]. In Section
4.3 we derive a structure preserving condensed form and a strangeness-free formulation for
self-adjoint pairs of matrix-valued functions. Finally, in Section 4.4, we present a structure
preserving index reduction method for self-adjoint systems based on index reduction by
minimal extension.

4.1 Condensed Forms for Symmetric Matrix Pairs

To derive structure preserving condensed forms for linear DAEs we start with linear time-
invariant systems of the form

Eẋ = Ax + b(t), t ∈ I, (4.1)

where E,A ∈ Rn×n are symmetric, i.e., E = ET and A = AT and b ∈ C(I, Rn). In order
to obtain a structure preserving condensed form for the symmetric matrix pair (E,A) we
cannot use general equivalence transformations but have to restrict to congruence trans-
formations.

Definition 4.1 (Strong congruence). Two pairs of matrices (Ei, Ai), i = 1, 2, with
Ei, Ai ∈ R

n,n are called strongly congruent if there exists a nonsingular matrix P ∈ R
n,n

such that
E2 = P T E1P, A2 = P T A1P. (4.2)

This congruence transformation defines an equivalence relation. The canonical form for
matrix pairs under general equivalence transformations is the well-known Kronecker canon-
ical form, see e.g. [47]. In the symmetric case there also exists a symmetric version of the
Kronecker canonical form under congruence transformations (4.2), see [140], but the nu-
merical computation of this canonical form is an ill-conditioned problem as small rounding
errors can radically change the kind and number of Kronecker blocks. A numerically com-
putable structured staircase form for symmetric matrix pairs that displays the invariants
of the structured Kronecker form is given e.g. in [20]. For the analysis of existence and
uniqueness of solutions of DAEs, however, we do not need the complete information of gen-
eralized eigenvalues and eigenspaces provided by the invariants of the Kronecker canonical
form, but only the infomation about the eigenvalues at infinity. Therefore, it is sufficient
to consider condensed forms for pairs of symmetric matrices that can be computed nu-
merically using rank decisions based on orthogonal transformations and allow to analyze
the index of a DAE as well as existence and uniqueness of solutions. To derive such a
condensed form we use the symmetric Schur decomposition of a symmetric matrix, see e.g.
[54, 90].

Lemma 4.2. Let A ∈ Rn,n be symmetric with rank A = r. Then there exists an orthogonal
matrix P ∈ Rn,n such that

P T AP =

[
Σr 0
0 0

]

, (4.3)
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with nonsingular and diagonal Σr ∈ Rr,r.

Proof. See e.g. [54, Theorem 8.1.1].

Now, we can derive a condensed form for pairs of symmetric matrices using orthogonal
congruence transformations.

Theorem 4.3. Let E,A ∈ R
n,n be symmetric and let

T be a basis of kernelE,

T ′ be a basis of cokernelE = rangeE,

V be a basis of corange (T T AT ).

Then there exists an orthogonal matrix P ∈ R
n,n such that the matrix pair (E,A) is strongly

congruent to a symmetric matrix pair of the form

















E11 E12 0 0 0
ET

12 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









A11 A12 A13 Σs 0
AT

12 A22 A23 0 0
AT

13 AT
23 Σa 0 0

Σs 0 0 0 0
0 0 0 0 0

















,

s
d
a
s
u

(4.4)

where the matrices Σa ∈ R
a,a, and Σs ∈ R

s,s are nonsingular and diagonal, the block[
E11 E12

ET
12 E22

]

∈ R
r,r is nonsingular, and the last block rows and block columns are of dimen-

sion u. Further, the quantities
(a) r = rankE, (rank)
(b) a = rank (T T AT ), (algebraic part)
(c) s = rank (V T T T AT ′), (strangeness)
(d) d = r − s, (differential part)
(e) u = n − r − a − s (undetermined unknowns/vanishing equations)

are invariant under the congruence relation (4.2).

Proof. To derive the condensed form (4.4) we use the following sequence of congruence
transformations with orthogonal transformation matrices

(E,A) ∼

([
Σr 0
0 0

]

,

[
A11 A12

AT
12 A22

])

∼









Σr 0 0
0 0 0
0 0 0



 ,





A11 A12 A13

AT
12 Σa 0

AT
13 0 0







 ,

∼

















E11 E12 0 0 0
ET

12 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









A11 A12 A13 Σs 0
AT

12 A22 A23 0 0
AT

13 AT
23 Σa 0 0

Σs 0 0 0 0
0 0 0 0 0

















.
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To show the invariance of the quantities r, a, s, d, u under congruence transformations (4.2),
we consider two matrix pairs (Ei, Ai), i = 1, 2 that are congruent, i.e., there exits a
nonsingular matrix P such that

E2 = P T E1P, A2 = P T A1P.

Since

rank E2 = rank(P T E1P ) = rankE1,

it follows that r is invariant under congruence transformation. The quantities a and s are
well-defined as they do not depend on the choice of the bases. Let T2, T ′

2 and V2 be the
bases associated with (E2, A2), i.e.,

rank(E2T2) = 0, T T
2 T2 nonsingular, rank(T T

2 T2) = n − r,
rank(E2T

′
2) = r, T

′T
2 T ′

2 nonsingular, rank(T
′T
2 T ′

2) = r,
rank(V T

2 T T
2 A2T2) = 0, V T

2 V2 nonsingular, rank(V T
2 V2) = k,

with k = dim corange(T T
2 A2T2). Inserting the congruence relation (4.2) and defining

T1 = PT2, T ′
1 = PT ′

2, V T
1 = V T

2 ,

we obtain the same relations for (E1, A1) with the matrices T1 and T ′
1. Hence, T1 is a basis

of kernelE1 and T ′
1 is a basis of range E1. Because of

k = dim corange(T T
2 A2T2) = dim corange(T T

2 P T A1PT2) = dim corange(T T
1 A1T1),

this also applies to V1. With

rank(T T
2 A2T2) = rank(T T

2 P T A1PT2) = rank(T T
1 A1T1),

and
rank(V T

2 T T
2 A2T

′
2) = rank(V T

2 T T
2 P T A1PT ′

2) = rank(V T
1 T T

1 A1T
′
1),

we finally get the invariance of a and s and therefore also of d and u.

Note, that the matrix pair (E,A) can be reduced further if we also allow non-orthogonal
transformations, see e.g. [73].

4.2 Condensed Forms for Pairs of Symmetric Matrix-Valued Functions

After the introduction of a condensed form for symmetric matrix pairs in Section 4.1 we
now consider condensed forms for pairs of symmetric matrix-valued functions. In [73] it has
been posed as an open problem to derive a condensed form for linear differential-algebraic
systems of the form (2.5), where E,A ∈ C(I, Rn,n) are symmetric, i.e., E(t) = ET (t), and
A(t) = AT (t) for all t ∈ I. Here, we will show that it is possible to derive a structure
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preserving condensed form similar as in Theorem 4.3 for pairs of symmetric matrix-valued
functions

(E(t), A(t)) (4.5)

under certain additional assumptions. This form allows to characterize existence and
uniqueness of solutions of the DAE as well as consistency of initial values similar as in
Theorem 2.34 and Theorem 2.36. Since the concept of strong congruence transforma-
tions (4.2) is not adequate to treat time-varying systems, we need the concept of global
congruence transformations.

Definition 4.4 (Global congruence). Two pairs of matrix-valued functions (Ei, Ai)
with Ei, Ai ∈ C(I, Rn,n), i = 1, 2 are called globally congruent if there exists a pointwise
nonsingular matrix-valued function P ∈ C1(I, Rn,n) such that

E2 = P T E1P, A2 = P T A1P − P T E1Ṗ . (4.6)

We can see that for a symmetric pair (E1, A1) the matrix pair (E2, A2) in (4.6) is only
symmetric again if

P T (t)E1(t)Ṗ (t) = Ṗ T (t)E1(t)P (t), for all t ∈ I. (4.7)

This condition holds for example in the special case where E1(t)Ṗ (t) = 0 for all t ∈ I.
Similar as in Section 3.1.1 we first consider the action of the congruence relation (4.6)
locally at a fixed point, since in the numerical solution of differential-algebraic equations
it is usually important to consider local quantities that are numerically computable and
give information on the global behavior of the solution in the neighborhood of a fixed point
t̂ ∈ I. At a fixed point t̂ we can choose P (t̂) = P̃ and Ṗ (t̂) = R̃ independently, such that
we get the following local version of the congruence relation (4.6).

Definition 4.5 (Local congruence). Two pairs of matrices (Ei, Ai), i = 1, 2 with Ei, Ai ∈
Rn,n, are called locally congruent if there exist matrices P,R ∈ Rn,n, with P nonsingular
such that

E2 = P T E1P, A2 = P T A1P − P TE1R. (4.8)

Again, for a symmetric pair (E1, A1) not every matrix R in (4.8) will lead again to a
symmetric pair (E2, A2). To obtain a symmetric matrix pair we have to require that
P T E1R = RTE1P , e.g., we can choose R such that R = P or such that E1R vanishes.
Now, we can derive a local condensed form under the congruence transformation (4.8) for
symmetric matrix pairs similar as in Theorem 4.3.

Theorem 4.6. Let E,A ∈ Rn,n be symmetric and let

T be a basis of kernelE,

T ′ be a basis of cokernelE = rangeE,

V be a basis of corange (T T AT ).
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Then there exist an orthogonal matrix P ∈ Rn,n and a matrix R ∈ Rn,n such that the
matrix pair (E,A) is locally congruent to a symmetric matrix pair of the form

















E11 E12 0 0 0
ET

12 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









0 0 A13 Σs 0
0 0 A23 0 0

AT
13 AT

23 Σa 0 0
Σs 0 0 0 0
0 0 0 0 0

















,

s
d
a
s
u

(4.9)

where the matrices Σa ∈ Ra,a, and Σs ∈ Rs,s are nonsingular and diagonal, the matrix[
E11 E12

ET
12 E22

]

∈ Rr,r is nonsingular, and the last block rows and block columns are of dimen-

sion u. Further, the quantities
(a) r = rankE, (rank)
(b) a = rank (T T AT ), (algebraic part)
(c) s = rank (V T T T AT ′), (strangeness)
(d) d = r − s, (differential part)
(e) u = n − r − a − s (undetermined unknowns/vanishing equations)

are invariant under the congruence relation (4.8).

Proof. Following the proof of Theorem 4.3 we have the following sequence of congruence
transformations

(E,A) ∼









Σr 0 0
0 0 0
0 0 0



 ,





A11 A12 A13

AT
12 Σa 0

AT
13 0 0







 , with R = 0,

∼









Σr 0 0
0 0 0
0 0 0



 ,





0 A12 A13

AT
12 Σa 0

AT
13 0 0







 , with R =





Σ−1
r A11 0 0
0 0 0
0 0 0



 ,

which is congruent to the matrix pair in (4.9). The invariance of the local quantities can
be shown in the same way as in the proof of Theorem 4.3. For two matrix pairs (Ei, Ai),
i = 1, 2 that are local congruent, i.e., there exist a nonsingular matrix P and a matrix R
such that

E2 = P T E1P, A2 = P T A1P − P TE1R,

we consider the corresponding bases T2, T ′
2 and V2 associated with (E2, A2). Then, similar

as in the proof of Theorem 4.3, the matrices

T1 = PT2, T ′
1 = PT ′

2, V T
1 = V T

2

form the corresponding bases associated with (E1, A1), since

k = dim corange(T T
2 A2T2) = dim corange(T T

2 P T A1PT2 − T T
2 P T E1RT2)

= dim corange(T T
1 A1T1).
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With
rank(T T

2 A2T2) = rank(T T
2 P T A1PT2 − T T

2 P T E1RT2) = rank(T T
1 A1T1)

and

rank(V T
2 T T

2 A2T
′
2) = rank(V T

2 T T
2 P T A1PT ′

2 − V T
2 T T

2 P T E1RT ′
2) = rank(V T

1 T T
1 A1T

′
1),

we get the invariance of a and s and therefore also of d and u.

If we also allow non-orthogonal transformations, then we can reduce the matrix pair further,
see e.g. [73]. For the pair of matrix-valued functions (4.5) the local condensed form (4.9)
can be computed for each fixed value t̂ ∈ I. Then, we obtain integer-valued functions
d, a, s, u : I → N0, and we assume that the regularity assumptions

d(t) ≡ d, a(t) ≡ a, s(t) ≡ s, u(t) ≡ u, for all t ∈ I (4.10)

hold, i.e., the ranks of the matrices and the sizes of the blocks in the local condensed
form (4.9) do not depend on t ∈ I. This restriction then allows for the application of the
following property of a symmetric matrix-valued function of constant rank.

Lemma 4.7. Let E ∈ Ck(I, Rn,n), k ∈ N0 ∪ {∞} be symmetric, with rank E(t) = r for
all t ∈ I. Then there exists a pointwise orthogonal matrix-valued function P ∈ Ck(I, Rn,n)
such that

P T (t)E(t)P (t) =

[
∆r(t) 0

0 0

]

where ∆r ∈ Ck(I, Rr,r) is pointwise nonsingular and symmetric for all t ∈ I.

Proof. The general non-symmetric version of the Theorem is proved e.g., in [82, Theorem
3.9] for complex matrix-valued functions or in [137, Theorem 2.1.4] for the real case. For
symmetric matrix-valued functions the result follows from [110].

In order to preserve the symmetry of a pair of matrix-valued functions under global con-
gruence transformation (4.6) we need to ensure that condition (4.7) holds. Therefore,
additionally we need the following Assumption and Lemma.

Assumption 4.8. Let E ∈ C(I, Rn,n) be symmetric, with rank E(t) = r for all t ∈ I.
There exists a constant matrix Q ∈ Rn,r such that the columns of Q form an orthogonal
basis of range E for all t ∈ I.

Lemma 4.9. Let E ∈ C1(I, Rn,n) be symmetric, with rank E(t) = r for all t ∈ I and
assume that Assumption 4.8 holds. Then there exists an orthogonal matrix P ∈ Rn,n such
that

P T E(t)P =

[
∆r(t) 0

0 0

]

, for all t ∈ I,

with pointwise nonsingular and symmetric ∆r ∈ C1(I, Rr,r).
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Proof. Due to Assumption 4.8, there exists a matrix Q ∈ Rn,r such that the columns of Q
form an orthogonal basis of rangeE for all t ∈ I. Then, we can find a matrix Q′ ∈ Rn,n−r

such that
[
Q Q′] is orthogonal and Q′ is a basis of corangeE(t̂) = kernelE(t̂) for each

t̂ ∈ I. Thus,
[
QT

Q′T

]

E(t̂)
[
Q Q′] =

[
∆r(t̂) 0

0 0

]

for each t̂ ∈ I, with pointwise nonsingular ∆r ∈ C1(I, Rr,r).

Using Lemma 4.9 we can derive the following global condensed form for pairs of symmetric
matrix-valued functions.

Theorem 4.10. Let the pair (E(t), A(t)) of matrix-valued function E,A ∈ C(I, Rn,n)
be sufficiently smooth and symmetric with rank E(t) = r for all t ∈ I. Suppose that
the regularity assumptions (4.10) hold and that E fulfills Assumption 4.8. Then the pair
(E(t), A(t)) is globally congruent to a pair of symmetric matrix-valued functions of the
form













∆r 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







,







A11 0 S13 0
0 ∆a 0 0

ST
13 0 0 0
0 0 0 0













,

r
a
s
u

(4.11)

where the matrix-valued functions ∆r ∈ C(I, Rr,r) and ∆a ∈ C(I, Ra,a) are pointwise non-
singular and S13 ∈ C(I, Rr,s) has pointwise full column rank.

Proof. We give a constructive proof using Lemma 4.7 and Lemma 4.9. First, we can
determine an orthogonal matrix P1 ∈ R

n,n such that

E1 := P T
1 EP1 =

[
∆r 0
0 0

]

, A1 := P T
1 AP1 =

[
A11 A12

AT
12 A22

]

,

where ∆r ∈ C(I, Rr,r) is symmetric and pointwise nonsingular. As rankA22 = a is constant
in I, we can determine a pointwise orthogonal matrix-valued function P2 ∈ C(I, Rn,n) such
that

E2 := P T
2 E1P2 =





∆r 0 0
0 0 0
0 0 0



 , A2 := P T
2 A1P2 − P T

2 E1Ṗ2 =





A11 A12 A13

AT
12 ∆a 0

AT
13 0 0



 ,

with pointwise nonsingular ∆a ∈ C(I, Ra,a) and E1Ṗ2 = 0 for all t ∈ I. Next, we can
eliminate the blocks A12 and AT

12 with a transformation P3 ∈ C(I, Rn,n) such that

E3 := P T
3 E2P3 =





∆r 0 0
0 0 0
0 0 0



 , A3 := P T
3 A2P3 − P T

3 E2Ṗ3 =





A11 0 A13

0 ∆a 0
AT

13 0 0



 ,
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where again E2Ṗ3 = 0 for all t ∈ I. Further, as rankA13 = s for all t ∈ I we can
find a pointwise orthogonal matrix-valued function P̂4 such that A13P̂4 =

[
S13 0

]
, with

S13 ∈ C(I, Rr,s) of pointwise full column rank. Choosing P4 accordingly, we get

E4 := P T
4 E3P4 =







∆r 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







,

A4 := P T
4 A3P4 − P T

4 E3Ṗ4 =







A11 0 S13 0
0 ∆a 0 0

ST
13 0 0 0
0 0 0 0







,

with E3Ṗ4 = 0 for all t ∈ I.

Under the assumptions of Theorem 4.10 we can now transform the symmetric pair (4.5)
to the global condensed form (4.11). The restrictions due to the regularity assumptions
(4.10) imply that the previous considerations can be applied only on a dense subset of the
given closed interval as has been discussed in Section 2.2.4.
In order to obtain a strangeness-free formulation we have to eliminate the ’strange’ coupled
parts by differentiating and eliminating certain parts of the system until we have s = 0
in the global condensed form (4.11). Let (Ẽ, Ã) be the pair of matrix-valued functions in
global condensed form (4.11). As rankS13(t) = s for all t ∈ I we can find a pointwise
orthogonal matrix function Q̂ ∈ C(I, Rr,r) such that we can decompose S13 into ST

13Q̂
T =

[
∆T

s 0
]

with pointwise nonsingular ∆s ∈ C(I, Rs,s). Setting P T =







Q̂ 0 0 0
0 Ia 0 0
0 0 Is 0
0 0 0 Iu







, we

get the congruent matrix pair

(P T ẼP, P T ÃP − P T ẼṖ )

=













Q̂∆rQ̂
T 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0







,







Q̂A11Q̂
T 0 Q̂S13 0

0 ∆a 0 0

ST
13Q̂

T 0 0 0
0 0 0 0






−







Q̂∆r
˙̂
QT 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0













.

Again, symmetry of the matrix pair is only preserved if Q̂∆r
˙̂

QT =
˙̂

Q∆rQ̂
T . If Assumption

4.8 holds also for S13, then Q̂ can be chosen as a constant matrix and we have
˙̂
Q = 0 such

that the resulting pair denoted by
















E11 E12 0 0 0
ET

12 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









A11 A12 0 ∆s 0
AT

12 A22 0 0 0
0 0 ∆a 0 0

∆T
s 0 0 0 0

0 0 0 0 0

















,
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where

[
E11 E12

ET
12 E22

]

= Q̂∆rQ̂
T is again symmetric. Further, we can eliminate certain blocks

via block Gaussian elimination to get the equivalent pair

















E11 E12 0 0 0
ET

12 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









0 0 0 ∆s 0
0 A22 0 0 0
0 0 ∆a 0 0

∆T
s 0 0 0 0

0 0 0 0 0

















. (4.12)

Note that for this transformations no requirement to keep symmetry is needed. The DAE
associated with the pair (4.12) can be written as

E11ẋ1 + E12ẋ2 = ∆sx4 + b1,

ET
12ẋ1 + E22ẋ2 = A22x2 + b2,

0 = ∆ax3 + b3,

0 = ∆T
s x1 + b4,

0 = b5.

(4.13)

Now, we can use the derivatives of the fourth equation in (4.13) to eliminate the terms
with ẋ1 in the first two equations to get

E12ẋ2 = ∆sx4 + b̃1,

E22ẋ2 = A22x2 + b̃2,

0 = ∆ax3 + b3,

0 = ∆T
s x1 + b4,

0 = b5,

(4.14)

where b̃1 = b1 + E11
d
dt

(
∆−T

s b4

)
, b̃2 = b2 + ET

12
d
dt

(
∆−T

s b4

)
. This step only affects the right

hand side such that the symmetry of each block matrix is preserved. But, the symmetry
of the overall system cannot be preserved after this elimination step due to the occurrence
of the block E12. In general, the existence and uniqueness of solutions of the system (4.14)

depend on the rank of

[
E12

E22

]

. If r = s, then the blocks E12 and E22 do not occur and the

system reduces after one differentiation and elimination step to a purely algebraic equation
such that the system is of strangeness index µ = 1. If E22 is invertible, then all information
concerning existence and uniqueness is available and no further steps are needed. Thus, if
r − s > 0 and E22 in (4.12) is nonsingular, the system (4.12) has strangeness index µ ≤ 1.
Assuming that E22 is nonsingular we can eliminate the block E12 and get the following
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system

0 = ∆sx4 − E12E
−1
22 A22x2 + b̃1 − E12E

−1
22 b̃2,

E22ẋ2 = A22x2 + b̃2,

0 = ∆ax3 + b3,

0 = ∆T
s x1 + b4,

0 = b5.

(4.15)

Further, we can eliminate the term E12E
−1
22 A22 with a block Gaussian elimination using the

invertible block ∆s to get a strangeness-free system which is again symmetric. Rearanging
and renaming the matrices and vector-valued functions finally yields the strangeness-free
symmetric system

Ê11(t) ˙̂x1 = Â11(t)x̂1 + b̂1(t),

0 = Â22(t)x̂2 + b̂2(t), (4.16)

0 = b̂3(t),

consisting of dµ = r− s differential equations, aµ = a + 2s algebraic equations, and uµ = u

vanishing equations, where Ê11 and Â22 are nonsingular. Here, we have

Ê11 = E22, Â11 = A22, Â22 =





∆a 0 0
0 0 ∆s

0 ∆T
s 0



 ,

x̂1 = x2, x̂2 =





x3

x1

x4 − ∆−1
s E12E

−1
22 A22x2



 , x̂3 = x5,

b̂1 = b̃2, b̂2 =





b3

b̃1 − E12E
−1
22 b̃2

b4



 , b̂3 = b5.

Example 4.11. We consider the symmetric linear differential-algebraic system




1 0 0
0 t 0
0 0 0









ẋ1

ẋ2

ẋ3



 =





0 0 t
0 1 0
t 0 0









x1

x2

x3



+





b1

b2

b3



 ,

in an interval I = [t0, t1] with t0 > 0. This system has strangeness index µ = 1 and
is already given in the form (4.12), where E22 = t is nonsingular for all t 6= 0. The
differentiation-and-elimination step yields the strangeness-free system





0 0 0
0 t 0
0 0 0









ẋ1

ẋ2

ẋ3



 =





1
t

0 t
0 1 0
t 0 0









x1

x2

x3



+





b1 + 1
t
ḃ3

b2

b3



 ,

which is again symmetric.
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From the previous discussion it follows that for linear differential-algebraic systems with
symmetric coefficients, even under Assumption 4.8, a structure preserving strangeness-free
formulation (4.16) in general only exists if the strangeness index is µ ≤ 1. For systems with
strangeness index µ > 1 the inverse E−1

22 does not exist and usually we cannot preserve the
symmetry of the strangeness-free system in this case.

Example 4.12. Consider the linear symmetric differential-algebraic system










0 0 t 0 0 0
0 0 0 t 0 0
t 0 0 0 0 0
0 t 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6











=











0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0





















x1

x2

x3

x4

x5

x6











+











b1

b2

b3

b4

b5

b6











,

in an interval I = [t0, t1] with t0 > 0 and b ∈ C2([t0, t1], R
6). This system has strangeness

index µ = 2 and Assumption 4.8 is fulfilled. The corresponding matrix pair is already in

the form (4.12) and E22 =

[
0 0
0 0

]

is clearly singular. Differentiating the last two equations

of the system and inserting the derivative into the third and fourth equation yields the
corresponding matrix pair





















0 0 t 0 0 0
0 0 0 t 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











,











0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0





















.

In a second step differentiating the third equation and eliminating the corresponding deriva-
tive in the first equation yields the matrix pair





















0 0 0 0 0 0
0 0 0 t 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











,











0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0





















.

The second matrix is still symmetric, but the symmetry of the first matrix cannot be
preserved.

From the previous discussion we get another result.

Corollary 4.13. Consider a linear differential-algebraic equation (2.5) with symmetric
coefficient matrices (E(t), A(t)), where E(t) is positive semidefinite for all t ∈ I. Then the
system has strangeness index µ ≤ 1.
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Proof. The proof follows directly from the previous discussion. If E is positive semidefinite

then the matrix

[
E11 E12

ET
12 E22

]

in (4.12) is positive definite and thus E22 is positive definite

and therefore nonsingular.

In conclusion, we can see that we can obtain a structure preserving condensed form (4.11)
for symmetric systems only under the strong Assumption 4.8 and a strangeness-free sys-
tem (4.16) only for symmetric differential-algebraic systems of s-index µ ≤ 1, also under
Assumption 4.8. This is not very convenient, since too many restrictions and assumptions
have to be made in order to preserve the structure using global congruence transforma-
tions (4.6). Other index reduction techniques can be applied that allow to preserve the
symmetry of the system as will be seen in Section 4.4.

4.3 Condensed Forms for Self-Adjoint Differential-Algebraic

Equations

We have seen in Section 4.2 that a structure preserving condensed form for symmetric pairs
of matrix-valued functions under global congruence transformations only exists under the
strong Assumption 4.8. It turns out that for linear time-dependent differential-algebraic
systems a better structure to consider is self-adjointness of the system, as arises e.g. in
linear-quadratic optimal control problems (1.3) or in gyroscopic mechanical systems, since
global congruence transformations preserve the self-adjointness of the system.
In this section we consider linear differential-algebraic systems of the form (2.5), with
sufficiently smooth matrix-valued functions E,A ∈ C(I, Rn,n) on an interval I = [t0, t1]. In
order to define the adjoint equation of a linear DAE we consider the differential-algebraic
operator

D : X → Y, Dx(t) = E(t)ẋ(t) − A(t)x(t) (4.17)

according to (2.5), with the function spaces

X = {x ∈ C0(I, Rn) |E+Ex ∈ C1(I, Rn), E+Ex(t0) = 0},

Y = C0(I, Rn),
(4.18)

where E+ denotes the Moore-Penrose pseudo-inverse of E (see Definition 2.17), see also [82,
Section 3.4]. At first, we assume that the pair (E,A) is regular and strangeness-free. Note
that the function space X corresponds to the solution space of the DAE using the concept
of strong solutions (see Definition 5.14). Further, we assume without loss of generality that
we have homogeneous initial conditions. This can always be achieved by shifting x(t) to
x(t)−x0 and changing the inhomogeneity b(t) to b(t)+A(t)x0. Furthermore, a sesquilinear
form on Y × Y is defined by

(f, g) =

∫

I

fT (t)g(t)dt (4.19)

for f, g ∈ C0(I, Rn).
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Definition 4.14 (Sesquilinear form). Consider two real vector spaces X, X⋆. A mapping
(., .) : X × X⋆ → R is called a sesquilinear form if

(a) (x, x⋆ + y⋆) = (x, x⋆) + (x, y⋆),

(b) (x, αx⋆) = α(x, x⋆),

(c) (x + y, x⋆) = (x, x⋆) + (y, x⋆),

(d) (αx, x⋆) = α(x, x⋆),

for all x, y ∈ X, x⋆, y⋆ ∈ X⋆ and α ∈ R.

Then, we can define a conjugate operator corresponding to the differential-algebraic oper-
ator D, see also [82].

Definition 4.15 (Conjugate operator). Given a linear differential-algebraic operator
D : X → Y as in (4.17). Then a conjugate operator is defined as D⋆ : Y⋆ → X⋆ such that

(Dx, y) = (x,D⋆y) for all x ∈ X, y ∈ Y
⋆

with sesquilinear form (., .) as in (4.19) and function spaces

X
⋆ = C0(I, Rn),

Y
⋆ = {y ∈ C0(I, Rn) |EE+y ∈ C1(I, Rn), EE+y(t1) = 0}.

(4.20)

Theorem 4.16. The differential-algebraic operator D : X → Y defined in (4.17) with
regular and strangeness-free pair (E,A) has a unique conjugate operator D⋆ : Y⋆ → X⋆

with function spaces defined as in (4.20) that is given by

D⋆y = −
d

dt
(ET y) − AT y.

Proof. We have

(Dx, y) =

∫

I

(Eẋ − Ax)T y dt

=

∫

I

(ẋT ET y − xT AT y) dt

=

∫

I

(
d

dt
(xTET y) − xT ĖT y − xT ET ẏ − xT AT y

)

dt

=
[
xT ET y

]t1

t0
+

∫

I

xT

(

−
d

dt
(ET y) − AT y

)

dt

= (x,D⋆y),

where
[
xT ET y

]t1

t0
= 0, since

xT ET y = xT (EE+E)T y = xT E+EET y = xT ET EE+y
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due to the properties (2.1) of the Moore-Penrose pseudo-inverse (see Definition 2.17) and

x(t1)
TE(t1)

T y(t1) = xTET EE+y(t1) = 0,

x(t0)
TE(t0)

T y(t0) = xT (t0)E
+EET y(t0) = 0,

due to the homogenous initial conditions in X and Y⋆. To show uniqueness we assume that
there exists another conjugate D̃⋆ for D. Then it holds that

(Dx, y) = (x,D⋆y) for all x ∈ X, y ∈ Y
⋆,

as well as
(Dx, y) = (x, D̃⋆y) for all x ∈ X, y ∈ Y

⋆.

Thus,
0 = (x, D̃⋆y) − (x,D⋆y) for all x ∈ X, y ∈ Y

⋆,

and therefore
D̃⋆y − D⋆y = 0 for all y ∈ Y

⋆.

Due to Theorem 4.16, the differential-algebraic operator D belonging to a regular and
strangeness-free pair of matrix-valued functions (E,A) has a unique conjugate operator
D⋆ that can be described by the pair (−ET , (A + Ė)T ). For arbitrary pairs of matrix-
valued functions we can now introduce the following terminology.

Definition 4.17 (Adjoint). For a pair of matrix-valued functions (E,A) with E ∈
C1(I, Rm,n) and A ∈ C0(I, Rm,n), the pair (−ET , (A + Ė)T ) is called the adjoint of (E,A).

Due to Definition 4.17, the linear differential-algebraic equation

−ET ẏ = (A + Ė)T y + g(t), (4.21)

with g ∈ C(I, Rm) is also called the adjoint differential-algebraic equation of (2.5), see also
[11, 83].

Lemma 4.18. The adjoint of a pair of matrix-valued functions (E,A) with E ∈ C1(I, Rm,n)
and A ∈ C0(I, Rm,n) has itself an adjoint which corresponds to (E,A).

Proof. As −ET ∈ C1(I, Rn,m) and (A + Ė)T ∈ C0(I, Rn,m) the adjoint of (E,A) has itself
an adjoint, which is given by

(−(−ET )T , ((A + Ė)T + (−ĖT ))T ) = (E,A).

Global equivalence transformations of the form (2.11) and the transfer to the adjoint are
commutative. In particular, the adjoints of equivalent pairs of matrix-valued functions are
again equivalent.
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Theorem 4.19. Let (E,A) be a pair of matrix-valued functions with E ∈ C1(I, Rm,n) and
A ∈ C0(I, Rm,n) and consider the globally equivalent pair

(Ẽ, Ã) = (PEQ,PAQ − PEQ̇),

where P ∈ C1(I, Rm,m) and Q ∈ C1(I, Rn,n) are pointwise nonsingular. Then, the adjoints
of (E,A) and (Ẽ, Ã) are again globally equivalent.

Proof. The adjoint of (Ẽ, Ã) is given by

(−ẼT , (Ã + ˙̃E)T ) = (−(PEQ)T , (PAQ − PEQ̇ + d
dt

(PEQ))T )

= (−QTET P T , QT AT P T + QT ĖT P T + QTET Ṗ T ).

On the other hand, equivalence transformation of the adjoint (−ET , (A + Ė)T ) of (E,A)
with QT and P T yields

(−ET , (A + Ė)T ) ∼ (−QTET P T , QT (A + Ė)T P T + QT ET Ṗ T )

= (−QTET P T , QT AT P T + QT ĖT P T + QTET Ṗ T ).

Now, we can define self-adjointness for pairs of matrix-valued functions.

Definition 4.20 (Self-adjointness). A pair of matrix-valued functions (E,A) with E ∈
C1(I, Rn,n) and A ∈ C0(I, Rn,n) is called self-adjoint if it holds that

E = −ET , A = (A + Ė)T for all t ∈ I.

A linear differential-algebraic system (2.5) is called self-adjoint if the corresponding matrix
pair (E,A) is self-adjoint.

Self-adjoint matrix pairs arise for example in linear-quadratic optimal control problems
(1.3), or in gyroscopic mechanical systems.

Example 4.21. Consider a constraint gyroscopic mechanical system

Mp̈ + Cṗ + Kp = f(t) + GT λ,

Gp = 0,

with M,C,K ∈ R
n,n and M = MT positive definite, C = −CT and K = KT positive

definite. Then, a structure preserving first order formulation introducing the new variable
v = ṗ is given by the second companion form





C M 0
−M 0 0

0 0 0









ṗ
v̇

λ̇



 =





−K 0 GT

0 −M 0
G 0 0









p
v
λ



+





f(t)
0
0



 ,

and this system is self-adjoint.
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In contrast to the symmetric structure global congruence transformations of the form (4.6)
preserve the self-adjoint structure of a pair of matrix-valued functions.

Lemma 4.22. Let a pair of matrix-valued functions (E,A) with E,A ∈ C(I, Rn,n) be
sufficiently smooth and self-adjoint. Then for each pointwise nonsingular matrix-valued
function P ∈ C1(I, Rn,n) the global congruent pair

(Ẽ, Ã) = (P TEP,P T AP − P T EṖ )

is also self-adjoint.

Proof. It holds that

ẼT = P T ET P = −P T EP = −Ẽ,

as well as

(Ã + ˙̃E)T = (P T AP − P T EṖ )T + d
dt

(P T EP )T

= P T AT P − Ṗ T ET P + Ṗ T ET P + P T ĖT P + P T ET Ṗ

= P T (A + Ė)T P + P T ET Ṗ

= P T AP − P T EṖ = Ã.

To derive a global condensed form for self-adjoint pairs of matrix-valued functions we use
the following factorization for skew-symmetric matrix-valued functions.

Lemma 4.23. Let A ∈ Ck(I, Rn,n), k ∈ N0 ∪ {∞} be skew-symmetric, i.e., A = −AT ,
with rank A(t) = r for all t ∈ I. Then there exists a pointwise orthogonal matrix-valued
function P ∈ Ck(I, Rn,n) such that

P T (t)A(t)P (t) =

[
Σ(t) 0

0 0

]

,

with pointwise nonsingular and skew-symmetric Σ ∈ Ck(I, Rr,r).

Proof. The Schur decomposition for skew-symmetric matrices is given in [54]. Then, the
Lemma follows in the same way as Theorem 2.25 and Lemma 4.9.

We can derive a local condensed form for self-adjoint pairs of matrix-valued functions
similar as in Theorem 4.6 with the corresponding invariant characteristic quantities.

Theorem 4.24. Let E,A ∈ R
n,n and (E,A) be self-adjoint. Further, let

T be a basis of kernelE,

T ′ be a basis of cokernelE = rangeE,

V be a basis of corange (T T AT ).
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Then there exists an orthogonal matrix P ∈ Rn,n and a matrix R ∈ Rn,n such that the
matrix pair (E,A) is locally congruent to a self-adjoint matrix pair of the form

















E11 E12 0 0 0
−ET

12 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









0 0 A13 Σs 0
0 0 A23 0 0

AT
13 AT

23 Σa 0 0
Σs 0 0 0 0
0 0 0 0 0

















,

s
d
a
s
u

(4.22)

where the matrices Σa ∈ Ra,a and Σs ∈ Rs,s are nonsingular and diagonal, the matrix[
E11 E12

−ET
12 E22

]

∈ Rr,r is nonsingular, and the last block rows and block columns are of

dimension u. Further, the quantities
(a) r = rankE, (rank)
(b) a = rank (T T AT ), (algebraic part)
(c) s = rank (V T T T AT ′), (strangeness)
(d) d = r − s, (differential part)
(e) u = n − r − a − s (undetermined unknowns/vanishing equations)

are invariant under the congruence relation (4.8).

Proof. The proof is analogous to the proof of Theorem 4.6.

We can also derive a global condensed form for self-adjoint pairs of matrix-valued functions
under the regularity assumptions (4.10).

Theorem 4.25. Let the pair (E,A) of matrix-valued functions E,A ∈ C(I, Rn,n) be suffi-
ciently smooth and self-adjoint with rank E(t) = r for all t ∈ I. Suppose that a regularity
assumption as in (4.10) holds. Then the pair (E,A) is globally congruent to a self-adjoint
pair of matrix-valued functions of the form

















E11 E12 0 0 0
E21 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,









A11 A12 0 Σs 0
0 A22 0 0 0
0 0 Σa 0 0

ΣT
s 0 0 0 0
0 0 0 0 0

















,

s
d
a
s
u

(4.23)

where all blocks are again matrix-valued functions, the matrices Σa = ΣT
a and Σs are

pointwise nonsingular, and

[
E11 E12

E21 E22

]

is pointwise nonsingular and skew-symmetric.

Proof. Again, we give a constructive proof. First, we determine a pointwise orthogonal
matrix-valued function P1 ∈ C(I, Rn,n) such that

E1 := P T
1 EP1 =

[
Σr 0
0 0

]

, A1 := P T
1 AP1 − P T

1 EṖ1 =

[
A11 A12

A21 A22

]

,
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where Σr ∈ C(I, Rr,r) is skew-symmetric and pointwise nonsingular and the pair (E1, A1)
is again self-adjoint. As rankA22 = a is constant in I, there exists a pointwise orthogonal
matrix-valued function Q ∈ C(I, Rn−r,n−r) such that

QTA22Q =

[
Σa 0
0 0

]

,

where Σa ∈ C(I, Ra,a) is pointwise nonsingular and symmetric. Defining P2 accordingly,
we get

E2 := P T
2 E1P2 =





Σr 0 0
0 0 0
0 0 0



 , A2 := P T
2 A1P2 − P T

2 E1Ṗ2 =





A11 A12 A13

A21 Σa 0
A31 0 0



 .

We can now eliminate the blocks A12 and A21 with a nonsingular transformation P3 using
the block Σa such that

E3 := P T
3 E2P3 =





Σr 0 0
0 0 0
0 0 0



 , A3 := P T
3 A2P3 − P T

3 E2Ṗ3 =





A11 0 A13

0 Σa 0
A31 0 0



 .

As rank A13 = s for all t ∈ I and A13 = AT
31, we can find pointwise orthogonal matrix-valued

functions P̂4 ∈ C(I, Rn−r−a,n−r−a) and Q̂4 ∈ C(I, Rr,r) such that Q̂4A13P̂
T
4 =

[
Σs 0
0 0

]

with

Σs ∈ C(I, Rs,s) pointwise nonsingular. Setting P4 accordingly, we get

E4 := P T
4 E3P4 =









E11 E12 0 0 0
E21 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,

A4 := P T
4 A3P4 − P T

4 E3Ṗ4 =









Ã11 Ã12 0 Σs 0

Ã21 Ã22 0 0 0
0 0 Σa 0 0

ΣT
s 0 0 0 0
0 0 0 0 0









,

where Q̂4ΣrQ̂
T
4 =

[
E11 E12

E21 E22

]

is pointwise nonsingular and skew-symmetric and Q̂4A11Q̂
T
4 −

Q̂4Σr
˙̂

QT
4 =

[
Ã11 Ã12

Ã21 Ã22

]

. Further, we can eliminate the block Ã21 with a nonsingular trans-

formation P5 to get

E5 := P T
5 E4P5 =









E11 E12 0 0 0
E21 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









,
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A5 := P T
5 A4P5 − P T

5 E4Ṗ5 =









Ã11 Ã12 + ÃT
21 0 Σs 0

0 Ã22 0 0 0
0 0 Σa 0 0

ΣT
s 0 0 0 0
0 0 0 0 0









,

where Ã12 + ÃT
21 = −Ė12. The pair (E5, A5) is still self-adjoint as all congruence transfor-

mations preserve the structure.

Under the assumptions of Theorem 4.25, we can now transform a self-adjoint pair of matrix-
valued functions (E,A) into the global condensed form (4.23). The DAE associated with
the pair in global condensed form (4.23) can be written as

E11ẋ1 + E12ẋ2 = A11x1 + A12x2 + Σsx4 + b1,

E21ẋ1 + E22ẋ2 = A22x2 + b2,

0 = Σax3 + b3,

0 = ΣT
s x1 + b4,

0 = b5.

In order to obtain a strangeness-free formulation we have to eliminate the strangeness
parts. To do this, we use again the derivative of the fourth equation to eliminate the terms
with ẋ1 in the first two equations and get

E12ẋ2 = A11x1 + A12x2 + Σsx4 + b̃1,

E22ẋ2 = A22x2 + b̃2,

0 = Σax3 + b3,

0 = ΣT
s x1 + b4,

0 = b5,

(4.24)

where b̃1 = b1 + E11
d
dt

(
(ΣT

s )−1b4

)
, and b̃2 = b2 + E21

d
dt

(
(ΣT

s )−1b4

)
. Due to the occurrence

of the block E12, the self-adjoint structure of the system is destroyed. In the same way as
in Section 4.2, if E22 is nonsingular, i.e., if the strangeness index is µ ≤ 1, we can eliminate
the block E12 and get the equivalent system

0 = A11x1 + (A12 − E12E
−1
22 A22)x2 + Σsx4 + b̃1 − E12E

−1
22 b̃2,

E22ẋ2 = A22x2 + b̃2,

0 = Σax3 + b3,

0 = ΣT
s x1 + b4,

0 = b5.

(4.25)

We can further eliminate the term A12 − E12E
−1
22 A22 via block Gaussian elimination using

the invertible block Σs and get a strangeness-free system which is again self-adjoint. Rear-
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anging and renaming the matrices and vector-valued functions finally yields the strange-
ness-free self-adjoint differential-algebraic system

Ê11(t) ˙̂x1 = Â11(t)x̂1 + b̂1(t),

0 = Â22(t)x̂2 + b̂2(t), (4.26)

0 = b̂3(t),

consisting of dµ differential equations, aµ algebraic equations, and uµ vanishing equations,
with

Ê11 = E22, Â11 = A22, Â22 =





Σa 0 0
0 0 Σs

0 ΣT
s 0



 ,

x̂1 = x2, x̂2 =





x3

x1

x4 − Σ−1
s E12E

−1
22 A22x2



 , x̂3 = x5,

b̂1 = b̃2, b̂2 =





b3

b̃1 − E12E
−1
22 b̃2

b4



 , b̂3 = b5.

In the same way as in the case of symmetric matrix pairs, a structure preserving strange-
ness-free formulation (4.26) for self-adjoint differential-algebraic systems in general only
exists if the strangeness index is µ ≤ 1. For systems with strangeness index µ > 1 in
general we cannot preserve the self-adjointness of the strangeness-free system. Counter-
examples similar to Example 4.12 can be found for self-adjoint matrix pairs.

Remark 4.26. For constant coefficient systems of the form (2.6) a matrix pair (E,A)
is self-adjoint if it is skew-symmetric/symmetric, i.e., E = −ET and A = AT . Similar
results as obtained in Section 4.1 can be derived analogously for skew-symmetric/symmetric
matrix pairs as strong congruence (4.2) preserve this structure. A local condensed form as
given in Theorem 4.6 can be obtained in the same way. Structured staircase forms for
skew-symmetric/symmetric matrix pairs have also been considered in [20].

Remark 4.27. Linear-quadratic optimal control problems as in (1.3) have been the moti-
vation for considering self-adjoint differential-algebraic systems. The solution strategies for
these systems actually lead to boundary value problems of the form (1.3c) with two-point
boundary conditions. The classical approach to solve these boundary value problems is the
use of Riccati differential-algebraic equations, see e.g. [77, 83]. First, index reduction and
feedback regularization are used to transform the system to a regular, strangeness-free con-
trol problem and then the Riccati approach is used on the reduced system. If the reduced
problem can be obtained in a structure preserving way, then the solution of the Riccati
equations can be adapted to the self-adjoint structure.
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4.4 Structure Preserving Index Reduction by Minimal Extension

In the numerical solution of differential-algebraic equations it was suggested in [22, 75,
76, 82] to transform the system into an equivalent strangeness-free differential-algebraic
system. The basic idea of the general approach described in Section 2.2.2 is to consider the
original system together with a sufficient number of its derivatives as a derivative array and
to derive locally at every integration step an equivalent system of strangeness index µ = 0
that has the same solution set as the original system, but contains all the information on
the manifold in which the dynamics of the system take place. In principle, this general
approach provides a uniform framework for the numerical solution of differential-algebraic
systems, but it has high computational complexity since from the derivative array certain
nullspaces of the Jacobians and associated projections onto these nullspaces have to be
computed at every integration step. Further, a particular structure of the system is not
reflected in the general approach. Another index reduction technique, the so-called index
reduction by minimal extension described in [80], can be applied that uses the introduction
of new variables to reduce the index of the differential-algebraic system. In the following,
we will see that this can be done in a structure preserving way. This approach has also
been used for the index reduction of electrical circuit equations where it allows to preserve
certain symmetry structures in the reduced equations, see [6]. In the following, we will
use these ideas to obtain a structure preserving index reduction method for self-adjoint
differential-algebraic systems.

In this section, we consider a self-adjoint initial value problem

E(t)ẋ = A(t)x + b(t), x(t0) = x0, (4.27)

with E,A ∈ C([t0, tf ], R
n,n), E = −ET , A = (A+Ė)T of strangeness index µ = 1. Further,

we assume that the system is already given in global condensed form (4.23)









E11 E12 0 0 0
E21 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5









=









A11 A12 0 Σs 0
0 A22 0 0 0
0 0 Σa 0 0

ΣT
s 0 0 0 0
0 0 0 0 0

















x1

x2

x3

x4

x5









+









b1

b2

b3

b4

b5









,

where E22 is nonsingular since µ = 1. Via a global congruence transformation with a
matrix P we can eliminate the blocks E12 and E21 and get the equivalent system









Ẽ11 0 0 0 0
0 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

















˙̃x1

˙̃x2

˙̃x3

˙̃x4

˙̃x5









=









Ã11 Ã12 0 Σs 0

Ã21 A22 0 0 0
0 0 Σa 0 0

ΣT
s 0 0 0 0
0 0 0 0 0

















x̃1

x̃2

x̃3

x̃4

x̃5









+










b̃1

b̃2

b̃3

b̃4

b̃5










, (4.28)
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with

Ẽ11 = E11 − E12E
−1
22 E21,

Ã11 = A11 − (A12 − E12E
−1
22 A22)E

−1
22 E21,

Ã12 = A12 − E12E
−1
22 A22,

Ã21 = −A22E
−1
22 E21 + E22

d
dt

(E−1
22 E21),

and corresponding transformed x̃ = Px and b̃ = Pb, which is again self-adjoint, i.e.,

Ẽ11 = −ẼT
11, Ã11 = ÃT

11 + ˙̃ET
11, Ã12 = ÃT

21, Ã21 = ÃT
12. (4.29)

The equations that have to be differentiated to reduce the index of the system are given
by the fourth block row of system (4.28). Differentiating these equations and adding the
derivatives to the system we obtain the reduced derivative array











Ẽ11 0 0 0 0
0 E22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Is 0 0 0 0



















˙̃x1

˙̃x2

˙̃x3

˙̃x4

˙̃x5









=











Ã11 Ã12 0 Σs 0

Ã21 A22 0 0 0
0 0 Σa 0 0

ΣT
s 0 0 0 0
0 0 0 0 0
0 0 0 0 0



















x̃1

x̃2

x̃3

x̃4

x̃5









+












b̃1

b̃2

b̃3

b̃4

b̃5

−b̃6












, (4.30)

with b̃6 = d
dt

(Σ−T
s b̃4). Now, we introduce a new variable x6 to replace every occurrence of

˙̃x1 in (4.30) and thus reduces the index of the system. We therefore obtain the extended
system











0 0 0 0 0 0
0 E22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















˙̃x1

˙̃x2

˙̃x3

˙̃x4

˙̃x5

ẋ6











=











Ã11 Ã12 0 Σs 0 −Ẽ11

Ã21 A22 0 0 0 0
0 0 Σa 0 0 0

ΣT
s 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 Is





















x̃1

x̃2

x̃3

x̃4

x̃5

x6











+












b̃1

b̃2

b̃3

b̃4

b̃5

b̃6












. (4.31)

In order to preserve the self-adjoint structure we have to eliminate the block Ẽ11 in (4.31)
using the last equation to get











0 0 0 0 0 0
0 E22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















˙̃x1

˙̃x2

˙̃x3

˙̃x4

˙̃x5

ẋ6











=











Ã11 Ã12 0 Σs 0 0

Ã21 A22 0 0 0 0
0 0 Σa 0 0 0

ΣT
s 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Is





















x̃1

x̃2

x̃3

x̃4

x̃5

x6











+












b̄1

b̃2

b̃3

b̃4

b̃5

b̃6












,
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with b̄1 = b̃1 + Ẽ11b̃6. We have Ã11 = ÃT
11 + ˙̃ET

11 from (4.29), but since the block Ẽ11 has
been eliminated, we also have to eliminate the block Ã11 using the nonsingular block ΣT

s

in order to preserve the self-adjoint structure. We finally get










0 0 0 0 0 0
0 E22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















˙̃x1

˙̃x2

˙̃x3

˙̃x4

˙̃x5

ẋ6











=











0 Ã12 0 Σs 0 0

Ã21 A22 0 0 0 0
0 0 Σa 0 0 0

ΣT
s 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Is





















x̃1

x̃2

x̃3

x̃4

x̃5

x6











+












b̂1

b̃2

b̃3

b̃4

b̃5

b̃6












, (4.32)

with b̂1 = b̃1 + Ẽ11b̃6 − Ã11Σ
−T
s b̃4, and this system is strangeness-free and self-adjoint.

Lemma 4.28. Let the differential-algebraic system in global condensed form (4.23) have
strangeness index µ = 1. Then the extended system (4.32) has strangeness index µ = 0.

Proof. Following Theorem 4.24, we can compute matrices T and V whose columns span
the nullspaces of Ẽ and T T ÃT where Ẽ and Ã are the extended matrices in (4.32). Possible
choices for T and V are

T =











Is 0 0 0 0 0
0 0 0 0 0 0
0 0 Ia 0 0 0
0 0 0 Is 0 0
0 0 0 0 Iu 0
0 0 0 0 0 Is











, V =











0 0 0
Id 0 0
0 0 0
0 0 0
0 Iu 0
0 0 Is











.

Further, let T ′ =
[
0 Id 0 0 0 0

]T
complete T to a nonsingular matrix. It follows that

V T T T ÃT ′ = 0, i.e., the extended system (4.32) has strangeness index µ = 0.

Note that this approach can also be applied in the case of linear symmetric differential-
algebraic equations of strangeness-index µ = 1 as considered in Section 4.2 in an analogous
way.

4.5 Future Work

In the previous section we have seen that a structure preserving strangeness-free form
for symmetric as well as self-adjoint linear DAEs only exists if the strangeness-index of
the system is lower or equal to 1. For symmetric systems we need in addition strong as-
sumptions on the coefficient matrices, in order to be able to obtain a structure preserving
condensed form. It does not seem to be possible to lessen these assumptions while preserv-
ing the symmetric structure using global congruence transformations. Nevertheless, the
index reduction by minimal extension that allows the formulation of a structure preserving
strangeness-free system for self-adjoint systems of index µ = 1, can also be applied to
linear symmetric systems of index µ = 1 without the need of Assumption 4.8. All obtained
results can also be extended to linear DAEs with Hermitian coefficient matrices, see [153].



Chapter 5

Switched Differential-Algebraic Systems

A particular feature of many complex dynamical systems modeled by DAEs is that they are
switched systems or hybrid systems, i.e., the mathematical model itself may change with
time, depending on certain indicators. This in often an artifact from the modeling, as fast
nonlinear phenomena of physical systems are often approximated resulting in piecewise
continuous systems with discrete transitions. Switched systems also arise naturally in
control systems where the value of a control switches.
Typical examples for switched systems are electronic circuits, where different device models
are used for different frequency ranges or switching elements like diodes or electric switches
are used.

Example 5.1 (Boost converter). We consider the boost converter given in Figure 5.1
consisting of a capacitor with capacitance C, an ideal diode D, a voltage source Vi, an
inductor with inductance L, a resistor with resistance R, and an ideal switch S. Depending

Vi C

L

R

D

S

Figure 5.1: The boost converter

on the states of the diode and of the switch we can distinguish four cases:

1. the switch S is open and the diode D is conducting,

2. the switch S is closed and the diode D is blocking,

3. the switch S is open and the diode D is blocking,

4. the switch S is closed and the diode D is conducting.

Let iD, iS, iL, iC , and iR denote the currents through the diode, switch, inductance, ca-
pacitance, and resistance respectively, and vD, vS, vL, vC , and vR the voltages across the
corresponding elements. If the switch is open we have iS = 0, and if the switch S is closed

137
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then vS = 0. In the same way, if the diode D is conducting we have vD = 0, and if the
diode is blocking then iD = 0. Using the relations

vR(t) = RiR(t), vL(t) = L
d

dt
iL(t), iC(t) = C

d

dt
vC(t),

and Kirchhoff’s current and voltage laws the circuit equations are given by

Cv̇C = iD − iR,

Li̇L = vS − Vi,

0 = vD + vC + vS,

0 = RiR − vC ,

0 = iS + iL − iD,

(5.1)

together with the algebraic constraints







iS = 0, vD = 0 in mode 1,

vS = 0, iD = 0 in mode 2,

iS = 0, iD = 0 in mode 3,

vS = 0, vD = 0 in mode 4.

(5.2)

The system switches between the different modes based on the states of the diode and the
switch. That means, starting e.g. in mode 1, the system switches to another mode either
if the current through the diode iD becomes negative (switch to mode 3), or if the switch
is closed (switch to mode 4).

Another important class of applications that display switching or hybrid behavior are
mechanical systems with dry friction [34, 88], impact phenomena, or structure varying
systems with changing number of degrees of freedom, e.g., robot manipulators, or automatic
gear-boxes [60].

Example 5.2. (See [34]) Multibody systems with dry friction between the bodies in contact
are usually modeled by the Coulomb friction law. Here, the friction force F is assumed to
be proportional to the normal force FN on the surface between the bodies in the contact
point, i.e., ‖F‖ = µF‖FN‖, where µF > 0 is the coefficient of friction which depends on
material properties. The friction force is directed tangential to the friction surface and is
opposite to the direction of motion of the body, i.e.,

F = −µF‖FN‖c(p) sign(c(p)T ṗ),

where c(p) is a unit vector parallel to the friction surface and c(p)T ṗ describes the relative
tangential velocity at the contact point, see Figure 5.2. If the friction surface is modeled by
an algebraic equation g(p) = 0 (this is also called the contact condition), then the normal
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FN

cT ṗ
F

Figure 5.2: Mechanical systems with dry friction

force equals the constraint force, i.e., FN = G(p)T λ with G(p) = ∂g(p)
∂p

, and the equations
of motion are given by

Mp̈ = fa(p, ṗ) − G(p)T λ − µF‖FN‖c(p) sign(c(p)T ṗ),

0 = g(p).

Dry friction models usually exhibit two distinct modes: stiction or static friction and
sliding or kinetic friction. During static friction the tangential contact force F maintains
zero relative velocity between the contacting bodies. The bodies stick together and the
friction force F is bounded by the equation ‖F‖ ≤ µs‖FN‖, where µs > 0 is now the
coefficient of static friction. On the other hand, in kinetic friction the relative contact
velocity is non-zero and the kinetic friction force F has constant magnitude and is directly
opposing the sliding velocity with ‖F‖ = µk‖FN‖, with coefficient of kinetic friction µk.
In this case the bodies in contact are in relative motion, i.e., one body is slipping across
the other. In general µs ≥ µk and the discrepancy is of order 10 − 20%. The transition
between the two modes is known as stick-slip transition, see also [34, 88].

Further examples of switched systems are biological or chemical systems which act different
in different day cycles or depending on certain nutritions, or traffic systems which operate
different depending on delays, see e.g. [28].
Typically, the continuous dynamics of the system in the different operation modes are
described by sets of ordinary differential equations or differential-algebraic equations. The
changing between different operation modes is modeled by discrete transitions resulting
in switching between sets of equations describing each operation mode. In the following,
systems of differential-algebraic equations that switch between several modes of operation
are called switched differential-algebraic equations or hybrid differential-algebraic equations,
see [61]. Hybrid systems are loosely defined as dynamical systems whose state has two
components, one of which evolves in a continuous set, while the other evolves in a discrete
set according to some transition rule, i.e., the term hybrid refers to the combination of
discrete event and continuous time dynamics which interact and define the behavior of
the system. The terminology switched system emphasizes the switching between different
system representations and refers to the behavior of the continuous state. In the literature,
a switched system often implicitly assumes a hybrid system model in which the discrete
dynamics are “simple”. In the following and in the literature, both terms are often used
synonymously.



140 Switched Differential-Algebraic Systems

As the discrete and continuous dynamics interact they must be analyzed simultaneously.
The mathematical theory of switched differential-algebraic systems, the control theory for
such systems as well as the development of efficient and accurate numerical methods is
still in an early stage. For an overview of modeling, analysis, simulation and control of
hybrid systems, see e.g. [12, 94]. Further works concerning hybrid systems diagnosis and
stabilization of hybrid systems are [28, 101, 116, 117]. One of the basic difficulties in
switched differential-algebraic systems is that after a mode switch takes place, the model
dimension and the structure of the system as well as its properties such as the index, the
number of algebraic or differential equations or redundancies may change. Thus, mode
switching may lead to a DAE with a different index or a different number of degrees of
freedom resulting in a discontinuity in the solution manifold. From this point of view, DAEs
with discontinuities or singular points are also included in the hybrid system approach. In
[60, 61] it was shown how the theory for general over- and underdetermined DAEs can be
applied to hybrid differential-algebraic systems. Besides the already existing problems in
the numerical integration of DAEs there are new difficulties in the numerical simulation
of switched systems. First of all, the reduction to strangeness-free form has to be done in
the same way as for standard DAEs and appropriate numerical methods for DAEs have
to be used for the numerical integration. However, in switched systems the integration
is often done over small intervals and in addition the states at the switch points have
to be determined exactly, as they are the basis for the consistent initialization in the
successor mode. Further, a special phenomena that can occur during the simulation of
hybrid systems is a cyclic change between different modes of operation, called chattering
or sliding, for example if nearly equal thresholds for the transition conditions of different
modes are given and the system starts to oscillate around these. These oscillations may
be real in the physical model as hysteresis, delays and other dynamic nonidealities lead
to fast oscillations, but also may arise due to errors in the numerical method. Chattering
behavior has to be treated in an appropriate way to ensure that the numerical integration
terminates in reasonable time.
In this chapter we consider the analysis and numerical solution of general nonlinear switched
differential-algebraic equations. For the formulation of switched systems we follow the ideas
proposed in [12, 60, 61] and define hybrid differential-algebraic systems. In Section 5.2 we
extend the general theory of over- and underdetermined systems of differential-algebraic
equations to switched systems of DAEs and show how index reduction can be done for
switched systems. In Section 5.3 we study existence and uniqueness of solutions of hybrid
DAE systems. In general, in order to guarantee existence and uniqueness of solutions of
a hybrid system after mode switching, the current state has to be transfered to the new
mode in a consistent way. Further, we have to deal with non-uniqueness of solutions after
a switch. In Section 5.4 we will investigate how the numerical methods for the consistent
initialization of DAEs that were derived in [85, 87] and allow to fix certain state components
and change others can be extended to switched systems and develop methods for correct
initialization at switch points. In Section 5.5 we develop mathematical methods to detect
(numerical) chattering and show how the chattering behavior can be approximated by so-
called sliding modes. Finally, in Section 5.6 we consider the control of switched systems



5.1 Formulation of Switched Differential-Algebraic Systems 141

and show how the principle concepts of control theory for linear descriptor systems can be
extended to the case of hybrid systems.

5.1 Formulation of Switched Differential-Algebraic Systems

In the following, switched systems of differential-algebraic equations are described using
a hybrid system formulation. Hybrid systems are generally described by a collection of
discrete subsystems, a collection of continuous subsystems and the possible interaction
between these subsystems. The continuous subsystems in general can consist of ODEs,
DAEs, PDEs or Integro-DAEs. For the modeling of hybrid systems there are many dif-
ferent approaches [94, 101] coming from different areas that were developed for specific
tasks, e.g., the hybrid automaton model [2, 46] that combines continuous state space mod-
els for the continuous dynamics with finite automata for the discrete dynamics, hybrid
Petri nets [31], general abstract dynamical models [16], state-transition network represen-
tations [5], or bond graph representations [107]. For example, in hybrid automata dynamic
components are added to a discrete state automaton. This formulation is suited for the
examination of reachability of states but not for the examination of the dynamics of the
system. In this section, we choose a formulation of hybrid differential-algebraic systems
following an approach given in [12, 60, 61]. In particular, we consider hybrid systems that
are composed of several different constrained nonlinear dynamical systems described by
differential-algebraic equations for the different operation modes and transition conditions
between these DAEs. Further, we assume that the discrete and continuous subsystems
only interact via instantaneous discrete transitions at distinct points in time called events.

Definition 5.3 (Hybrid differential-algebraic system). Let I = [t0, tf ] ⊂ R be an
integration interval that is decomposed into subintervals Ii = [τi, τ

′
i) for i = 1, . . . , NI − 1

and INI
= [τNI

, τ ′
NI

], NI ∈ N such that I =
⋃NI

i=1 Ii, with τ1 = t0, τ ′
NI

= tf and τ ′
i = τi+1

for all i = 1, . . . , NI − 1 and τi < τ ′
i for all i = 1, . . . , NI. Further, let M := {1, . . . , NF},

NF ∈ N be the set of modes and for each l ∈ M let Dl be the union of certain integration
intervals Ii, such that

⋃

l∈M
Dl = I and Dl∩Dk = ∅ for l, k ∈ M with l 6= k. Then, a hybrid

system of differential-algebraic equations H is defined as the collection of

• a set of NF systems of nonlinear differential-algebraic equations

F l(t, xl, ẋl) = 0, l ∈ M, (5.3)

with sufficiently smooth functions F l : Dl × Rnl × Rnl → Rml ,

• an index set of autonomous transitions J l = {1, 2, . . . , nl
T} for each mode l ∈ M,

where nl
T ∈ N is the number of possible transitions of mode l,

• transition conditions Ll
j(t, x

l, ẋl) for all transitions j ∈ J l, and all modes l ∈ M with

Ll
j : Dl × R

nl × R
nl → {TRUE,FALSE}, (5.4)
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• switching functions of the form

gl
j,i : Dl × R

nl × R
nl → R, for all i = 1, . . . , nl

j, j ∈ J l,

with gl
j,i(t, x

l, ẋl) > 0 in mode l,

• mode allocation functions for all l ∈ M of the form

Sl : J l → M, with Sl(j) = k, (5.5)

that determine the successor mode k after a mode change, and

• transition functions T k
l : Rnl × Rnl → Rnk×2 of the form

T k
l (xl(τ ′

i), ẋ
l(τ ′

i)) = [xk(τi+1), ẋ
k(τi+1)], (5.6)

for all l ∈ M with successor mode k ∈ M that map the final values of the variables
in mode l to the initial values in mode k at event time τ ′

i = τi+1 ∈ Dk.

Definition 5.4 (Linear hybrid differential-algebraic system). A hybrid system H
as in Definition 5.3 is called linear if the DAE in each mode is a linear DAE of the form

El(t)ẋl = Al(t)xl + bl(t), l = 1, . . . , NF , (5.7)

with sufficiently smooth functions bl : Dl → Rml and El, Al : Dl → Rml×nl.

If in addition an initial value

xl1(t0) = xl1
0 ∈ R

nl1 (5.8)

is given in some initial mode l1, then a hybrid system H as in Definition 5.3 together with
the initial condition (5.8) and initial mode l1 ∈ M is called a hybrid initial value problem.
In this setting, (5.3) or (5.7) are the DAEs that describe the dynamics of the hybrid system
in mode l ∈ M and in each subinterval the dynamics of the system are governed by only
one DAE. The hybrid system is said to be in mode l ∈ M if t ∈ Dl. Further, the piecewise
continuous functions xl : Dl → Rnl describe the continuous state of the hybrid system in
mode l and xl(τ ′

i) is the smooth extension of xl to the interval boundary τ ′
i = τi+1 of an

integration interval Ii ∈ Dl. We further define the hybrid time trajectory Tτ = {Ii}i=1,...,NI
as

a sequence of intervals and the hybrid mode trajectory Tm = {li}i=1,...,NI
as the corresponding

sequence of modes, where li ∈ M is the mode in interval Ii. The hybrid time trajectory
and the hybrid mode trajectory depend on the initial mode and initial conditions as well
as on the defined switching conditions. The set of event times corresponding to a hybrid
time trajectory is given by E(Tτ ) = {τi | i = 1, . . . , NI}, and the state of a hybrid system
H is described by the hybrid solution trajectory {(xli(t), li)} consisting of a sequence of the
continuous states xli(t) with corresponding modes li.
The hybrid system H changes between different modes on the basis of the transition con-
ditions. If Ll

j(t̂, x
l(t̂), ẋl(t̂)) = FALSE for all j ∈ J l at a time t̂ ∈ Dl, then the system
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stays in the current mode. On the other hand, if there exists an integer j ∈ J l such that
Ll

j(t̂, x
l(t̂), ẋl(t̂)) = TRUE at time t̂, then the system switches to another mode. The

switch points are defined as the roots of the switching functions gl
j,i(t, x

l, ẋl) that are given
as threshold functions, i.e., if gl

j,i(t, x
l, ẋl) > 0 for all i = 1, . . . , nl

j , j ∈ J l, then the system
stays in the current mode l, but if gl

j,i(t, x
l, ẋl) ≤ 0 for a j ∈ J l and some i then the

system may switch to a new mode. Note, that a transition condition Ll
j is described by nl

j

separated switching functions gl
j,i, i = 1, . . . , nl

j , which logical combination determines if
the transition condition Ll

j is satisfied. In this way, the switching functions gl
j,i can be cho-

sen as simple as possible, e.g. linear, allowing an efficient and reliable computation of the
switch points. Thus, each time a switching function crosses zero the associated transition
condition may switch its logical value. Each switching function can be seen as a switching
surface in the state space given by

Γl
j,i =

{
(t, xl, ẋl) ∈ Dl × R

nl × R
nl | gl

j,i(t, x
l, ẋl) = 0

}
, j ∈ J l, l ∈ M, (5.9)

along which discontinuous changes in the system may occur, i.e., mode switching occurs
at points on these switching surfaces. For convenience of expression, in the following we
assume that each transition condition Ll

j is described by exactly one switching function gl
j

(i.e., nl
j = 1 for all j ∈ J l, l ∈ M) and the transition condition Ll

j is satisfied if and only if
gl

j ≤ 0. Then, the satisfaction of a transition condition corresponds to the crossing of the
switching surfaces Γl

j. The union of the switching surfaces for all j ∈ J l in mode l is given
by

Γl =
⋃

j∈Jl

Γl
j, l ∈ M. (5.10)

Further, we assume deterministic models, i.e., only one transition condition is becoming
true at a time. The solutions of a nonlinear DAE lie in the constraint manifold given by
the algebraic constraints, see Section 2.2.2. In hybrid systems the solution trajectory stays
in the constraint manifold Ll of the DAE in the current mode l as long as no transition
condition is satisfied. Thus, the constraint manifold of the hybrid system in mode l is given
by

Λl =
{
(t, x) ∈ Dl × R

nl | (t, x) ∈ L
l and gl

j(t, x, ẋ) > 0 for all j ∈ J l
}

, (5.11)

and Γl describes the boundary of Λl in mode l. Finally, the transition function T k
l transfers

the state at the mode change from mode l to mode k according to the jth transition. This
transfer can result in jumps in the state vector of the hybrid system. Further, in order to
obtain a solution in the new mode k, the initial value obtained by the transition function
has to be consistent with the DAE in mode k.

In Figure 5.3 an example of a typical path for a hybrid solution trajectory is plotted. The
solution trajectory of the hybrid system starts in initial mode l1 at a consistent initial point
(t0, x

l1
0 ) ∈ Λl1 and evolves continuously within the constraint manifold Λl1 of mode l1, as
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Figure 5.3: Evolution of a hybrid system trajectory

specified by the DAE F l1 , until the minimal time τ2 at which Ll1
j (τ2, x

l1 , ẋl1) = TRUE for

some j ∈ J l1 , i.e., the switching surface Γl1
j is reached. The transition function T l2

l1
moves

the trajectory from xl1(τ−
2 ) to xl2(τ2) with limit value xl1(τ−

2 ) = limt→τ2 xl1(t). The new
initial point xl2(τ2) in mode l2 has to lie in the constraint manifold Λl2 , i.e., it has to be
consistent for the DAE in mode l2 and Ll2

j (τ2, x
l2(τ2), ẋ

l2(τ2)) = FALSE for all j ∈ J l2 .

Then, the system trajectory continues in mode l2 within the constraint manifold Λl2 until
the switching surface Γl2 is crossed. It may happen that the constraint manifolds Λl3 and
Λl4 corresponding to mode l3 and mode l4 are separated by a common switching surface
Γl3

j = Γl4
i , j ∈ J l3 , i ∈ J l4 from one another. If the solution trajectory reaches this switching

surface and some sliding condition is fulfilled, the system enters into a sliding state along
the switching surface Γl3 resulting in repeated switching between the two modes and the
solution trajectory evolves along the switching surface. When the existence condition for
sliding is no longer fulfilled, then the system evolves in the solution manifold Λl4 until the
next event.

The possible transition behaviors at a mode change from mode l to mode k are depicted
in Figure 5.4. In the first case, the transition function T k

l moves the state vector from the
switching surface Γl into the interior of the constraint manifold Λk of the new mode and the
further solution behavior is governed by the DAE in mode k (case (a) in Figure 5.4). In the
following, this will be called regular switching. In the second case, the transition function
T k

l transfers the state vector from the switching surface Γl to the boundary Γk of the new
mode, which causes an immediate further mode transition (case (b) in Figure 5.4). In this
case oscillations between the two modes can occur if this transition moves the trajectory
back to the first mode. In the third case, the transition function T k

l moves the state vector
beyond the region and boundary of the new mode (case (c) in Figure 5.4). This can happen
for example if the state vector is not consistent with the DAE in the new mode. This case
can be handled by another immediate transition, e.g., a projection onto the constraint
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Figure 5.4: Transition behavior of a hybrid system

manifold Λk. Modes that do not affect the state vector but are immediately followed by
another transition are sometimes called mythical modes, see [105]. If the behavior of the
system in a mode is governed only by algebraic equations then no continuous evolution
takes place in this mode but jumps in the state vector can occur. These modes are also
called pinnacles, see also [105].

Remark 5.5. Definition 5.3 does not allow multiple events at the same time, but so-called
Zeno behavior is possible, i.e., infinite number of transitions at almost the same time
leading to accumulation points of events times τi (this arises e.g. in the simple example of
a bouncing ball). In the following, we assume that no accumulation of event times occur
in order to make the system well-defined.

5.2 Index Reduction

For hybrid differential-algebraic systems a reduction to strangeness-free form must be re-
alized just as for standard DAEs to be able to apply numerical methods suited for DAEs
in the integration process. In hybrid systems this must be possibly done very often on
possibly short intervals and for different modes. The index reduction procedure described
in Section 2.2.2 leading to the reduced systems (2.19) or (2.21) can be applied to switched
systems as has been shown in [60, 61]. In this way, a strangeness-free formulation can
be determined independently for each mode. As described in Section 2.2.2, we need the
information about several derivatives of the given DAE, so we consider the derivative array
F l

i of level i in mode l ∈ M, defined as in (2.15), which stacks the original equations of the
DAE in mode l ∈ M and all its derivatives up to level i into one large system

F l
i (t, x

l, ẋl, . . . ,
di+1

dti+1
xl) = 0. (5.12)

In order to be able to derive a reduced system for each mode we need to assume that
Hypothesis 2.37 holds in each mode.
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Hypothesis 5.6. In each mode l ∈ M and each domain Dl the strangeness index µl is well-
defined, i.e., the DAE (5.3) in mode l satisfies Hypothesis 2.37 with constant characteristic
values µl, rl, al

µ, d
l
µ, and vl

µ.

If Hypothesis 5.6 is violated at a finite number of points we can introduce new modes
and further switching points to satisfy Hypothesis 5.6. In the following, we consider hybrid
systems that satisfy Hypothesis 5.6, i.e., the integers ml, nl, µ

l, rl, dl
µ, a

l
µ, u

l
µ, v

l
µ are constant

within each mode but may be different for different modes.

Definition 5.7 (Regularity). A hybrid system H is called regular if for each mode l ∈ M

the corresponding DAE F l is regular.

Definition 5.8 (Maximal Strangeness Index). For a hybrid system H that satisfies
Hypothesis 5.6 the maximal strangeness index µmax is defined as

µmax = max
l∈M

{µl}.

A hybrid system is called strangeness-free if µmax = 0.

We can locally obtain a reduced system of the form (2.19) independently in each mode
l ∈ M as described in Section 2.2.2, which is denoted by

F̂ l
1(t, x

l, ẋl) = 0,

F̂ l
2(t, x

l) = 0,
(5.13)

with F̂ l
1(t, x

l, ẋl) = (Z l
1)

T F l(t, xl, ẋl) and F̂ l
2(t, x

l) = (Z l
2)

TF l
µl

(t, xl, H(t, xl)), where Z l
1 and

Z l
2 are the matrices defined in Hypothesis 2.37 for the DAE in mode l. Analogously, a

decoupled differential-algebraic system of the form

ẋl
1 = Ll(t, xl

1, x
l
2, ẋ

l
2),

xl
3 = Rl(t, xl

1, x
l
2),

(5.14)

with vanishing strangeness index and dl
µ differential and al

µ algebraic equations can be
derived. Thus, a reduced system as in (5.13) or (5.14) with the same solution as the
original DAE in mode l (5.3) can be extracted independently in each mode and therefore
also for the complete hybrid system. Connecting all the reduced systems together we locally
obtain an equivalent reduced hybrid system denoted by Ĥ, which is strangeness-free, i.e.,
µmax = 0. By solving the corresponding transformed systems, the solution of the complete
hybrid system can be computed for every time t. From Theorem 2.40 it follows that every
sufficiently smooth solution xl of the DAE in mode l (5.3) that satisfies Hypothesis 2.37
also solves the reduced problems (5.13) and (5.14). For a hybrid systems H satisfying
Hypothesis 5.6 we can show that every sufficiently smooth solution of H is also a solution
of the equivalent strangeness-free hybrid system Ĥ.
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Theorem 5.9. Let H be a hybrid system as in Definition 5.3 with sufficiently smooth
functions F l in each mode l ∈ M that satisfy the Hypothesis 5.6 with characteristic values
µl, al

µ, dl
µ, vl

µ and ul
µ = nl − al

µ − dl
µ in each mode l ∈ M. Then, every sufficiently smooth

solution of H is also a solution of Ĥ.

Proof. Let Tτ = {Ii}i=1,...,NI
and Tm = {li}i=1,...,NI

be the hybrid time and mode trajectory
corresponding to the hybrid system H. If the sequence {x∗

li
}li∈Tm

, corresponding to Tm is
a sufficiently smooth solution of H determined from the DAEs F li in each mode li ∈ M,
then the functions x∗

li
also solve the reduced strangeness-free systems of DAEs (5.13) and

(5.14), since for every mode li, and all t ∈ Dli

(t, x∗
li
(t), ẋ∗

li
(t), . . . , ( d

dt
)µli+1x∗

li
(t)) ∈ L

li
µl.

Since the transition functions yield consistent initial values after each mode change as
{x∗

li
}li∈Tm

is a solution, these values are also consistent for the reduced systems. Thus, the

sequence {x∗
li
}li∈Tm

is also a solution of the reduced hybrid system Ĥ.

Note that the reduced hybrid system Ĥ depends strongly on the choice and the consistency
of the initial values in each mode. Therefore, in each interval Ii and for every mode l, the
initial values must be chosen in a consistent way, so that the solution in each mode exists
and is unique if ul

µ = 0.

Remark 5.10. A special case of hybrid systems are hybrid multibody systems, where the
DAEs in each mode l ∈ M are given by the equations of motion of a multibody system of
the form

M lp̈l = f l(t, pl, ṗl) − Gl(pl)T λl,

0 = gl(pl).

The strangeness index for multibody systems resulting from the constraints gl(pl) = 0 is
given by µl = 2, see e.g. [82]. In a mode l without constraints the strangeness index is
µl = 0. Therefore, the maximal strangeness index µmax of a hybrid multibody system is
at most 2, and it is µmax = 0 if the hybrid system is completely unconstrained. Further,
the transition functions can be simplified, as the position variable pl potentially stays the
same in all modes and only changes in the algebraic variables λl occur, i.e., the transition
functions only have to determine initial values for eventually new Lagrange multipliers λl.

5.3 Existence and Uniqueness of Solutions

Solution concepts for hybrid systems have to deal with nonsmooth solutions and with
changes in the number of equations or unknowns after mode changes. Therefore, an inves-
tigation of solution concepts and sufficient conditions for the existence and uniqueness of
solutions of hybrid differential-algebraic systems is required. In general, if we want overall
continuous solutions of the hybrid system, then the transition functions must guarantee
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Figure 5.5: The accelerated pendulum

this. However, if the number of equations or the number of free variables changes at a mode
change, then this condition may be difficult to realize. In particular, we may face the situ-
ation that the solution is not unique after a mode change. In any case, we need consistency
of the initial values with the DAE in the new mode for the existence of a solution. In this
section, we derive necessary and sufficient conditions for existence and uniqueness of solu-
tions of hybrid differential-algebraic systems. Since different solution concepts for DAEs,
see e.g. [81, 82, 86], can be applied for the DAEs in each mode l ∈ M, in the following we
consider the classical solvability concept resulting in continuously differentiable functions
as solution of the DAEs in each mode and the concept of strong solutions allowing weaker
smoothness requirements. The concept of generalized solutions defined in a distributional
setting allowing also nonsmooth behavior is considered in Section 5.3.2.

A major difficulty in defining a solution for the overall hybrid system H is that at a switch
point not only the index of the DAE, but also the number of unknowns of the system and
the number of differential, algebraic and undetermined variables may change.

Example 5.11. [61] Consider a pendulum of mass m and length l under the influence of
gravity Fg = −mg that is tangentially accelerated by a linearly increasing force F (x, y) =
Fx(x)+Fy(y) in the position coordinates x and y, see Figure 5.5. The classical constrained
motion of the system is described by the following DAE

mẍ = −2xλ + Fx,

mÿ = −mg − 2yλ + Fy,

0 = x2 + y2 − l2.

This system is of strangeness index µ = 2 with two differential variables x, y and one
algebraic variable λ. If we suppose that the rope is cut when we reach a certain centrifugal
force Fcmax

, i.e., if ẋ2 + ẏ2 > Fcmax
, the system changes from a pendulum to a flying mass

point. In this case, the system is not constrained anymore and the equations of motions
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are given by

mẍ = 0,

mÿ = −mg.

This system is an ordinary differential equation, which is strangeness-free, with two dif-
ferential variables x, y. In general, it is not clear how the algebraic variable λ should be
continued after the mode change such that the solution of the overall system (x, y, λ) is not
unique anymore after the mode change. But clearly in this simple case we can just choose
λ constant as the last value.

In the following, let

n := max
l∈M

nl

be the maximal size of all solution vectors xl. If n > nl in some mode l ∈ M, then it is not
clear how some solution components can be continued in this mode after a mode change.
In this case, we extend the system in mode l by solution components x̂l of size n− nl, i.e.,
we consider the extended system

[
El(t) 0

]
[
ẋl

˙̂xl

]

=
[
Al(t) 0

]
[
xl

x̂l

]

+ bl(t). (5.15)

For the first nl components of the solution vector the extended system (5.15) has the same
solution as the original system. Furthermore, (5.15) has the same strangeness index as the
original system in mode l. But, now we have to deal with nonuniqueness of solutions, while
the original system in mode l may have been uniquely solvable. With regard to the solution
of the overall hybrid system this nonuniqueness was already present in the hybrid system
before the extension (see Example 5.11), such that considering the extended systems (5.15)
does not interfere with the solvability of the overall hybrid system. The nonuniqueness of
solutions can be overcome by embedding the DAE (5.15) into a minimization problem

1

2
‖x̃l − x̃l

0‖
2 = min! such that

1

2
‖Ẽl(t) ˙̃xl − Ãl(t)x̃l − bl‖2 = min!, (5.16)

where Ẽl(t) =
[
El(t) 0

]
, Ãl(t) =

[
Al(t) 0

]
, x̃l =

[
xl

x̂l

]

, and x̃l
0 ∈ Rn is a given initial

value. In this way, the undetermined state components are continued constantly with the
last value of the previous mode described by the initial value x̃l

0. For systems with well-
defined strangeness index we may assume without loss of generality that the pair (El, Al)
and therefore also the pair (Ẽl, Ãl) are strangeness-free, since we can always transform the
system to the corresponding strangeness-free form. Then, the minimization problem (5.16)
has a unique solution which is called the least squares solution of the DAE, see [82].
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5.3.1 Continuous Solutions of Linear Switched Systems

The first way to formulate necessary and sufficient conditions for the existence and unique-
ness of solutions of linear hybrid systems is to demand continuous functions as solution of
the hybrid system. In this section, we consider linear hybrid systems H and we assume
without loss of generality that nl = n in all modes l ∈ M. Locally in each mode l ∈ M and
for every interval Ii ⊆ Dl, we consider the classical solution concept introduced in Chapter
2, see Definition 2.26. If the strangeness index µl of (El, Al) in mode l ∈ M is well-defined,
i.e., Hypothesis 5.6 holds, and if bl is sufficiently smooth, then by Theorem 2.36 the linear
DAEs (5.7) in each mode are equivalent to strangeness-free systems of the form

ẋl
1 = Al

13(t)x
l
3 + bl

1(t),
0 = xl

2 + bl
2(t),

0 = bl
3(t).

(5.17)

with Al
13 ∈ C(Ii, R

dl
µ,ul

µ), Ii ⊆ Dl and the inhomogeneities bl
i are determined by the deriva-

tives of bl. This equivalent strangeness-free formulation allows us to read off existence and
uniqueness of solutions of the linear DAE (5.7) in mode l ∈ M.

Corollary 5.12. Let the strangeness index µl of the linear DAE (5.7) in mode l ∈ M be
well-defined and let bl ∈ Cµl+1(Ii, R

ml), with Ii = [τi, τ
′
i) ⊆ Dl. Then we have:

1. The DAE (5.7) in mode l is solvable if and only if the vl
µ functional consistency

conditions

bl
3 = 0

are fulfilled.

2. An initial condition xl(τi) = xl
τi
∈ Rnl is consistent if and only if in addition the al

µ

conditions

xl
2(τi) = −bl

2(τi)

are implied by xl(τi) = xl
τi
.

3. The corresponding initial value problem is uniquely solvable if and only if in addition
it holds that

ul
µ = 0.

Remark 5.13. The smoothness assumption for the inhomogeneity bl in Corollary 5.12 is
used to guarantee that the solution is continuously differentiable, in particular with regard
to the algebraic solution component xl

2. To obtain a continuous solution the assumption
that bl ∈ Cµl

(Ii, R
ml) is sufficient.
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The strangeness-free form (5.17) also allows to identify the minimal smoothness require-
ments for a solution, since only the variable xl

1 has to be differentiated. Thus, the concept
of classical solutions can be weakend as the derivative ẋl does not occur in the kernel of
the coefficient matrix El, see also [81, 86].

Definition 5.14 (Strong solution). Consider a linear DAE (5.7) in mode l with suffi-
ciently smooth coefficient functions El, Al, and bl. A function xl : Ii → R

nl, Ii ⊆ Dl is
called a strong solution of the DAE (5.7) in mode l if ẋl exists in the cokernel of El, xl is
continuous and satisfies (5.7) pointwise.

For linear DAEs of the form (5.7) we can consider the projector function (El)+El which
projects onto the cokernel of El (see Lemma 2.18), where (El)+ denotes the pointwise
Moore-Penrose pseudo-inverse of El (see Definition 2.17). With this, a weaker solution
space for strangeness-free linear systems of the form (5.7) has been defined in [74, 82] as

C1
(El)+El(Ii, R

nl) = {xl ∈ C(Ii, R
nl) | (El)+Elxl ∈ C1(Ii, R

nl)}.

The solution of a hybrid system H depends on the initial mode, initial conditions, mode
switching conditions and on the transition functions. For a given time trajectory Tτ , with
corresponding mode trajectory Tm, the initial mode as well as the mode switching sequence
due to the transition conditions are fixed and the solution of the overall hybrid system is
a sequence of continuous functions xl : Ii → Rnl, with Ii ⊆ Dl.

Definition 5.15 (Continuous solution of a linear hybrid system). A function

x ∈ C(I, Rn),

with I = [t0, tf ] =
⋃NI

i=1 Ii is called a continuous solution of a linear hybrid system H
with hybrid time trajectory Tτ = {Ii}i=1,...,NI

and corresponding hybrid mode trajectory
Tm = {li}i=1,...,NI

if

x|
Ii
∈ C1

(Eli )+Eli
(Ii, R

n) for all Ii ∈ Tτ , li ∈ Tm,

and x|
Ii

is a strong solution of the DAE (5.7) in the corresponding mode li. The function
x is called a continuous solution of the hybrid initial value problem with initial condition
x0 ∈ Rn at t0 if it is a continuous solution and satisfies the initial condition x(t0) = x0.

Definition 5.16 (Consistency of initial conditions). An initial condition x(t0) = x0 is
called consistent with the hybrid system H if the corresponding hybrid initial value problem
has at least one solution.

From Corollary 5.12 we get conditions for the existence and uniqueness of solutions locally
in each mode. If we assume that the DAEs in each mode are solvable, we can give conditions
for the existence and uniqueness of a continuous solution of a hybrid system H.

Assumption 5.17. For a linear hybrid system H let the strangeness-index µl be well-
defined for all modes l ∈ M and assume that the linear DAEs (5.7) in each mode are
solvable, i.e., bl

3 = 0, provided that consistent initial conditions are given.



152 Switched Differential-Algebraic Systems

Under Assumption 5.17 there exists a solution if at each mode change the transition func-
tion is such that the resulting initial condition is consistent and if moreover ul

µ = 0 for all
l ∈ M, then the solution is unique as well.

Theorem 5.18. Consider a linear hybrid system H that satisfies Hypothesis 5.6 with hybrid
time trajectory Tτ , corresponding hybrid mode trajectory Tm, and a initial value x0 ∈ R

n.
Let E(Tτ ) be the set of event times. Further, assume that Assumption 5.17 holds. Then
there exists a continuous solution x of the linear hybrid system H in the sense of Definition
5.15 if and only if

1. the initial value x0 is consistent for the DAE in the initial mode l1 ∈ Tm,

2. the transition functions T li
li−1

are the identity mappings, i.e.,

T li
li−1

(x(τ ′
i−1), ẋ(τ ′

i−1)) = [x(τ ′
i−1), ẋ(τ ′

i−1)] = [x(τi), ẋ(τi)],

and for every τi ∈ E(Tτ ) the states x(τi) are consistent with the DAE in mode li ∈ Tm.

The continuous solution x is unique if and only if in addition ul
µ = 0 for all modes l ∈ Tm.

Proof. Due to Assumption 5.17, the DAE (5.7) in each mode is solvable provided that
consistent initial values are given. For the solvability of the hybrid system we therefore
need consistency of the initial value x0 for the DAE in the initial mode l1 and in addition
consistency of the values given by the transition functions after each mode change. Further,
if T

li+1

li
is the identity mapping we have xli+1(τi+1) = xli(τ ′

i), which ensures continuity of
the solution. Obviously, if there are no free solution components, i.e., ul

µ = 0 for all modes
l ∈ M, and the initial conditions are consistent, then in each mode the solution exists and
is unique.

5.3.2 Generalized Solutions of Linear Switched Systems

In the solutions of hybrid systems discontinuities at switch points can occur. In order
to deal with these discontinuities we can consider impulsive smooth solutions which can
be treated within a standard distributional framework as introduced in Section 2.2.3. In
this way, solutions can be defined over discontinuities at switch points, but this approach
requires infinitely often differentiable matrix functions El, Al and right hand sides, which
is not always fulfilled (see also the Remarks in Section 2.2.4).
In a hybrid system H discontinuities or jumps in the solution can occur at the switch points
τj ∈ E(Tτ ). In the following, we consider impulsive smooth functions on the set of event
times E(Tτ ) as solutions of H, i.e., we consider the set of impulsive smooth distributions
Cn

imp(E(Tτ )). The transfer of the states after mode changes by the transition functions may
cause a nontrivial impulsive part resulting in an instantaneous jump in the solution, but
nevertheless the state has to be transfered in a consistent way. Note, that also inconsistency
of initial values can be treated with the distributional approach as presented in Section
2.2.3, but this will not be considered here. Now, we can define generalized solutions of a
linear hybrid system.
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Definition 5.19 (Generalized solution of linear hybrid systems). A function

x : I → R
n,

with I = [t0, tf ] =
⋃NI

i=1 Ii is called a generalized solution of a linear hybrid system H
with hybrid time trajectory Tτ = {Ii}i=1,...,NI

, corresponding hybrid mode trajectory Tm =
{li}i=1,...,NI

, and set of event times E(Tτ ), if

x ∈ Cn
imp(E(Tτ )),

and x satisfies the linear DAE (5.7) in mode li ∈ Tm for every t ∈ Ii, i = 1, . . . , NI. The
function x is called a generalized solution of the linear hybrid initial value problem with
initial condition x0 ∈ Rn at t0, if it is a generalized solution of the hybrid system and
satisfies one of the initial condition

x(t0) = x0, x(t+0 ) = x0.

In the following, we specify conditions to guarantee the existence and uniqueness of solu-
tions for a linear hybrid system H with impulsive smooth solutions assuming solvability of
the DAE in each mode.

Assumption 5.20. For a linear hybrid system H as in Definition 5.3 let the matrix-valued
functions El, Al ∈ C∞(I, Rm,n) and let the strangeness index µl be well-defined for all modes
l ∈ M. Further, assume that the linear DAE (5.7) in each mode is solvable.

Theorem 5.21. Consider a linear hybrid system H, with hybrid time trajectory Tτ , cor-
responding hybrid mode trajectory Tm, and an initial value x0 ∈ R

n and assume that
Assumption 5.20 holds. Then there exists a generalized solution of the linear hybrid system
H in the sense of Definition 5.19 if and only if

1. the initial value x0 is consistent for the initial mode l1 ∈ Tm, and

2. for every τi ∈ E(Tτ ) the values x(τ+
i ) obtained from the transition functions

T li
li−1

(x(τ−
i ), ẋ(τ−

i )) = [x(τ+
i ), ẋ(τ+

i )]

are consistent with the DAE in mode li ∈ Tm.

The generalized solution is unique if and only if in addition ul
µ = 0 for all modes l ∈ Tm.

Proof. Due to Assumption 5.20, all individual modes have a solution for consistent initial
conditions. Thus, for a consistent initial state x0 ∈ R

n and initial mode l1 there exists a
smooth solution for the DAE in mode l1. The system stays in the initial mode l1 until the
next time event τ2 ∈ E(Tτ ). If the initial condition x(τ+

2 ) obtained from T l2
l1

(x(τ−
2 ), ẋ(τ−

2 )) =
[x(τ+

2 ), ẋ(τ+
2 )] is consistent with the DAE in the new mode, then there exists a smooth

solution for the DAE in the new mode and only a state jump at τ2 occurs. The same
holds for all following mode switches at τi ∈ E(Tτ ). Obviously, the solution is unique if the
solution in each mode is unique, i.e., if ul

µ = 0 for all modes.
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5.3.3 Solutions of Nonlinear Switched Systems

In this section we consider solvability conditions for hybrid systems H with nonlinear DAEs
(5.3) in each mode. To analyze nonlinear problems one usually uses the implicit function
theorem (Theorem 2.9) to show that a solution is locally unique. To be able to apply the
implicit function theorem we must require that for a given solution the derivative of F l has
a continuous inverse. Therefore, we need to assume that the differential-algebraic system
in each mode is sufficiently smooth in a small interval following the switch point such that
the implicit function theorem can be applied at all switch points τj.

Assumption 5.22. Consider a hybrid system H as in Definition 5.3 with nonlinear DAEs
of the form (5.3) and nl = n in each mode l ∈ M. Assume that F l is sufficiently smooth
in [τi, τ

′
i + ǫ] for small ǫ > 0 for each interval Ii = [τi, τ

′
i) ∈ Dl.

Remark 5.23. Also in the nonlinear case we assume that nl = n for all l ∈ M. Otherwise,
undetermined components are inserted into the system. This causes nonuniqueness of the
solution but a definition of an overall solution is possible.

Linearization of the nonlinear DAE (5.3) in mode l ∈ M along a solution trajectory xl

yields a linear DAE with variable coefficients in the form (5.7) with

El(t) = F l
;ẋ(t, x

l, ẋl), Al(t) = −F l
;x(t, x

l, ẋl), bl(t) = −F l(t, xl, ẋl) = 0, (5.18)

such that locally similar results as for the linear case can be expected. Further, it can be
shown that differentiation and linearization commute, i.e., linearization of the nonlinear
derivative array (5.12) along a solution yields the same results as the derivative array based
on the linearization of the nonlinear DAE along a solution, see e.g. [23, 82].
We can locally transform the nonlinear DAEs (5.3) to the reduced systems (5.13) or (5.14)
and obtain existence conditions for a continuous solution. Sufficient conditions such that
the reduced system (5.13) in mode l locally reflects the solvability properties of the original
system (5.3) in mode l are given in the following Theorem.

Theorem 5.24. Consider a hybrid system H as in Definition 5.3 with sufficiently smooth
function F l as in (5.3) in each mode l ∈ M that satisfies the Hypothesis 5.6 with charac-
teristic values µl, al

µ, dl
µ, v

l
µ and with characteristic values µl +1 (replacing µl), al

µ, dl
µ, vl

µ in
each mode l ∈ M. For each l ∈ M let zµl+1,i ∈ L

l
µl+1 be given and let the parameterization

p in (2.18) for F l
µl+1 include ẋl

2. Then, for every function xl
2 ∈ C1(Ii, R

nl−al
µ−dl

µ), Ii ⊆ Dl

with xl
2(τi) = xl

2,i, ẋl
2(τi) = ẋl

2,i, the reduced differential-algebraic systems (5.13) and (5.14)
have unique solutions xl

1 and xl
3 satisfying xl

1(τi) = xl
1,i. Moreover, the so obtained function

xl = (xl
1, x

l
2, x

l
3) locally solves the original problem (5.3) in mode l.

Proof. The Theorem follows directly from [82, Theorem 4.34].

With this we can give conditions for the solvability of the overall hybrid system H similar
to Theorem 5.18.
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Theorem 5.25. Consider a hybrid system H that satisfies Hypothesis 5.6 with hybrid
time trajectory Tτ , corresponding hybrid mode trajectory Tm, and a initial value x0 ∈ Rn.
Let E(Tτ ) be the set of event times and let the assumptions of Theorem 5.25 be fulfilled.
Further, let Assumption 5.22 hold. Then there exists a continuous solution x of the hybrid
system H in the sense of Definition 5.15 (with El as in (5.18)) if and only if

1. the initial value x0 is consistent for the DAE in the initial mode l1 ∈ Tm,

2. the transition functions T li
li−1

are the identity mappings, i.e.,

T li
li−1

(x(τ ′
i−1), ẋ(τ ′

i−1)) = [x(τ ′
i−1), ẋ(τ ′

i−1)] = [x(τi), ẋ(τi)],

and for every τi ∈ E(Tτ ) the states x(τi) are consistent with the DAE in mode li ∈ Tm.

The continuous solution x is unique if and only if in addition ul
µ = 0 for all modes l ∈ Tm.

Proof. The proof is analogous to the proof of Theorem 5.18.

5.4 Consistent Reinitialization

One of the difficulties in the numerical integration of differential-algebraic equations is to
compute consistent initial values before starting the integration, i.e., calculating values at
the initial time t0 that satisfy the given algebraic constraints as well as the hidden con-
straints for higher index problems. For switched differential-algebraic equations consistent
initial values are needed in addition at all switch points and therefore may have to be
computed frequently during the simulation. Thus, an efficient and accurate reinitialization
routine is required as the computation of consistent initial values influence the transition
conditions and thus the mode switching of the system. Reinitialization of DAEs after dis-
continuities has been discussed in [12, 124] for regular linear time-invariant systems and
in [96] for quasi-linear d-index 1 DAEs by solving nonlinear consistency equations. In this
section, we discuss the consistent reinitialization for general nonlinear hybrid differential-
algebraic systems after mode switching. Here, we use the ideas of the consistent initial-
ization for nonlinear DAEs as described in [82], which allows over- and underdetermined
solutions and also allows to fix certain state components and change others.
In the following, we consider a general nonlinear hybrid system H as in Definition 5.3
with an initial value x0 at some initial or switching time τi ∈ E and we assume that
Hypothesis 2.37 holds in a neighborhood of a path (τi, x

⋆(τi),P(τi)) belonging to a solution
x⋆ ∈ C1(I, Rnl) of the nonlinear DAE (5.3) in mode l ∈ M. Here, the function P ∈
C(I, R(µl+1)nl) is a parameterization of the solution set Ll

µl that coincides with ẋ⋆ in the

first nl components, i.e., P(t)[Inl
0 . . . 0]T = ẋ⋆(t), such that F l

µl(t, x
⋆(t),P(t)) ≡ 0. It

has been shown in ([82], Remark 4.15) that every (x0, y0) with y0 = (ẋ0, . . . , x
(µl+1)
0 ) in

a neighborhood of (x⋆(τi),P(τi)) can be locally extended to a solution of (5.3). Thus,
consistency of an initial value x0 at time τi means that (τi, x0) is part of some (τi, x0, y0) ∈
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Ll
µl. To determine a consistent initial value or to check it for consistency we must therefore

solve the underdetermined system

F l
µl(τi, x0, y0) = 0 (5.19)

for (x0, y0). We use the Gauss-Newton method [33, 113] started with a sufficiently good
initial guess (x̃0, ỹ0) to solve this underdetermined systems of nonlinear equations in a least
squares sense. The Gauss-Newton method for a nonlinear system of the form

G(z) = 0,

where G : Rn → Rm is a smooth function, generates a sequence {zk} of approximations of
the form

zk+1 = zk − G+
;z(z

k)G(zk), (5.20)

starting with an initial guess z0 ∈ Rn. Here, G+
;z(z) is the Moore-Penrose pseudo-inverse

of the Jacobian G;z(z) = [∂Gi

∂zj
(z)]i,j (see Definition 2.17).

Theorem 5.26. Let G : D ⊆ Rn → Rm, m < n, with D open, convex denote a con-
tinuously differentiable mapping, and assume a full row rank of the Jacobian. Consider
the Gauss-Newton method (5.20) and assume that a starting point z0 ∈ D, and constants
α, ω ≥ 0 exist such that ‖G+

;z(z
0)G(z0)‖ ≤ α, and ‖G+

;z(u)(G;z(v) − G;z(u))(v − u)‖ ≤
ω‖v − u‖2 for all u, v ∈ D, v − u ∈ range (G+

;z(u)). Moreover, let

h := αω < 2, S(z0, r) ⊂ D with r := 2α/(2 − h).

Then:

1. The sequence {zk} of Gauss-Newton iterates is well-defined, remains in S(z0, r) and
converges to some z⋆ ∈ S(z0, r) with G+

;z(z
⋆)G(z⋆) = 0.

2. Quadratic convergence can be estimated according to

‖zk+1 − zk‖ ≤
1

2
ω‖zk − zk−1‖2.

Proof. See [33, Theorem 4.19].

Thus, if the Jacobian G;z(z) has full row rank and fulfills a Lipschitz condition in an open
convex set, and if G+

;z(z
k) is bounded in this set, then we have quadratic convergence of

the iterates {zk} to a least squares solution z⋆ of G(z) = 0 satisfying

G+
;z(z

⋆)G(z⋆) = 0.

Since the Jacobian of (5.19) at a solution (x0, y0) has full row rank at a solution and
thus in a whole neighborhood by Hypothesis 2.37, we have local quadratic convergence of
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the Gauss-Newton method, provided that the starting point z0 is sufficiently close to the
solution.

During the numerical integration of a hybrid system, events cause switching from mode l
to mode k at a switch point τi. The transition function T k

l as defined in (5.6) maps the
state at the switch point in mode l to the state at the switch point in the new mode k via

T k
l (xl(τi), ẋ

l(τi)) = [x⋆, ẋ⋆].

But, the transfered state x⋆ is not necessarily consistent with the DAE in mode k at
time τi, and to continue the integration a consistent initial value xk(τi) at τi has to be
computed. In order to find a reasonable continuation of the solution of the hybrid system,
we try to find a consistent initial value xk(τi) at τi from among all consistent values in
the constraint manifold Lk, on the basis of the given but inconsistent initial state x⋆, in
such a way that the solution xk extends the past solution xl in a physically reasonable
way. Since algebraic variables need to be chosen consistently with the DAE in the current
mode they have to be computed as the solution of a nonlinear system describing the
algebraic constraints. On the other hand, initial values for differential variables and possibly
undetermined variables can be chosen freely, such that these components of the initial value
vector should be kept fixed during the computation of consistent initial values in order to
find a continuation of the hybrid system solution that is as smooth as possible. Thus, even
if the transition function T k

l provides continuity of the state variables over a switch point
the consistent reinitialization can cause discontinuities in the solution. If possible, these
discontinuities should only occur in the algebraic variables, which have to be consistent,
while the differential variables and undetermined variables should proceed continuously
over the switch point.
By a slight modification of the above approach it is possible to prescribe initial values for
the differential variables and controls, i.e., fix certain components of an initial guess x̃0

during the computation of consistent initial values, and only compute consistent values
for the algebraic variables. This requires the classification of a component of x̃0 to be a
differential variable or a control, such that eliminating the associated columns from the
Jacobian of the nonlinear system (5.19) does not lead to a rank deficiency, since we must
guarantee that the remaining columns of the Jacobian still have full row rank to ensure
quadratic convergence of the Gauss-Newton method. Due to Hypothesis 2.37, there exist
continuous matrix functions

Z l
2 ∈ C(I, R(µl+1)nl,a

l
µ), T l

2 ∈ C(I, Rnl,nl−al
µ), Z l

1 ∈ C(I, Rnl,d
l
µ),

with the properties described in Hypothesis 2.37 and pointwise orthonormal columns. Let
the matrix functions

Z l′

2 ∈ C(I, R(µl+1)nl,(µ
l+1)nl−al

µ), T l′

2 ∈ C(I, Rnl,a
l
µ), Z l′

1 ∈ C(I, Rnl,nl−dl
µ),

be chosen such that
[
Z l′

2 Z l
2

]
,
[
T l′

2 T l
2

]
,
[
Z l′

1 Z l
1

]
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are pointwise orthogonal, i.e., in particular nonsingular. Then, Hypothesis 2.37 yields

F̂ l
2;xT

l
2 = 0, rank T l

2 = nl − al
µ, rank F̂ l

1;ẋT
l
2 = dl

µ,

and multiplication with the nonsingular matrix
[
T l′

2 T2

]
yields the separation

rank

[
F̂ l

1;ẋ

F̂ l
2;x

]

= rank

[
F̂ l

1;ẋT
l′

2 F̂ l
1;ẋT

l
2

F̂ l
2;xT

l′

2 0

]

= rank F̂ l
1;ẋT

l
2 + rank F̂ l

2;xT
l′

2 = dl
µ + al

µ.

Now, let T̃ l
2 be a fixed approximation with orthonormal columns to T l

2 that spans the
nullspace of F̂ l

2;x at the desired solution. Then, we can solve

F l
µl(t0, T̃

l
2T̃

lT
2 x̃0 + (I − T̃ l

2T̃
lT
2 )x, ẋ, . . . , x(µl+1)) = 0 (5.21)

for (x, ẋ, . . . x(µl+1)), with initial guess x̃0, where T̃ l
2T̃

lT
2 is an orthogonal projection of rank

dl
µ onto kernel F̂ l

2;x, while I − T̃ l
2T̃

lT
2 is a projection onto cokernel F̂ l

2;x. The dl
µ differential

components of the initial guess x̃0 are kept fixed during the Gauss-Newton iterations as
the corresponding columns of the Jacobian are set to zero. Note that this approach will
lead to a rank drop in the Jacobian if any of the algebraic variables are fixed. A drawback
of this approach to solve the nonlinear systems (5.19) or (5.21) with the Gauss-Newton
method is the limited region of convergence. This means that the Gauss-Newton method
may not converge if the initial guess is not sufficiently close to the solution. Therefore,
after mode switching, the starting value (τi, x

⋆) for the Gauss-Newton iteration given by
the transition function T k

l should be sufficiently close to a solution in the new mode to
guarantee convergence.

After a mode change from mode l to mode k, differential variables in the predecessor
mode l may change to algebraic or undetermined variables in the successor mode k or
vice versa. Assuming that nl = nk (otherwise undetermined variables can be inserted
into the system to meet this requirement, see Section 5.3) the different possibilities are
summarized in Table 5.1. Whenever algebraic variables or undetermined parts change into
differential variables, no problems with consistency occur as the initial conditions fits into
the differential equation (cases 9,10,11,12 in Table 5.1). Thus, if ak

µ ≤ al
µ then it is possible

to obtain a continuous solution provided that the constraint manifold has not changed. On
the other hand, if differential or undetermined variables change into algebraic variables,
then inconsistency can occur and reinitialization results in discontinuities in the solution
(cases 2,4,6,8 in Table 5.1). If uk

µ > 0, then the solution is not unique and the DAE can only
be solved in a least squares sense. If variables change into undetermined variables (cases
3,5,6,7,12 in Table 5.1) and the least squares solution is obtained in such a way that ‖x‖2 is
minimized, then the continuity condition and the minimum norm condition can contradict
each other. Therefore, the minimization problem for the least squares solution should be
chosen as in (5.16). In addition, the index of the differential-algebraic system might have
changed form µl to µk. If µl ≥ µk, then no problems occur, but if the index increases
after a mode change, then higher smoothness requirements are needed to guarantee the
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Differential part Algebraic part Undetermined part Changes in char. val.

1 dl
µ = dk

µ al
µ = ak

µ ul
µ = uk

µ —

2 dl
µ = dk

µ al
µ < ak

µ ul
µ > uk

µ u y a

3 dl
µ = dk

µ al
µ > ak

µ ul
µ < uk

µ a y u

4 dl
µ > dk

µ al
µ < ak

µ ul
µ = uk

µ d y a

5 dl
µ > dk

µ al
µ = ak

µ ul
µ < uk

µ d y u

6 dl
µ > dk

µ al
µ < ak

µ ul
µ < uk

µ d y a + u

7 dl
µ > dk

µ al
µ > ak

µ ul
µ < uk

µ d + a y u

8 dl
µ > dk

µ al
µ < ak

µ ul
µ > uk

µ d + a y a

9 dl
µ < dk

µ al
µ = ak

µ ul
µ > uk

µ u y d

10 dl
µ < dk

µ al
µ > ak

µ ul
µ = uk

µ a y d

11 dl
µ < dk

µ al
µ > ak

µ ul
µ > uk

µ a + u y d

12 dl
µ < dk

µ al
µ > ak

µ ul
µ < uk

µ a y d + u

13 dl
µ < dk

µ al
µ < ak

µ ul
µ > uk

µ u y d + a

Table 5.1: Changes in the characteristic quantities after a mode change from mode l to mode k

existence of a solution and more effort is needed to obtain the reduced system in the new
mode which might alter the convergence of numerical methods.

Remark 5.27. For the computation of consistent initial value for a linear DAE (2.5)
(see also [82, p. 308ff]) we can consider the reduced system of the form (2.24), where the
algebraic equations are displayed directly. The condition for a given x̃0 at t0 to be consistent
is given by

Â2(t0)x̃0 + b̂2(t0) = 0. (5.22)

In the case that the given x̃0 is not consistent, we can use (5.22) to determine a related
consistent x0. Setting x̃0 = x0+δ we determine the correction δ by solving the minimization
problem

‖δ‖2 = min!

subject to the constraint

‖Â2(t0)δ − b̂2(t0) − Â2(t0)x̃0‖2 = min!.

The solution of this least squares problem is given by

δ = Â+
2 (t0)(Â2(t0)x̃0 + b̂2(t0)),
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where Â+
2 (t0) is the Moore-Penrose pseudo-inverse of Â2(t0). Since Â2(t0) has full row

rank aµ, due to Theorem 2.41, it follows that Â2(t0)Â
+
2 (t0) = Ia, and therefore

Â2(t0)x0 + b̂2(t0) = Â2(t0)(x̃0 − δ) + b̂2(t0) = Â2(t0)x̃0 − (Â2(t0)x̃0 + b̂2(t0)) + b̂2(t0) = 0.

Also in this case, we can prescribe initial values for the differential variables, whereas initial
values for the algebraic variables are not known. This requires a separation of the unknown
x into differential, algebraic and unknown parts. For a system in the form (2.24) we can
compute an orthogonal matrix U = [U1, U2] of size (n, n) such that

Ê1(t0)
[
U1 U2

]
=
[
E11 0

]
,

where E11 has size (dµ, dµ) and is nonsingular. Then, we determine an orthogonal matrix
V = [V1, V2] of size (n − dµ, n − dµ) such that

Â2(t0)U2V =
[
A22 0

]
,

where A22 is of size (aµ, aµ) and nonsingular. This allows a reinterpretation of variables
as differential, algebraic or undetermined variables using the basis transformation

x = Q





x̃1

x̃2

x̃3



 , Q =
[
U1 U2V1 U2V2

]
,

with orthogonal matrix Q and corresponding DAE





E11 0 0
0 0 0
0 0 0









˙̃x1

˙̃x2

˙̃x3



 =





A11 A12 A13

A21 A22 0
0 0 0









x̃1

x̃2

x̃3



+





b̂1

b̂2

b̂3



 .

From the second block row we get a partitioning of the consistency condition (5.22) into

0 = [A21(t0) A22(t0)]

[
x̃1

x̃2

]

+ b̂2(t0).

Now, let an estimate x̃0 = (x̃1,0, x̃2,0) for a consistent initial value be given. Keeping x̃1,0

fixed, we can determine a correction δ2 for the estimate x̃2,0 = x2,0 + δ2 by solving the
minimization problem

‖δ2‖2 = min!

subject to the constraint

‖Â22(t0)δ2 − Â2(t0)x̃0 − b̂2(t0)‖2 = min!,

i.e., δ2 = Â+
22(t0)(Â2(t0)x̃0 + b̂2(t0)). The corrected consistent initial condition is then given

by x1,0 = x̃1,0 and x2,0 = x̃2,0 − δ2, and thus x0 = Q

[
x̃1,0

x̃2,0 − δ2

]

.
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5.5 Sliding Motion

A special phenomena that can occur during the simulation of hybrid systems is a cyclic
changing between different modes of continuous operation, called chattering or sliding,
for example if nearly equal thresholds for the transition conditions of different modes are
given and the system starts to oscillate around these. These oscillations may be real
in the physical model since hysteresis, delays and other dynamic nonidealities lead to fast
oscillations. An example for such a system with physical chattering is the anti-lock braking
system in automobiles, for a simple model of an anti blocking system in a truck see [34]. On
the other hand, numerical errors may lead to numerical chattering as switching conditions
may be satisfied due to local errors. The numerical solution of a hybrid system exhibiting
chattering behavior requires high computational costs as small stepsizes are required to
restart the integration after each mode change. In the worst case, the numerical integration
breaks down, as it does not proceed in time, but chatters between modes. As chattering
causes severe problems in the numerical simulation it has to be treated in an appropriate
way. One possibility to prevent numerical chattering is the introduction of hysteresis
such that the integration in each mode is done in an interval of a length bounded from
below. Another way to avoid oscillations around switching surfaces and to reduce the
computational costs is to detect regions in which chattering can occur and to approximate
the system dynamics along the switching surface in this region. An additional mode, the so-
called sliding mode, can be inserted into the system that represents the dynamics during
sliding, and thus replaces the chattering. In the following, we will first consider sliding
motion for ODEs, extend the ideas to DAEs and finally apply the results to switched
differential-algebraic systems. Furthermore, in Section 5.5.4 we present the basic ideas of
introducing hysteresis to prevent chattering behavior.

5.5.1 Sliding Motion for Ordinary Differential Equations

Sliding motion is well understood for ordinary differential equations, see e.g. [39, 40, 145,
147]. To explain the basic ideas, we consider the following autonomous ODE system with
discontinuous right-hand side

ẋ = f(x), (5.23)

where the function f : Dx ⊂ R
n → R

n is piecewise continuous. This is no restriction of
the general case as each non-autonomous systems can be transformed into an autonomous
system by adding t as new variable. In particular, we restrict to the case where the function
f is discontinuous on a smooth switching surface Γ given by

Γ := {x ∈ Dx | g(x) = 0},

where g : Dx → R is continuously differentiable. Then, Γ separates the phase space Dx

into two domains

Γ+ = {x ∈ Dx | g(x) > 0} and Γ− = {x ∈ Dx | g(x) < 0},
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a) b)

c) d)

Γ Γ

Γ Γ

Γ+
Γ+

Γ+ Γ+

Γ− Γ−

Γ−
Γ−

f I f I

f I f I

f II

f IIf II

f II

Figure 5.6: Phase space behavior at a switching surface

and we can consider the following system of differential equations

ẋ =

{

f I(x) for x ∈ Γ+,

f II(x) for x ∈ Γ−,
(5.24)

where f I = f |Γ+ and f II = f |Γ− . The system (5.23) is completely described by (5.24) in
the domains Γ+ and Γ−, but on the switching surface Γ the standard definition of solution
for ODEs may not be applicable, as the behavior of the solution of (5.23) on the switching
surface is not defined. To cope with this, the discontinuous right-hand side of (5.23) can
be replaced by a differential inclusion, see e.g. [40], i.e.,

ẋ(t) ∈ η(t, x). (5.25)

If at a point (t, x) the function f is continuous, then the set η(t, x) consist only of one
point which is the value of the function f at this point. If (t, x) is a point of discontinuity
of f , then the set η(t, x) is to be defined in some other way.
In general, there are four types of solution behavior in the neighborhood of a switching
surface characterized by the directions of the vector fields f I and f II as depicted in Figure
5.6. If the vector fields point towards the surface from one side and away from the surface
from the other side as in cases a) and b) in Figure 5.6, the solution trajectory crosses
the discontinuity and the system has a classical solution. On the other hand, if both
vector fields point towards the switching surface Γ as in d) in Figure 5.6, then the solution
cannot leave this manifold, but sticks to the manifold, and the solution can be defined
via the differential inclusion (5.25). In this case chattering behavior during the numerical
integration can occur as depicted in Figure 5.7. In the last case, where the vector fields on
both sides point away from the surface as in c) in Figure 5.6, the switching surface cannot
be crossed and there exists a point beyond which no classical solution exists.

In reality, small parameters in the system prevent the system from chattering and induce a
smooth motion along the surface. In sliding motion the system dynamics are approximated
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Γ

Γ+

Γ−

Figure 5.7: Chattering behavior along a switching surface

in such a way that the state trajectory moves along the switching surface. There are two
main approaches to describe the dynamics of the system on a switching surface. The first
approach is called equivalence in dynamics or Filippov regularization, see e.g. [39, 40, 145].
Here, approximations of the solution trajectories on both sides in a small neighborhood
around the surface are used to determine the average velocity on the surface. Another
approach called equivalence in control is presented in [145]. Here, free solution components,
i.e., controls, in the system are chosen such that the solution trajectory moves along the
switching surface. It has been stated in [145] that if the true system behavior near the
switching surface can be attributed to hysteresis phenomena, then the method of equivalent
dynamics derives sliding behavior closer to the true system behavior than the method of
equivalent control. On the other hand, if there are no hysteresis effects the equivalent
control method may generate better approximation. In the following, we will describe the
approach of equivalence in dynamics in detail and afterwards shortly present the main
ideas of the method of equivalence in control.
In the Filippov regularization, for each point x ∈ Dx, the differential inclusion η(t, x) is
defined to be the smallest closed convex set containing all the limit values of f(x⋆) for
x⋆ /∈ Γ, x⋆ → x. Then, a function x(t) is said to be a solution of (5.23) if it is absolutely
continuous and satisfies (5.25) almost everywhere. For x⋆ approaching the point x ∈ Γ
from Γ− and Γ+, let the function f(x⋆) have the limit values

lim
x⋆∈Γ−

x⋆→x

f II(x⋆) = f II
Γ (x) and lim

x⋆∈Γ+

x⋆→x

f I(x⋆) = f I
Γ(x).

Then, the set η(t, x) is the line segment joining the end points of the vectors f II
Γ (x) and

f I
Γ(x) for x ∈ Γ. If this line is on one side of the tangent plane to the switching surface

Γ, then the solution passes from one side of the surface to the other side, see Figure 5.8.
On the other hand, if the line segment intersects the tangent plane, then the solutions
approach Γ from both sides, see Figure 5.9. In this case, the standard notion of solution is
not suitable as there is no indication of how a solution can be continued. Nevertheless, if
the line segment intersects the tangent plane, the intersection point is the endpoint of the
vector fΓ(x) which determines the velocity of the motion ẋ = fΓ(x) along the surface Γ at
x. From (5.25) the solution x(t) of the differential equation satisfies

ẋ = fΓ(x), (5.26)
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Figure 5.8: Regular switching at a switching surface
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Figure 5.9: Filippov’s construction of equivalent dynamics

where fΓ is a linear combination of f I
Γ and f II

Γ and therefore it is also a solution of (5.23).
If x ∈ Γ+, then fΓ equals f I and if x ∈ Γ−, then fΓ equals f II . Note that fΓ is a particular
selection from the set η(t, x). It is also possible to define other differential inclusions as we
will see below. The velocity vector fΓ of sliding motion in (5.26) lies on a plane tangential
to the surface, and therefore its end point is the intersection point of the tangential plane
and the straight line connecting the end points of f I

Γ and f II
Γ . This line segment can be

written as a convex combination of f I
Γ and f II

Γ , such that the equation for sliding motion
is given by

ẋ = fΓ(x) = αf I
Γ(x) + (1 − α)f II

Γ (x), (0 ≤ α ≤ 1). (5.27)

In the following, we assume that g;x(x) 6= 0 in a neighborhood of the switching surface
Γ. The parameter α should be selected such that the velocity vector is tangential to the
switching surface , i.e., g;x(x)fΓ(x) = 0 and therefore α is given by

α = [g;x(f
II
Γ − f I

Γ)]−1g;xf
II
Γ .

The Filippov construction of equivalent dynamics is depicted in Figure 5.9.
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Figure 5.10: Equivalent dynamics via hysteresis effects

In real systems delays, hysteresis and other nonidealities result in real sliding. The sliding
equations (5.27) derived by equivalent dynamics on the surface can be considered as the
motion of a limiting process. If we consider an infinitesimal hysteresis band of width ε
around the switching surface, then the dynamics on the surface are defined as the behavior
in the limit as ε → 0. Once the system hits the surface, oscillation in a neighborhood of
width 2ε occur. If ε is small, then the velocity vectors f II

Γ and f I
Γ in the neighborhood

of the discontinuity surface can be represented by their normal components f II
N , f I

N and
tangential components f II

T , f I
T , i.e., we neglect curvature and the gradient of the surface

is assumed to be constant. To determine the direction of the motion along the surface, we
calculate the average velocity on the surface. The time to cross the ε band is ∆t1 = 2ε

fI
N

for

f I
Γ and ∆t2 = − 2ε

fII
N

for f II
Γ , where f I

N = g;xf
I
Γ and f II

N = g;xf
II
Γ are the normal projections

of f I
Γ and f II

Γ onto the switching surface, see also Figure 5.10. The time to move back and
forth over the band is therefore given by

∆t = ∆t1 + ∆t2

and the tangential distance the system travels over the time interval ∆t is

∆x = f I
Γ∆t1 + f II

Γ ∆t2.

Then the average state velocity of the motion on the surface is given by

ẋav =
∆x

∆t
=

∆t1
∆t

f I
Γ +

(

1 −
∆t1
∆t

)

f II
Γ , (5.28)

with
∆t1
∆t

=
f II

N

f II
N − f I

N

.

Thus, the average velocity (5.28) equals fΓ in (5.27) and the equivalent dynamics on a
sliding surface corresponds to the limiting behavior when switching tends to be infinitely
fast.
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Figure 5.11: Equivalence in control vs. equivalence in dynamics

Another way to construct the set η(t, x) in (5.25) is given by the equivalence in control
method [145, 147]. In this case, we consider a system

ẋ = f(x, u(x)), (5.29)

where f : Dx × Du → Rn is a continuous function and the function u : Dx → R is
discontinuous on a smooth switching surface Γ = {x ∈ Dx | g(x) = 0}. At points belonging
to the surface Γ we assume that the equation of sliding motion is given by

ẋ = f(x, ueq(x)), (5.30)

where the equivalent control ueq is defined such that the vector f lies tangentially to the
surface Γ and the value ueq is contained in an interval [u−, u+], where u± are limiting values
of u on both sides of the surface Γ. In contrast to the Filippov construction, the endpoint
of the vector f(x, ueq(x)) lies on the intersection of the tangential plane to Γ at the point
x with the arc that is spanned by the endpoint of the vector f(x, u) when u varies from u−

to u+. Thus, in this case the set η(t, x) is an arc while in the Filippov construction η(t, x)
is the straight line connecting f(x, u+) and f(x, u−), see Figure 5.11. If the function f is
linear in u, then near the switching surface Γ the equation (5.29) can be written in the
form

ẋ = f0(x) + B(x)u(x). (5.31)

To obtain the motion along the surface Γ the equivalent control ueq must be chosen such
that ẋ is tangential to the surface Γ, i.e.,

g;x(x)ẋ = g;x(x)f0(x) + g;x(x)B(x)ueq = 0,

and thus

ueq = −[g;x(x)B(x)]−1g;x(x)f0(x), (5.32)
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if g;x(x)B(x) is nonsingular. The regularity of g;x(x)B(x) is also known as the transversality
condition and establishes that the control vector field B(x) is not tangential to the switching
surface Γ at any point x ∈ Dx. If ueq from (5.32) satisfies

u− ≤ ueq ≤ u+ or u+ ≤ ueq ≤ u−,

then by substituting the vector ueq into (5.31), we obtain the velocity vector of sliding
motion along Γ as

ẋ = f0(x) − B(x)[g;x(x)B(x)]−1g;x(x)f0(x).

The equivalence in control method is also applicable if discontinuities occur along the
intersection of several switching surfaces Γi and the control u is a vector with components
ui that are discontinuous on Γi, see [40, 145]. For systems that are linear with respect to
the control the equivalence in control approach coincides with the Filippov construction.

In the case of sliding motion we pursue the solution along the switching manifold Γ. The
Filippov construction (5.27) and also the equivalent control method approximate this mo-
tion as a motion tangential to the switching surface to construct an ordinary differential
equation for sliding motion. From a DAE point of view a better way to define the system
behavior during sliding is to append the condition that the solution should stay on the
manifold Γ as an algebraic constraint and define the differential-algebraic system in sliding
motion by

ẋ = αf I(x) + (1 − α)f II(x),

0 = g(x),
(5.33)

where the algebraic variable α is chosen such that the solution remains in Γ.

Theorem 5.28. Consider an ordinary differential system (5.23) where the right-hand side
f(x) is discontinuous on a smooth switching surface Γ = {x ∈ Dx | g(x) = 0} such that
(5.23) can be separated into f I(x) and f II(x) as in (5.24). If

g;x(x)(f I(x) − f II(x))

is nonsingular for all x ∈ Dx, then the equivalent dynamics of the system (5.23) during
sliding motion are described by the DAE in sliding motion (5.33), and the DAE (5.33) is
of strangeness index µ = 1.

Proof. Every solution of (5.23) is also a solution of (5.33) for α = 0 and α = 1, respectively.
Differentiation of the algebraic constraints yields

0 =
d

dt
g(x) = g;x(x)ẋ

= g;x(x)(αf I(x) + (1 − α)f II(x))

= αg;x(x)(f I(x) − f II(x)) + g;x(x)f II(x),

which can be solved for α, if g;x(x)(f I(x) − f II(x)) is nonsingular. Thus, we get a
strangeness-free system after one differentiation and therefore µ = 1.
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5.5.2 Sliding Motion for Differential-Algebraic Equations

The ideas of sliding motion for ODEs as described in Section 5.5.1 can be used to describe
sliding motion for discontinuous DAEs. For a first approach in this direction in the case of
semi-explicit d-index 1 DAEs in chemical engineering see [1]. Sliding motion for constrained
multibody systems is also treated in [34, 88].
In this section, we consider a general nonlinear DAE of the form

F (t, x, ẋ) = 0, (5.34)

with piecewise continuous function F : I×Dx×Dẋ → Rn, Dx, Dẋ ⊂ Rn that is discontinuous
on a smooth switching surface Γ = {(t, x) ∈ I × Dx | g(t, x) = 0} described by a switching
function g : I × Dx → R. Again, Γ separates the phase space into two domains

Γ+ = {(t, x) ∈ I × Dx | g(t, x) > 0},

Γ− = {(t, x) ∈ I × Dx | g(t, x) < 0}.

Therefore, we can rewrite the differential-algebraic equations as

{

F I(t, x, ẋ) = 0 for (t, x) ∈ Γ+,

F II(t, x, ẋ) = 0 for (t, x) ∈ Γ−,
(5.35)

where F I = F |Γ+ and F II = F |Γ− are smooth on Γ±, and we assume that the strangeness-
index is well-defined for F I and F II on Γ±, respectively. By index reduction as described
in Section 2.2.2, we can transform both systems in (5.35) to the corresponding reduced
systems provided that Hypothesis 2.37 holds for F I and F II in Γ+ and Γ+, respectively.
This means that without loss of generality we can consider the reduced systems

F̂ I
1 (t, x, ẋ) = 0,

F̂ I
2 (t, x) = 0,

(5.36a)

for (t, x) ∈ Γ+ and

F̂ II
1 (t, x, ẋ) = 0,

F̂ II
2 (t, x) = 0,

(5.36b)

for (t, x) ∈ Γ−. The reduced systems consist of decoupled ordinary differential equations
and algebraic equations, where the equations F̂ I

1 (t, x, ẋ) = 0 and F̂ II
1 (t, x, ẋ) = 0 describe

the dynamics of the system, while F̂ I
2 (t, x) = 0 and F̂ II

2 (t, x) = 0 are algebraic constraints
that force the solution onto a specific manifold. Further, we assume that the solution of the
DAE (5.35) within each region exists and is unique, i.e., there are no undetermined parts
in the system. Otherwise, if there are undetermined parts in the system we can consider
sliding mode control as described in Section 5.6.4. Further, we assume that changes in the
characteristic values only occur on the switching surface Γ and the number of differential
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and algebraic variables are the same for (5.36a) and (5.36b). Then, the reduced systems
(5.36) can be further transformed to the systems

ẋ1 = LI(t, x1),

x2 = RI(t, x1),
(5.37a)

for (x1, x2) ∈ Γ+, and

ẋ1 = LII(t, x1),

x2 = RII(t, x1),
(5.37b)

for (x1, x2) ∈ Γ−. Now, we can use the Filippov construction to describe the equivalent
dynamics of sliding motion along the switching surface by

ẋ1 = αLI
Γ(t, x1) + (1 − α)LII

Γ (t, x1),

where for t = const. and (t, x1, x2) ∈ Γ

LI
Γ(t, x1) = lim

(t,x⋆)∈Γ+,x⋆→x
LI(t, x⋆

1), LII
Γ (t, x1) = lim

(t,x⋆)∈Γ−,x⋆→x
LII(t, x⋆

1),

and α is chosen such that the solution remains on the switching surface Γ given by the
algebraic constraint g(t, x1, x2) = 0. To obtain the corresponding DAE for the system in
sliding motion, the algebraic constraints have to be considered in an appropriate way to
force the solution onto a specific manifold suited for both systems (5.37a) and (5.37b). In a
similar way, this constraint manifold can be defined by rotation of the constraint manifolds
RI(t, x1) and RII(t, x1), such that RI(t, x1) is turned into RII(t, x1) across the discontinuity
or vice versa depending on the direction of the discontinuity crossing. This means that the
constraint manifold during sliding motion is given by

x2 = αRI
Γ(t, x1) + (1 − α)RII

Γ (t, x1),

where for t = const. and (t, x1, x2) ∈ Γ

RI
Γ(t, x1) = lim

(t,x⋆)∈Γ+,x⋆→x
RI(t, x⋆

1), RII
Γ (t, x1) = lim

(t,x⋆)∈Γ−,x⋆→x
RII(t, x⋆

1).

Altogether, the DAE in sliding motion is given by

ẋ1 = αLI(t, x1) + (1 − α)LII(t, x1),

x2 = αRI(t, x1) + (1 − α)RII(t, x1),

0 = g(t, x1, x2).

(5.38)

Theorem 5.29. Consider a regular DAE (5.34) that is discontinuous on a smooth switch-
ing surface given by Γ = {(t, x) ∈ I × Dx | g(t, x) = 0} such that (5.34) can be separated
into the reduced systems (5.37a) and (5.37b). If

g;x2(t, x1, x2)
(
RII(t, x1) − RI(t, x1)

)

is nonsingular for all (t, x1, x2) ∈ I×Dx, then the equivalent dynamics during sliding motion
are described by the DAE (5.38), and the system (5.38) is regular and of strangeness index
µ = 1.
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Proof. As system (5.37) is regular also system (5.38) is regular due to construction. Dif-
ferentiating the two algebraic constraints yields

ẋ2 = α̇(RI − RII) + α(RI
;t + RI

;x1
ẋ1) + (1 − α)(RII

;t + RII
;x1

ẋ1),

and

0 = g;t + g;x1 ẋ1 + g;x2 ẋ2, (5.39)

omitting the function arguments. Replacing now the derivatives ẋ1 and ẋ2 in (5.39) yields

α̇g;x2(R
II − RI) =g;t + g;x1(αLI + (1 − α)LII)

+ g;x2

[
αRI

;t + (1 − α)RII
;t + (αRI

;x1
+ (1 − α)RII

;x1
)(αLI + (1 − α)LII)

]
,

such that under the assumption that g is differentiable and

g;x2(R
II − RI)

is nonsingular we get an explicit differential equation for the variable α̇.

5.5.3 Sliding Motion for Switched Differential-Algebraic Systems

Sliding motion for discontinuous DAEs as described in the previous section can be used
to handle chattering behavior in switched differential-algebraic systems. In this section,
we consider the following scenario. During the integration of a hybrid system H a mode
switch from mode l to mode k is detected. Let the two modes be separated by the j-th
switching surface Γl

j = {(t, x) ∈ Dl × R
nl | gl

j(t, x) = 0}, j ∈ J l, and assume that there

exists a mode transition j̃ ∈ Jk such that Γl
j = Γk

j̃
= {(t, x) ∈ Dk ×Rnk | gk

j̃
(t, x) = 0}, i.e.,

gl
j(t, x) = −gk

j̃
(t, x). Note that here, we restrict to switching functions independent of the

state derivative ẋ. Similar as in the previous section, under the assumption of regularity and
well-definedness of the strangeness index in each mode, the differential-algebraic systems
in the adjacent modes l and k can be transformed to the strangeness-free forms

ẋl
1 = Ll(t, xl

1),

xl
2 = Rl(t, xl

1),
(5.40)

and

ẋk
1 = Lk(t, xk

1),

xk
2 = Rk(t, xk

1).
(5.41)

In the following, we assume that gl
j;x(x) 6= 0 in a neighborhood of the switching surface

Γl
j. The hybrid differential-algebraic system exhibit sliding motion or chattering behavior

if the dynamical parts of the differential-algebraic systems (5.40) and (5.41) fulfill some



5.5 Sliding Motion 171

sliding condition. In Section 5.5.1 we have seen that sliding motion occurs if all solutions
near the surface Γl

j approach it from both sides, i.e., if the projections of the vectors Ll

and Lk onto the surface gradient are of opposite signs and are directed towards the surface
from both sides in a neighborhood of the switching surface. Thus, sliding occurs at a point
(t, x) ∈ Γl

j if the sliding condition

Ll
N = gl

j;xl
1
(t, xl

1, x
l
2)L

l
Γ(t, xl

1) < 0 and Lk
N = gk

j̃;xk
1
(t, xk

1, x
k
2)L

k
Γ(t, xk

1) > 0, (5.42)

is satisfied, where for t = const. and (t, x) ∈ Γl
j = Γk

j̃

Ll
Γ(t, xl

1) = lim
(t,x⋆)∈Λl,x⋆

1→x1

Ll(t, x⋆
1), Lk

Γ(t, xk
1) = lim

(t,x⋆)∈Λk,x⋆
1→x1

Lk(t, x⋆
1).

This means that we consider the directional derivatives of gl
j = −gk

j̃
along Ll

Γ, Lk
Γ, respec-

tively (see Definition 2.3) which correspond to the projections Ll
N and Lk

N of the vectors
Ll

Γ and Lk
Γ onto the gradient of the switching surface Γl

j. These directional derivatives can
be approximated numerically by

Ll
N ≈

1

δ
gl

j(t, x
l
1 + δLl(t, xl

1), x
l
2), Lk

N ≈
1

δ
gk

j̃
(t, xk

1 + δLk(t, xk
1), x

k
2), (5.43)

for small enough δ. The four different cases of phase space behavior near the switching
surface can then be characterized in terms of the projections Ll

N and Lk
N as follows:

1. If Ll
N > 0 and Lk

N > 0, then the system switches from mode l to mode k.

2. If Ll
N < 0 and Lk

N < 0, then the system switches from mode k to mode l.

3. If Ll
N > 0 and Lk

N < 0, then both flows are directed away from the surface.

4. If Ll
N < 0 and Lk

N > 0, then the sliding condition is satisfied.

The sliding surface Γl
S ⊆ Γ can then be defined by

Γl
S := {(t, x) ∈ Γl

j | Ll
N(t, x) < 0 and Lk

N(t, x) > 0},

as that part of the switching surface, where sliding occurs. This means that trajectories in
this region stay within this region until the boundary is reached, since trajectories leaving
the sliding surface will immediately return to it. If the solution trajectory of a hybrid
system directly traverse the discontinuity, i.e., the sliding condition is not fulfilled, the
solution continues in mode k after the mode change. If the solution trajectories in both
modes l and k are directed away from the surface, then the solution cannot be continued
uniquely after the mode change. Except in the case of an unhappily chosen initial value,
this normally should not occur.
In the numerical simulation of hybrid systems an immediate switch back to mode l after
one or a few integration steps in the numerical solution in mode k would result if the
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sliding condition is satisfied. To avoid this we can add an additional mode for the sliding
motion by defining the DAE during sliding and switch to the sliding mode instead. The
system should stay in sliding mode as long as the solution trajectory stays in the sliding
region, and resume in mode l or k, depending on the sign of the directional derivatives.
An additional difficulty in defining the DAE in sliding motion for hybrid systems is that it
can also happen that the characteristic values or the index change at a mode switch. Let
dl

µ, d
k
µ and al

µ, a
k
µ denote the number of differential and algebraic equations in mode l and

mode k, i.e., the dimension of xl
1, x

k
1 and xl

2, x
k
2 in (5.40) and (5.41), respectively. If dl

µ = dk
µ

and al
µ = ak

µ, then the system during sliding can be defined as in (5.38). But, it may also
happen that dl

µ 6= dk
µ and differential variables change to algebraic variables or vice verse

after the discontinuity. Let dl
µ + al

µ = dk
µ + ak

µ = n and without loss of generality assume
that dl

µ > dk
µ and al

µ < ak
µ. Then xl

1 and xk
2 can be further partitioned into

xl
1 =

[
xl

1,1

xl
1,2

]

, xk
2 =

[
xk

2,1

xk
2,2

]

,

with xl
1,1 ∈ R

dk
µ, xl

1,2 ∈ R
dl

µ−dk
µ and xk

2,1 ∈ R
al

µ , xk
2,2 ∈ R

ak
µ−al

µ . Furthermore, let the reduced
systems (5.40) and (5.41) be partitioned accordingly into

[
ẋl

1,1

ẋl
1,2

]

=

[
Ll

1(t, x
l
1,1, x

l
1,2)

Ll
2(t, x

l
1,1, x

l
1,2)

]

,

xl
2 = Rl(t, xl

1,1, x
l
1,2),

(5.44)

and

ẋk
1 = Lk(t, xk

1),
[
xk

2,1

xk
2,2

]

=

[
Rk

1(t, x
k
1)

Rk
2(t, x

k
1)

]

.
(5.45)

Then, the differential-algebraic system during sliding motion can be defined as

ẋ1 = α

[
Ll

1(t, x1)
Ll

2(t, x1)

]

+ (1 − α)

[
Lk(t, x1)

0

]

,

x2 = α

[
Rl(t, x1)

0

]

+ (1 − α)

[
Rk

1(t, x1)
Rk

2(t, x1)

]

,

0 = gl
j(t, x1, x2),

(5.46)

similar as in (5.38). In the same way as in Theorem 5.29, the DAE in sliding motion (5.46)
is regular and of strangeness index µ = 1.

Example 5.30. [34] Consider a multibody system with dry friction as given in Example
5.2 with equation of motion of the form

Mp̈ = fa(p, ṗ) − G(p)T λ − µF‖FN‖c(p) sign(c(p)T ṗ),

0 = g(p),
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where M is positive definite and the switching function is given by q(p, ṗ) = c(p)T ṗ de-
scribing the relative tangential velocity between the bodies. Here, c is a unit vector parallel
to the friction surface modeled by g(p) = 0 at the contact point. The sliding condition is
fulfilled if

‖cT M−1(fa − GT λ) + ċT ṗ‖ < µF‖FN‖c
TM−1c,

i.e., if the force in the direction of c is smaller than the maximal friction force. The Filippov
construction results in

Mp̈ = fa(p, ṗ) − G(p)T λ + (1 − 2α)µF‖FN‖c(p),

0 = g(p),

0 = c(p)T ṗ,

(5.47)

with additional algebraic variable α. When α is chosen such that q̇ = cT p̈ + ċT ṗ = 0, the
DAE (5.47) can be transformed to

Mp̈ = fa(p, ṗ) − G(p)T λ −
cT M−1(fa − GT λ) + ċT ṗ

cT M−1c
c,

0 = g(p).
(5.48)

Alternatively, the equations of motion for stiction can be obtained by adding the algebraic
equation q = cT ṗ = 0 and the Lagrange parameter λS to the system

Mp̈ = fa(p, ṗ) − G(p)T λ + c(p)λS,

0 = g(p),

0 = c(p)T ṗ.

Differentiation of the equation c(p)T ṗ = 0 gives

λS = −
cT M−1(fa − GT λ) + ċT ṗ

cT M−1c
,

and elimination of λS yields the above equation (5.48), i.e., λS = (1 − 2α)µF‖FN‖.

5.5.4 Hysteresis Switching

Another possibility to prevent a hybrid system from chattering is to built in hysteresis
that prevents the system from changing modes too quickly and thereby precluding the
possibility of unbounded chattering. The introduction of hysteresis can be properly applied
if numerical chattering between two modes l and k occurs that have transition conditions
that only differ in sign, i.e., there are some switching functions such that

gl
j(t, x

l, ẋl) = −gk
i (t, xk, ẋk), with j ∈ J l, i ∈ Jk.
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In this case, a hysteresis can be realized by adding a term ǫ > 0 to the transition conditions,
i.e., by defining the switching functions

ĝk
i = gk

i + ǫ and ĝl
j = gl

j + ǫ.

For independent transition conditions between two modes l and k or if numerical chattering
between more than two modes occur, the integration of a hysteresis is not so easy to realize.
In addition, if the determination of the exact switch point is essential for the system
behavior, then an artificial hysteresis cannot be inserted into the system. In this cases
only a different but possibly complex modeling can be used to obtain a system without
numerical chattering.
A further possibility to suppress chattering is so-called dwell-time switching, see e.g. [103].
Here, the basic idea is to have some fixed time τ > 0, called the dwell-time, such that, once
a mode l is chosen the system will remain in this mode for at least a time τ before another
mode transition can occur.
In general, during the numerical integration of hybrid systems all mode transitions have to
be observed closely to detect numerical chattering. If numerical chattering occurs during
the numerical simulation appropriate measures should be taken.

5.6 Control of Switched Systems

In this section we consider hybrid control problems, i.e., hybrid systems H as in Definition
5.3 consisting of DAEs (5.3) with specified undetermined parts ul describing the controls.
In control problems the system inputs ul are used to steer the solution of the system so that
a given property is satisfied. In general, classical control concepts for DAEs can be applied
to hybrid systems locally in every mode in the same way as the index reduction described
in Section 5.2, but some attention has to be paid to the transition of the system state
between modes. Choosing a control ul in some mode l influences the transition conditions
and mode changes of the hybrid system as well as the points in time at with switching
occurs. Thus, changes in the controls lead to a huge number of possible hybrid mode
trajectories and hybrid time trajectories. In addition, transitions between modes often
cause nonsmoothness of the solution which complicates the minimization problem used in
the optimal control theory.
In the following, we will restrict ourselves to hybrid systems H with linear time-invariant
DAEs of the form

Elẋl = Alxl + Blul, (5.49a)

yl = C lxl, (5.49b)

in each mode l ∈ M, where El, Al ∈ Rm,n, Bl ∈ Rm,k and C l ∈ Rp,n are constant matrices.
In the control context, systems of the form (5.49) are also known as descriptor systems.
Here, xl : Dl → R

n represents the state of the system in mode l, ul : Dl → R
k is the

input or control and yl : Dl → Rp is the output of the system in mode l ∈ M. As the
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output equation (5.49b) does not contribute to the analysis of the system behavior, it is
often omitted in theoretical considerations. For a particular input ul the system (5.49)
represents a differential-algebraic equation, such that the solvability theory for control
problems is related to that of DAEs. Using a behavior approach, see e.g. [67], by setting

zl =





xl

ul

yl





the system (5.49) corresponds to a linear DAE and the general theory of hybrid systems
can be applied, especially the reduction to strangeness-free form described in Section 5.2.
In the following, we will describe the main ideas for controlling hybrid systems H with
descriptor systems of the form (5.49) in each mode. At first, we consider open loop control
problems in Section 5.6.1, then feedback control in Section 5.6.2, and hybrid optimal control
problems in Section 5.6.3. Finally, in Section 5.6.4 we present an approach allowing sliding
mode control for linear hybrid descriptor systems.

5.6.1 Open Loop Control

In open loop control the question whether a system can be steered from an initial state
x0 at time t0 to another state xf at time tf is examined. Thus, we have to analyze if
a hybrid system H can be transfered from every possible state to every other state by
choosing suitable input functions ul(t) in every mode l ∈ M. We start with recalling
some important definitions in control theory. The first term concerns the solvability of the
descriptor system in mode l ∈ M for every input function and every initial value that is
consistent with this input.

Definition 5.31 (Consistency and regularity of control problems). The control
problem (5.49) in mode l ∈ M is called consistent if there exists an input function ul such
that the DAE (5.49) is solvable. It is called regular if for every sufficiently smooth input
function ul the DAE (5.49) is solvable and the solution in mode l is unique for consistent
initial values.

Then the following Corollary can be formulated characterizing the solvability of the de-
scriptor system (5.49) in mode l.

Corollary 5.32. If the pair (El, Al) of square matrices is regular (see Definition 2.28),
then the control problem (5.49) in mode l ∈ M is consistent and regular. If (El, Al) with
El, Al ∈ R

m,n is a singular matrix pair, then the control problem (5.49) in mode l ∈ M is
not regular.

Proof. See [82, Corollarys 2.54 and 2.55].

Further, we define the terms controllability and observability for the descriptor systems
(5.49) in each mode.
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Definition 5.33 (Controllability). The descriptor system (5.49) in mode l ∈ M is called
completely controllable if for any given initial state xl(t0) = x0 ∈ Rn at t0 ∈ Ii ⊆ Dl and
any final state x1 ∈ Rn there exists a control input ul such that the solution of (5.49) with
this control input fulfills xl(t1) = x1 after finite time t1 with t0 < t1 < ∞, and t1 ∈ Ii.

Definition 5.34 (Observability). The descriptor system (5.49) in mode l ∈ M is called
completely observable if the zero output of the descriptor system with ul = 0 implies that
this system has the trivial solution xl = 0 only.

Note that Definition 5.33 implies that, if the descriptor system in mode l is completely
controllable from (t0, x0) to (t1, x1), then the hybrid system H stays in mode l at least
until x1 is reached. In general, descriptor systems of the form (5.49) are not completely
controllable or completely observable, since the algebraic constraints fix the solution and
the output onto the constraint manifold. For this reason we also consider the following
definitions.

Definition 5.35 (Reachability, R-controllability). For the descriptor system (5.49) in
mode l ∈ M, a set Rl ⊆ Rn is called reachable from xl

0 if there exists a control input ul

that transfers the system from xl
0 to some xl

1 ∈ Rl in finite time, while staying in mode l.
System (5.49) is called controllable within the reachable set Rl (R-controllable) if any state
in Rl can be reached from any consistent initial state xl

0.

Definition 5.36 (R-Observability). The descriptor system (5.49) in mode l ∈ M is
called observable within the reachable set (R-observable) if the zero output of the descriptor
system with ul = 0 implies that all solutions of the system satisfy P l

rx
l = 0, where P l

r is
the projection onto the right deflating subspace corresponding to the finite eigenvalues of
(El, Al) (see the definition in (2.9)). A hybrid system H is called observable within the
reachable set (R-observable) if it is R-observable within each mode l ∈ M.

In the following, we assume R-controllability and R-observability of the hybrid system H,
as well as unique solvability locally in each mode l ∈ M.

Assumption 5.37. For a hybrid system H as in Definition 5.3 with linear descriptor
systems (5.49) in each mode l ∈ M, let (El, Al) be square and regular with m = n for
all l ∈ M. Further, assume that (5.49) is R-controllable as well as R-observable for each
mode.

For linear time-invariant descriptor systems (5.49), these controllability and observability
concepts can be characterized algebraically in terms of the matrices El, Al, Bl and C l.

Theorem 5.38. Consider the quadruple (El, Al, Bl, C l) as in (5.49).

1. The descriptor system (5.49) in mode l ∈ M is completely controllable if and only if

rank[αEl − βAl, Bl] = n

for all (α, β) ∈ C2\{(0, 0)}.
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2. The descriptor system (5.49) in mode l ∈ M is completely observable if and only if

rank

[
αEl − βAl

C l

]

= n

for all (α, β) ∈ C
2\{(0, 0)}.

3. The descriptor system (5.49) in mode l ∈ M is R-controllable if and only if

rank[λEl − Al, Bl] = n

for all λ ∈ C.

4. The descriptor system (5.49) in mode l ∈ M is R-observable if and only if

rank

[
λEl − Al

C l

]

= n

for all λ ∈ C.

Proof. See [19, 30].

Before we define the terms reachability and R-controllability for a hybrid system H we
introduce the term execution of a hybrid system for convenience.

Definition 5.39 (Execution). An execution of a hybrid system H as in Definition 5.3 is
given by (Tτ , {(xli(t), li)}) with hybrid time trajectory Tτ = {[τi, τ

′
i)} and hybrid solution

trajectory {(xli(t), li)}, where for each interval [τi, τ
′
i) we have that xli(t) is a solution of

the DAE in mode li for all t ∈ [τi, τ
′
i), and Lli

j (τ ′
i , x

li(τ ′
i), ẋ

li(τ ′
i)) = TRUE for some j ∈ J li .

Further, we have li+1 = Sli(j) and T
li+1

li
(xli(τ ′

i), ẋ
li(τ ′

i)) = [xli+1(τi+1), ẋ
li+1(τi+1)].

Definition 5.40 (Reachable state). A hybrid state (x̂, l̂) ∈ R
n × M is called reach-

able if there exists a finite execution (Tτ , {(xli(t), li)}N
i=1) with Tτ = {[τi, τ

′
i)}

N
i=1 and

(xlN (τN), lN ) = (x̂, l̂). The set of all reachable states of a hybrid system H is denoted
by RH.

Definition 5.41 (Reachability and R-controllability of a hybrid system). For a
hybrid system H as in Definition 5.3 with descriptor systems (5.49) in each mode a set
R ⊆ Rn × M is called reachable from the initial state (xl1

0 , l1) if there exists a sequence of
control inputs ul1 , ul2 , . . . , ulN and a corresponding mode trajectory Tm = {li}N

i=1, such that
the system state is transfered from (xl1

0 , l1) to some (xlk
1 , lk) ∈ R in finite time. The hybrid

system H is called controllable within the reachable set (R-controllable) if any hybrid state
in RH can be reached from any consistent initial state (xl1

0 , l1).

Under Assumption 5.37, we can give necessary conditions such that the hybrid system H
is R-controllable, i.e., for every consistent initial hybrid state we can find a sequence of
controls that steers the system to any state in RH.
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Figure 5.12: Controllability of a hybrid system

Theorem 5.42. Consider a hybrid system H as in Definition 5.3 with descriptor systems
(5.49) in each mode l ∈ M and assume that Assumption 5.37 holds. Further, let (xl1

0 , l1) ∈
Rn × M be a consistent initial hybrid state, i.e., xl1

0 is consistent for the DAE in mode
l1 ∈ M. Then, the hybrid system H is R-controllable and R-observable if and only if

1. for any mode lk ∈ M there exits a hybrid mode trajectory Tm = {li}
k
i=1 with finite

number of transitions k < ∞, and

2. xli(t) given by T li
li−1

(xli−1(t), ẋli−1(t)) = [xli(t), ẋli(t)] is consistent for every t ∈ I with
the DAE in mode li ∈ Tm.

Proof. Under Assumption 5.37 we have unique solvability for consistent initial values and
given controls ul in each mode l ∈ M, due to Corollary 5.32. Assume that H is R-
controllable and R-observable. Then, for any consistent initial state (xl1

0 , l1) any hybrid
state (xlk

f , lk) ∈ RH can be reached. This means that xlk
f ∈ Rlk and there exists a sequence

of controls {uli}k
i=1 and a corresponding mode trajectory Tm = {li}

k
i=1 such that the state

xl1
0 is transfered to xlk

f . Further, the initial conditions after mode changes have to be
consistent in the new mode to ensure the existence of a solution. On the other hand, we
consider an arbitrary xlk

f ∈ Rlk in the reachable set Rlk of some mode lk ∈ M. Then, due to

the assumptions, there exists a mode trajectory Tm = {li}k
i=0. Further, due to Assumption

5.37, in each mode li ∈ Tm we can find a corresponding control uli that steers the solution
to some x⋆ for which the next transition condition is satisfied, and thus the next switch
point τi is defined. As the initial conditions after each mode transitions are consistent
in the new mode for every t ∈ I, the mode transition can be performed and the solution
evolves in the new mode. After a finite number of transitions the system reaches mode lk
and a control ulk can be chosen that transfers the state to xlk

f . See also Figure 5.12.
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5.6.2 Feedback Control

In the control context a common approach is to modify the system properties using so-
called feedbacks, i.e., the input is chosen on the basis of observations from the state or the
output that can be measured. In a hybrid system H possible feedbacks for the input ul in
mode l ∈ M are given by

ul = F lxl + wl, (5.50)

ul = F lyl + wl, (5.51)

i.e., proportional state feedback (5.50) with F l ∈ R
k,n, or proportional output feedback (5.51)

with F l ∈ Rk,p, respectively. If we apply these feedbacks as controls to the system in mode
l ∈ M, we obtain the so-called closed-loop systems

Elẋl = (Al + BlF l)xl + Blwl, (5.52)

or

Elẋl = (Al + BlF lC l)xl + Blwl. (5.53)

Under certain conditions we can find a feedback in mode l such that the closed-loop systems
(5.52) or (5.53) in mode l are regular and of nilpotence index ν l at most one.

Theorem 5.43. Given a matrix quadruple (El, Al, Bl, C l) as in (5.49).

1. There exists a matrix F l ∈ Rk,n such that the matrix pair (El, Al + BlF l) is regular
and of index νl = ind(El, Al + BlF l) at most one if and only if El and Al are square
and

rank [El, AlT l, Bl] = n, (5.54)

where T l is a matrix whose columns span kernelEl.

2. There exists a matrix F l ∈ R
k,p such that the matrix pair (El, Al +BlF lC l) is regular

and of index νl = ind(El, Al + BlF lC l) at most one if and only if El and Al are
square and (5.54) as well as

rank





El

(Z l)T Al

C l



 = n, (5.55)

hold, where Z l is a matrix whose columns span kernel (El)T .

Proof. See, [82, Theorem 2.56].

In a similar way as before, if feedbacks in each mode l ∈ M can be chosen such that the
closed-loop systems in each mode l are regular and of index at most one, then the complete
hybrid system H is regular and of maximal index at most one.
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Theorem 5.44. Consider a hybrid system H as in Definition 5.3 with descriptor systems
(5.49) in each mode l ∈ M. Suppose that El, Al are square and the rank conditions (5.54),
and (5.55) hold for every l ∈ M. Then, there exist feedback controls (5.50) or (5.51) in
each mode such that the hybrid system H is regular and of maximal index at most one.

Proof. Due to Theorem 5.43, there exist matrices F l
1 ∈ Rk,n and F l

2 ∈ Rk,p in each mode
l ∈ M such that the matrix pairs (El, Al + BlF l

1) and (El, Al + BlF l
2C

l) are regular and of
index νl ≤ 1. Thus, the hybrid system H is regular and max

l∈M

νl ≤ 1.

Note, that Theorem 5.44 does not guarantee the existence of a solution of the overall hybrid
control problem.

Example 5.45. Consider a hybrid differential-algebraic control problem H consisting of
the following two closed-loop control systems

[
ẋ1

ẋ2

]

=

([
1 0
0 0

]

+

[
0
1

]
[
F1 F2

]
) [

x1

x2

]

in mode 1,

and
[
0
0

]

=

([
1 0
0 0

]

+

[
0
1

]
[
F1 F2

]
) [

x1

x2

]

in mode 2.

Condition (5.54) holds for both systems such that we can find a feedback for which the
closed-loop systems in both modes are regular and of index at most 1. Choosing

[
F1 F2

]
=

[
0 1

]
, for the system in mode 1 we get the matrix pair

([
1 0
0 1

]

,

[
1 0
0 1

])

,

which is clearly regular and of index ν1 = 0 and the unique solution is given by
[
x1

x2

]

= e(t−t0)

[
x1,0

x2,0

]

,

for some initial values x1,0, x2,0. For the system in mode 2 we get the matrix pair
([

0 0
0 0

]

,

[
1 0
0 1

])

,

which is also regular and of index ν2 = 1 and the unique solution is given by
[
x1

x2

]

=

[
0
0

]

.

Thus, if the hybrid system switches from mode 1 to mode 2, then a solution of the hybrid
control system only exists if the initial values after the switching are consistent with the
DAE in mode 2.

As emphasized in Example 5.45, in order to guarantee that a feedback control exists such
that the hybrid system H is regular and strangeness-free and possesses a solution, addi-
tionally consistency conditions for the transition functions need to hold in the same way
as in Theorem 5.42.
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5.6.3 Hybrid Optimal Control

Classical control applications such as stabilization of a system or path following can often
be formulated in terms of optimal control problems. In hybrid optimal control problems
the aim is to find an optimal hybrid solution trajectory such that a cost functional is
minimized subject to the systems dynamics, as well as further constraints defining the
transition conditions. For hybrid systems the optimal control problem has been introduced
in [12, 94]. The linear-quadratic optimal control problem for hybrid systems consisting of
ordinary differential equations has been studied in [126].
In contrast to the standard optimal control problem, the parameters that can be optimized
in hybrid control systems are the control inputs ul, the number of switchings and the
switching times, as well as the mode sequence, i.e., the order in which the transition
conditions are satisfied. Here, we will assume that the system switches between modes a
fixed number of times. In [154] a two stage optimization method for switched systems has
been proposed which first computes optimal control inputs ul and a hybrid time trajectory
for a given number of switchings and a given sequence of active modes, and in a second
stage updates the number of switchings and the mode sequence to optimize the solution
obtained in the first stage.

In the following, we assume that the initial time t0 and a consistent initial state x0 are given
and that the final time tf is fixed. The final state x(tf ) is assumed to be free. Further,
we restrict ourselves to autonomous switching at times τi, i = 2, . . . , NI induced by sign
changes in the switching functions given by gl

j(t, x) for all l ∈ M, j ∈ J l = {1, . . . , nl
T}.

Further, we set τ1 = t0 and τNI+1 = tf . Then, the linear-quadratic optimal control problem
for a hybrid system H as defined in Definition 5.3, with linear descriptor systems of the
form (5.49a) in each mode l ∈ M (omitting the output equations) and with a finite number
NI < ∞ of subintervals, can be defined as follows. For given t0, tf , with t0 < tf < ∞,
initial condition

x(t0) = x0, (5.56a)

and initial mode l1 ∈ M, the hybrid optimal control problem is to determine a sequence
of control input u(t) = {uli(t)}NI

i=1, a corresponding sequence of switch points τ = {τi}
NI

i=2,
and a corresponding mode sequence {li}

NI

i=1, where li ∈ M is the active mode in the interval
[τi, τi+1), which drives the state x(t) = {xli(t)}NI

i=1, starting from the initial value x0 at t0
in initial mode l1, while minimizing the following quadratic cost functional

S(x, u, τ) =
1

2

{

x(tf )
T Mx(tf) +

NI∑

i=1

∫ τi+1

τi

[
x
u

]T [
Qli Sli

ST
li

Rli

] [
x
u

]

dt

}

, (5.56b)

where M ∈ R
n,n and Qli ∈ R

n,n are symmetric positive semi-definite matrices, Rli ∈ R
k,k

are symmetric positive definite matrices, and Sli ∈ R
n,k, for all li ∈ M, subject to the

system dynamics

Eliẋ = Alix + Bliu, for t ∈ [τi, τi+1), i = 1, . . . , NI, (5.56c)
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with Eli , Ali ∈ Rn,n, Bli ∈ Rn,k in each mode li, and subject to the constraints

gli
j (τi+1, x(τi+1)) = 0, for i = 1, . . . , NI − 1, j ∈ J li . (5.56d)

In the following, we set

gli(t, x(t)) =






gli
1 (t, x(t))

...

gli
nl

T

(t, x(t))




 .

Note that u and x in (5.56b), (5.56c), (5.56d) always denote the control uli and the state
xli in the corresponding mode li for t ∈ [τi, τi+1). We omit the subscript li for ease of rep-
resentation. Further, we require that the solution x(t) of the hybrid system is continuous,
i.e., at the switch points we have

x(τi+1) = x(τ−
i+1), for i = 1, . . . , NI − 1, (5.56e)

where x(τ−
i+1) = lim

t→τ−

i+1

x(t) is the value of the solution in the previous mode expanded to

the switch point. The sequence of switch points and the sequence of modes depend on the
state x(t) as the switch points are the roots of the switching functions, and the next mode
li+1 is determined by the mode allocation function via

li+1 = Sli(j). (5.56f)

In the following, we assume without loss of generality that the DAE (5.56c) in each mode
li is regular and strangeness-free as a free system without control, i.e., when u = 0. This is
not a restriction, since we can always use index reduction for the behavior formulation and
feedback regularization to obtain a reduced system with these properties in each mode,
see e.g. [83]. Further, we assume that the initial conditions x(τ−

i ) are consistent for all
successor modes li in [τi, τi+1) and that Mx(tf) lies in the cokernel of ElNI . Again, the
requirement of consistent initial conditions is not a restriction, since they can be obtained
from the reduced system. Then, by using calculus of variations we can derive necessary
conditions for optimality of the hybrid system that lead to a sequence of two-point boundary
value problems with additional transversality conditions at the switching times.

Theorem 5.46. Consider the optimal control problem (5.56). Let u⋆, x⋆, and τ⋆ = {τ ⋆
i }

NI

i=2

be the optimal solution of the optimal control problem, with u⋆ ∈ Uk(τ⋆) := {u(t) ∈
Rk | u(t) piecewise continuous on [τ ⋆

i , τ ⋆
i+1) for all τ ⋆

i ∈ τ⋆} and x⋆ ∈ C0([t0, tf ], R
n) the

corresponding solution of

Eli ẋ = Alix + Bliu⋆, for t ∈ [τ ⋆
i , τ ⋆

i+1).

Suppose that (5.56c) is regular and strangeness-free as a behavior system and that Mx(tf ) ∈
cokernel (ElNI ). Further, let gli(t, x(t)) be differentiable and assume that d

dt
gli(t, x(t)) is
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nonsingular for all t ∈ [τ ⋆
i , τ ⋆

i+1], li ∈ M . Then, there exist a piecewise continuous co-

state λ(t) ∈ Rn and Lagrange multipliers ηli ∈ Rn
li
T , with ηli 6= 0, li ∈ M, such that

x⋆(t), λ(t), u⋆(t),τ⋆ and ηli solve the linear boundary value problem





0 Eli 0
−(Eli)T 0 0

0 0 0









λ̇
ẋ
u̇



 =





0 Ali Bli

(Ali)T Qli Sli

(Bli)T ST
li

Rli









λ
x
u



 , for t ∈ [τi, τi+1), (5.57a)

with boundary conditions

x(t0) = x0, (ElNI )T λ(tf ) = Mx(tf ), (5.57b)

and transversality conditions at the switch points of the form

(Eli)T λ(τ−
i+1) =

1

2
gli
;x(τi+1, x(τi+1))

T ηli , (5.57c)

(Eli+1)T λ(τ+
i+1) = (Eli)T λ(τ−

i+1) −
1

2
gli
;x(τi+1, x(τi+1))

T ηli , (5.57d)

H li+1(x, u, λ)
∣
∣
τ+
i+1

= H li(x, u, λ)
∣
∣
τ−

i+1
+ gli

;t(τi+1, x(τi+1))
T ηli , (5.57e)

for i = 1, . . . , NI − 1, where the Hamiltonians H l(x, u, λ) in each mode l ∈ M are defined
by

H l(x, u, λ) = xT Qlx + xT Slu + uT ST
l x + uT Rlu + λT (Alx + Blu) + (Alx + Blu)T λ.

Note that τ ⋆
1 = τ1 = t0 and τ ⋆

NI+1 = τNI+1 = tf are fixed and we have discontinuities in λ
and in the Hamiltonians at the switching times τi+1.

Proof. We use a variation of the Pontryagin maximum principle, see e.g. [69]. Let u⋆ be
an optimal control. We consider the first order variation

u(t) = u⋆(t) + εv(t), (5.58)

with v(t) chosen such that u(t) ∈ Uk(τ). Then, for each mode li we have

Eliẋ = Alix + Bli(u⋆(t) + εv(t)), t ∈ [τi, τi+1),

and the local solution is given by

x(t) =eÊDÂ(t−τi)ÊDÊx(τ−
i ) +

∫ t

τi

eÊDÂ(t−s)ÊDB̂(u⋆(s) + εv(s))ds

− (I − ÊDÊ)
νli−1∑

i=0

(ÊÂD)iÂDB̂
di

dti
(u⋆(t) + εv(t)),
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where x(τ−
i ) = lim

t→τ−

i

x(t) is the value of the solution in the previous mode expanded to the

switch point and Ê = (λ̂Eli − Ali)−1Eli , Â = (λ̂Eli − Ali)−1Ali , B̂ = (λ̂Eli − Ali)−1Bli for
some λ̂ ∈ R, and νli = ind(Eli , Ali), see also Theorem 2.31. This gives

x(t) =x⋆(t) + ε





∫ t

τi

eÊDÂ(t−s)ÊDB̂v(s)ds − (I − ÊDÊ)
νli−1∑

i=0

(ÊÂD)iÂDB̂v(i)(t)



 ,

=x⋆(t) + εϕ(t),

i.e., the corresponding variation of x, where ϕ(t) solves the DAE

Eliϕ̇ = Aliϕ + Bliv(t), ϕ(τi) = 0, for t ∈ [τi, τi+1).

Further, we consider the corresponding variation of the switch points

τi = τ ⋆
i + δτi, i = 1, . . . , NI + 1,

that depends on the variation of x in such a way, that if τ ⋆
i+1 is a root of gli

j (t, x⋆(t)), then

τi+1 is a root of gli
j (t, x(t)). Thus, from

0 = gli
j (τi+1, x(τi+1)) =gli

j (τ ⋆
i+1 + δτi+1, x⋆(τ

⋆
i+1 + δτi+1) + εϕ(τ ⋆

i+1 + δτi+1))

=δτi+1[ẋ⋆(τ
⋆
i+1)g

li
j;x(τ

⋆
i+1, x⋆(τ

⋆
i+1)) + gli

j;t(τ
⋆
i+1, x⋆(τ

⋆
i+1))]

+ εϕ(τ ⋆
i+1)g

li
j;x(τ

⋆
i+1, x⋆(τ

⋆
i+1)) + h.o.t

we get

δτi+1 = −εϕ(t)

[
d

dt
gli

j (t, x⋆(t))

]−1
∂

∂x
gli

j (t, x⋆(t))

∣
∣
∣
∣
t=τ⋆

i+1

. (5.59)

We assume that all δτi are sufficiently small, i.e., τ ⋆
i−1 + δτi−1 < τ ⋆

i + δτi < τ ⋆
i+1 + δτi+1, and

the successor mode is still given by li+1 = Sli(j), i.e., no other root in gli
k , k ∈ J li , k 6= j

occurs before. Next, we introduce Lagrange multipliers ηli 6= 0 ∈ Rn
li
T for all li ∈ M and

form an augmented cost functional

Sa(x, u, τ) =
1

2

{

x(tf )
T Mx(tf) +

NI−1∑

i=1

(ηli)T gli(τi+1, x(τi+1))

+

NI∑

i=1

∫ τi+1

τi

[
x
u

]T [
Qli Sli

ST
li

Rli

] [
x
u

]

dt

}

.
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Introducing another Lagrange multiplier function λ(t) and using the Hamiltonians H li

locally in each mode li, the cost functional Sa(x, u, τ) can be written as

Sa(x, u, τ) =
1

2

{

x(tf )
T Mx(tf) +

NI−1∑

i=1

(ηli)T gli(τi+1, x(τi+1))

+

NI∑

i=1

∫ τi+1

τi

(H li(x, u, λ) − λT (Eliẋ) − (Eliẋ)T λ)dt

}

,

and analogously for u⋆, x⋆, τ⋆

Sa(x⋆, u⋆, τ⋆) =
1

2

{

x⋆(tf )
T Mx⋆(tf ) +

NI−1∑

i=1

(ηli)T gli(τ ⋆
i+1, x⋆(τ

⋆
i+1))

+

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(H li(x⋆, u⋆, λ) − λT (Eliẋ⋆) − (Eliẋ⋆)
T λ)dt

}

.

Combining these formulas, we get

Sa(x, u, τ) − Sa(x⋆, u⋆, τ⋆) =
1

2

{

x(tf )
T Mx(tf ) − x⋆(tf )

T Mx⋆(tf )

+

NI−1∑

i=1

(ηli)T [gli(τi+1, x(τi+1)) − gli(τ ⋆
i+1, x⋆(τ

⋆
i+1))]

+

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(H li(x, u, λ) − H li(x⋆, u⋆, λ))dt

+

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(λT (Eliẋ⋆ − Eliẋ)
︸ ︷︷ ︸

−εEli ϕ̇

+ (Eliẋ⋆ − Eliẋ)T

︸ ︷︷ ︸

−ε(Eli ϕ̇)T

λ

︸ ︷︷ ︸

−2ελT Eli ϕ̇

)dt

+

NI∑

i=1

∫ τ⋆
i+1+δτi+1

τ⋆
i+1

(H li(x, u, λ) − λT (Eliẋ) − (Eliẋ)T λ)dt

−
NI∑

i=1

∫ τ⋆
i +δτi

τ⋆
i

(H li(x, u, λ) − λT (Eliẋ) − (Eliẋ)T λ)dt

}

,

using that τi = τ ⋆
i + δτi and δτi small enough. For t ∈ [τ ⋆

i , τ ⋆
i+1) we have

1

2

{
H li(x, u, λ) − H li(x⋆, u⋆, λ)

}
=

1

2

{
xT Qlix + xT Sliu + uT ST

li
x + uT Rliu

+ λT (Alix + Bliu) + (Alix + Bliu)T λ

− xT
⋆ Qlix⋆ − xT

⋆ Sliu⋆ − uT
⋆ ST

li
x⋆ − uT

⋆ Rliu⋆

−λT (Alix⋆ + Bliu⋆) − (Alix⋆ + Bliu⋆)
T λ
}

,
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and using that

u = u⋆ + εv, x = x⋆ + εϕ,

we get

1

2

{
H li(x, u, λ) − H li(x⋆, u⋆, λ)

}
=

1

2
ε
{
xT

⋆ Qliϕ + ϕT Qlix⋆ + xT
⋆ Sliv + ϕT Sliu⋆

+ uT
⋆ ST

li
ϕ + vT ST

li
x⋆ + uT

⋆ Rliv + vT Rliu⋆

+λT (Aliϕ + Bliv) + (Aliϕ + Bliv)T λ
}

+ O(ε2)

=ε
{
[xT

⋆ Qli + uT
⋆ ST

li
+ λT Ali ]ϕ

+[xT
⋆ Sli + uT

⋆ Rli + λTBli ]v
}

+ O(ε2).

Further, we have

gli(τi+1, x(τi+1)) − gli(τ ⋆
i+1, x⋆(τ

⋆
i+1))

= gli(τ ⋆
i+1 + δτi+1, x⋆(τ

⋆
i+1 + δτi+1) + εϕ(τ ⋆

i+1 + δτi+1)) − gli(τ ⋆
i+1, x⋆(τ

⋆
i+1))

= δτi+1g
li
;t(τ

⋆
i+1, x⋆(τ

⋆
i+1)) + (εϕ(τ ⋆

i+1) + δτi+1ẋ⋆(τ
⋆
i+1))g

li
;x(τ

⋆
i+1, x⋆(τ

⋆
i+1)) + R(δτi+1, ε),

where the remainder term R(δτi+1, ε) contains higher order terms of the variations δτi+1

and ε, and

xT Mx − xT
⋆ Mx⋆ = 2εxT

⋆ Mϕ + O(ε2).

In addition, via partial integration we get

−

∫ τ⋆
i+1

τ⋆
i

ελT Eliϕ̇dt = − ελT Eliϕ
∣
∣
τ⋆
i+1

τ⋆
i

+ ε

∫ τ⋆
i+1

τ⋆
i

λ̇T Eliϕdt

= −ελT (τ ⋆
i+1)E

liϕ(τ ⋆
i+1) + ε

∫ τ⋆
i+1

τ⋆
i

λ̇T Eliϕdt,
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such that, altogether, we have

Sa(x, u, τ) − Sa(x⋆, u⋆, τ⋆) = O(ε2) + εxT
⋆ (tf )Mϕ(tf )

+
1

2

NI−1
∑

i=1

(ηli)T
[

δτi+1g
li
;t(t, x⋆) + (εϕ(t) + δτi+1ẋ⋆(t))g

li
;x(t, x⋆)

]∣
∣
∣
τ⋆
i+1

+ R(δτi+1, ε)

+ ε

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

([xT
⋆ Qli + uT

⋆ ST
li

+ λT Ali + λ̇T Eli ]ϕ + [xT
⋆ Sli + uT

⋆ Rli + λT Bli ]v)dt

− ε

NI∑

i=1

λT (τ⋆
i+1)E

liϕ(τ⋆
i+1)

+
1

2

NI−1
∑

i=1

τ⋆
i+1+δτi+1∫

τ⋆
i+1

(H li(x, u, λ) − H li+1(x, u, λ) − 2λT (Eli − Eli+1)ẋ)dt

+
1

2

τ⋆
NI+1+δτNI+1
∫

τ⋆
NI+1

(H lNI (x, u, λ) − 2λT ElNI ẋ)dt −
1

2

τ⋆
1 +δτ1∫

τ⋆
1

(H l1(x, u, λ) − 2λT El1 ẋ)dt.

Since δτ1 = δτNI+1 = 0, the last two integrals vanish and from the midpoint theorem
of integral calculus (see e.g. [41, §18, Theorem 7]) it follows that there exist a ξi+1 ∈
[τ ⋆

i+1, τ
⋆
i+1 + δτi+1], i = 1, . . . , NI − 1, such that

τ⋆
i+1+δτi+1∫

τ⋆
i+1

(H li(x, u, λ) − H li+1(x, u, λ) − 2λT ((Eli − Eli+1)ẋ))dt

= δτi+1 (H li(x, u, λ) − H li+1(x, u, λ) − 2λT (Eli − Eli+1)ẋ)
∣
∣
ξi+1

.

Since δτi+1 is small, we can assume that ξi+1 = τ ⋆
i+1, and with (5.59) and defining

G(t, x) =

[
d

dt
gli

j (t, x)

]−1
∂

∂x
gli

j (t, x)

we get

Sa(x, u, τ) − Sa(x⋆, u⋆, τ⋆) = O(ε2) + εxT
⋆ (tf )Mϕ(tf )

−
1

2
ε

NI−1∑

i=1

(ηli)T ϕ[G(t, x⋆)(g
li
;t(t, x⋆) + ẋ⋆g

li
;x(t, x⋆)) − gli

;x(t, x⋆)]
∣
∣
τ⋆
i+1

+ R(δτi+1, ε)

+ ε

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

([xT
⋆ Qli + uT

⋆ ST
li

+ λT Ali + λ̇T Eli ]ϕ + [xT
⋆ Sli + uT

⋆ Rli + λT Bli ]v)dt

− ε

NI∑

i=1

λT (τ ⋆
i+1)E

liϕ(τ ⋆
i+1)
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−
1

2
ε

NI−1∑

i=1

ϕG(t, x) [H li(x, u, λ) − H li+1(x, u, λ) − 2λT (Eli − Eli+1)ẋ]
∣
∣
τ⋆
i+1

.

Since Sa(x, u, τ) − Sa(x⋆, u⋆, τ⋆) ≥ 0 for all ε that are sufficiently small, it follows that the
factor of ε must vanish for all v and corresponding ϕ. Choosing λ as solution of

−(Eli)T λ̇(t) = (Ali)T λ(t) + Qlix⋆ + Sliu⋆, for t ∈ [τ ⋆
i , τ ⋆

i+1) (5.60)

with terminal conditions

(Eli)T λ(τ ⋆
i+1) =

1

2
gli
;x(τ

⋆
i+1, x⋆(τ

⋆
i+1))

T ηli , for i = 1, . . . , NI − 1, (5.61)

and

(ElNI )T λ(τ ⋆
NI+1) = Mx⋆(tf ), (5.62)

the first part of the integrand vanishes and we get as second condition that
∫ τ⋆

i+1

τ⋆
i

[xT
⋆ Sli + uT

⋆ Rli + λT Bli ]v dt = 0, for all v ∈ Uk(τ).

Thus, it follows immediately that

xT
⋆ Sli + uT

⋆ Rli + λT Bli ≡ 0, for all t ∈ [τ ⋆
i , τ ⋆

i+1). (5.63)

The conditions for the remaining terms in the first and last sum to vanish are given by

H li+1(x, u, λ)
∣
∣
τ⋆+
i+1

= H li(x, u, λ)
∣
∣
τ⋆−
i+1

+ gli
;t(τ

⋆
i+1, x⋆(τ

⋆
i+1))

T ηli ,

(Eli+1)T λ(τ+
i+1) = (Eli)T λ(τ−

i+1) −
1

2
gli
;x(τ

⋆
i+1, x⋆(τ

⋆
i+1))

T ηli .
(5.64)

Taking together equations (5.56a), (5.56c), (5.56d), (5.60), (5.61), (5.62), (5.63), and (5.64)
we get a sequence of two-point boundary value problems (5.57).

To prove the opposite statement, i.e., that the solution of the boundary value problem (5.57)
yields a solution of the optimal control problem (5.56) we need some further assumptions
on the cost functional and on the switching functions.

Theorem 5.47. Let x⋆, λ, u⋆, τ⋆, η
l be chosen such that they solve the boundary value prob-

lem (5.57). Further, let the matrices

[
Qli Sli

ST
li

Rli

]

be positive semi-definite and assume that

gli ∈ C2([τi, τi+1], R
n

li
T ) for all modes li ∈ M with

(ηli)T gli
;xx(τi+1, x(τi+1)) ≥ 0. (5.65)

Then,
Sa(x, u, τ) ≥ Sa(x⋆, u⋆, τ⋆)

for all x, u, τ satisfying (5.56a), (5.56c), (5.56e), and (5.56d).
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Proof. We define

φ(s) = Sa(sx⋆ + (1 − s)x, su⋆ + (1 − s)u, sτ⋆ + (1 − s)τ).

Then, the assertion is equivalent to the statement that φ(s) has its minimum at s = 1 for
all x⋆, u⋆, τ⋆ satisfying the hybrid system H. As φ(s) is quadratic in s it has a minimum
for s = 1 if and only if

dφ

ds

∣
∣
∣
∣
s=1

= 0, and
d2φ

ds2

∣
∣
∣
∣
s=1

≥ 0.

We have

dφ

ds

∣
∣
∣
∣
s=1

= Sa;x(x⋆, u⋆, τ⋆)(x⋆ − x) + Sa;u(x⋆, u⋆, τ⋆)(u⋆ − u) + Sa;τ (x⋆, u⋆, τ⋆)(τ⋆ − τ),

and

Sa;x(x⋆, u⋆, τ⋆) = xT
⋆ M |tf +

1

2

NI−1∑

i=1

(ηli)T gli
;x(t, x⋆)

∣
∣
τ⋆
i+1

+

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(xT
⋆ Qli + uT

⋆ ST
li
)dt,

Sa;u(x⋆, u⋆, τ⋆) =

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(xT
⋆ Sli + uT

⋆ Rli)dt,

Sa;τ (x⋆, u⋆, τ⋆) =
1

2

NI−1∑

i=1

(ηli)T (gli
;t(t, x⋆) + gli

;x(t, x⋆)ẋ⋆)
∣
∣
τ⋆
i+1

+
1

2

NI∑

i=1

[
x⋆

u⋆

]T [
Qli Sli

ST
li

Rli

] [
x⋆

u⋆

]
∣
∣
∣
∣
∣

τ⋆
i+1

τ⋆
i

.

Further, we have

NI∑

i=1

[
x⋆

u⋆

]T [
Qli Sli

ST
li

Rli

] [
x⋆

u⋆

]
∣
∣
∣
∣
∣

τ⋆
i+1

τ⋆
i

=

NI∑

i=1

[
H li(x⋆, u⋆, λ) − λT (Eliẋ⋆) − (Eliẋ⋆)

T λ
]∣
∣
τ⋆
i+1

τ⋆
i

= −
NI−1∑

i=1

[H li+1(x⋆, u⋆, λ) − H li(x⋆, u⋆, λ) − 2λT (Eli+1 − Eli)ẋ⋆]
∣
∣
τ⋆
i+1

− [H l1(x⋆, u⋆, λ) − 2λT El1ẋ⋆]
∣
∣
τ⋆
1

+ [H lNI (x⋆, u⋆, λ) − 2λT ElNI ẋ⋆]
∣
∣
τ⋆
NI+1

,

and thus, we get

dφ

ds

∣
∣
∣
∣
s=1

= xT
⋆ M(x⋆ − x)|tf

+
1

2

NI−1∑

i=1

(ηli)T
[
gli
;x(t, x⋆)(x⋆ − x) + (gli

;t(t, x⋆) + gli
;x(t, x⋆)ẋ⋆)(τ

⋆
i+1 − τi+1)

]∣
∣
τ⋆
i+1
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+

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(xT
⋆ Qli(x⋆ − x) + uT

⋆ ST
li
(x⋆ − x))dt

+

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

(xT
⋆ Sli(u⋆ − u) + uT

⋆ Rli(u⋆ − u))dt

−
1

2

NI−1∑

i=1

[H li+1(x⋆, u⋆, λ) − H li(x⋆, u⋆, λ) − 2λT (Eli+1 − Eli)ẋ⋆]τ⋆
i+1

(τ ⋆
i+1 − τi+1)

−
1

2
[H l1(x⋆, u⋆, λ) − 2λTEl1 ẋ⋆]τ⋆

1
(τ ⋆

1 − τ1)

+
1

2
[H lNI (x⋆, u⋆, λ) − 2λT ElNI ẋ⋆]τ⋆

NI+1
(τ ⋆

NI+1 − τNI+1).

Since τ1 = τ ⋆
1 and τNI+1 = τ ⋆

NI+1, the last two terms vanish. Multiplying the second equation
of (5.57a) once with xT

⋆ and once with xT and inserting the other two equations of (5.57a)
yields

xT
⋆ Qlix⋆ = −xT

⋆ (Eli)T λ̇ − xT
⋆ (Ali)T λ − xT

⋆ Sliu⋆

= −xT
⋆ (Eli)T λ̇ − ẋT

⋆ (Eli)T λ + uT
⋆ (Bli)T λ − xT

⋆ Sliu⋆

= −xT
⋆ (Eli)T λ̇ − ẋT

⋆ (Eli)T λ − uT
⋆ ST

li
x⋆ − uT

⋆ Rliu⋆ − xT
⋆ Sliu⋆, (5.66)

xT Qlix⋆ = −xT (Eli)T λ̇ − ẋT (Eli)T λ − uT ST
li
x⋆ − uT Rliu⋆ − xT Sliu⋆, (5.67)

and therefore

xT
⋆ Qli(x⋆ − x) = − λ̇T Eli(x⋆ − x) − λT Eli(ẋ⋆ − ẋ) − xT

⋆ Sli(u⋆ − u)

− uT
⋆ Rli(u⋆ − u) − uT

⋆ ST
li
(x⋆ − x).

(5.68)

With this we have

dφ(s)

ds

∣
∣
∣
∣
s=1

= xT
⋆ M(x⋆ − x)|tf −

NI∑

i=1

∫ τ⋆
i+1

τ⋆
i

λ̇T Eli(x⋆ − x) + λT Eli(ẋ⋆ − ẋ)dt

+
1

2

NI−1∑

i=1

(ηli)T
[
gli
;x(t, x⋆)(x⋆ − x) + (gli

;t(t, x⋆) + gli
;x(t, x⋆)ẋ⋆)(τ

⋆
i+1 − τi+1)

]∣
∣
τ⋆
i+1

−
1

2

NI−1∑

i=1

[H li+1(x⋆, u⋆, λ) − H li(x⋆, u⋆, λ) − 2λT (Eli+1 − Eli)ẋ⋆]
∣
∣
τ⋆
i+1

(τ ⋆
i+1 − τi+1).

Using partial integration, we get

∫ τ⋆
i+1

τ⋆
i

λ̇TEli(x⋆ − x)dt = λT Eli(x⋆ − x)
∣
∣
τ⋆
i+1

τ⋆
i

−

∫ τ⋆
i+1

τ⋆
i

λTEli(ẋ⋆ − ẋ)dt,



5.6 Control of Switched Systems 191

and thus, we have

dφ(s)

ds

∣
∣
∣
∣
s=1

= xT
⋆ M(x⋆ − x)|tf −

NI∑

i=1

λT Eli(x⋆ − x)
∣
∣
τ⋆
i+1

+

NI∑

i=1

λT Eli(x⋆ − x)
∣
∣
τ⋆
i

+
1

2

NI−1∑

i=1

(ηli)T
[
gli
;x(t, x⋆)(x⋆ − x) + (gli

;t(t, x⋆) + gli
;x(t, x⋆)ẋ⋆)(τ

⋆
i+1 − τi+1)

]∣
∣
τ⋆
i+1

−
1

2

NI−1∑

i=1

[H li+1(x⋆, u⋆, λ) − H li(x⋆, u⋆, λ) − 2λT (Eli+1 − Eli)ẋ⋆]
∣
∣
τ⋆
i+1

(τ ⋆
i+1 − τi+1).

With the conditions (5.57b), (5.57c), (5.57d) and (5.57e) all of the above terms vanish and
we have dφ

ds

∣
∣
s=1

= 0. For the second derivative of φ with respect to s we get

d2φ(s)

ds2

∣
∣
∣
∣
s=1

= (x⋆ − x)TSa;xx(x⋆, u⋆, τ⋆)(x⋆ − x) + (u⋆ − u)TSa;uu(x⋆, u⋆, τ⋆)(u⋆ − u)

+ Sa;ττ (x⋆, u⋆, τ⋆)(τ⋆ − τ)2 + 2Sa;xu(x⋆, u⋆, τ⋆)(x⋆ − x)(u⋆ − u)

+ 2Sa;τx(x⋆, u⋆, τ⋆)(τ⋆ − τ)(x⋆ − x) + 2Sa;τu(x⋆, u⋆, τ⋆)(τ⋆ − τ)(u⋆ − u).

We have

Sa;xx(x⋆, u⋆, τ⋆) = M +
1

2

NI−1
∑

i=1

(ηli)T gli
;xx(t, x⋆)

∣
∣
∣
τ⋆
i+1

+

NI∑

i=1

Qli(τ
⋆
i+1 − τ⋆

i ),

Sa;xu(x⋆, u⋆, τ⋆) =
1

2

NI∑

i=1

(Sli + ST
li
)(τ⋆

i+1 − τ⋆
i ),

Sa;xτ (x⋆, u⋆, τ⋆) =
1

2

NI−1
∑

i=1

(ηli)T (gli
;xt(t, x⋆) + gli

;xx(t, x⋆)ẋ⋆)
∣
∣
∣
τ⋆
i+1

+

NI∑

i=1

(xT
⋆ Qli + uT

⋆ ST
li
)
∣
∣
τ⋆
i+1

τ⋆
i

,

Sa;uu(x⋆, u⋆, τ⋆) =

NI∑

i=1

Rli(τ
⋆
i+1 − τ⋆

i ),

Sa;uτ (x⋆, u⋆, τ⋆) =

NI∑

i=1

(xT
⋆ Sli + uT

⋆ Rli)
∣
∣
τ⋆
i+1

τ⋆
i

,

Sa;ττ (x⋆, u⋆, τ⋆) =
1

2

NI−1
∑

i=1

(ηli)T (gli
;tt(t, x⋆) + 2gli

;tx(t, x⋆)ẋ⋆ + gli
;xx(t, x⋆)ẋ

2
⋆ + gli

;x(t, x⋆)ẍ⋆)
∣
∣
∣
τ⋆
i+1

+
1

2

NI∑

i=1

∂

∂t

[

H li(x⋆, u⋆, λ) − λT (Eli ẋ⋆) − (Eli ẋ⋆)
T λ
]τ⋆

i+1

τ⋆
i

,

using the symmetry of second derivatives of gli . Altogether, we have

d2φ

ds2

∣
∣
∣
∣
s=1

= (x⋆ − x)T M(x⋆ − x) +

NI∑

i=1

[
x⋆ − x

u⋆ − u

]T [
Qli Sli

ST
li

Rli

] [
x⋆ − x

u⋆ − u

]

(τ⋆
i+1 − τ⋆

i ) (5.69a)
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+
1

2

NI−1
∑

i=1

(x⋆ − x)T (ηli)T gli
;xx(t, x⋆)(x⋆ − x)

∣
∣
∣
τ⋆
i+1

(5.69b)

+

NI−1
∑

i=1

(ηli)T (gli
;xt(t, x⋆) + gli

;xx(t, x⋆)ẋ⋆)
∣
∣
∣
τ⋆
i+1

(τ⋆ − τ)(x⋆ − x) (5.69c)

+
1

2

NI−1
∑

i=1

(ηli)T (gli
;tt(t, x⋆) + 2gli

;tx(t, x⋆)ẋ⋆ + gli
;xx(t, x⋆)ẋ

2
⋆ + gli

;x(t, x⋆)ẍ⋆)
∣
∣
∣
τ⋆
i+1

(τ⋆ − τ)2 (5.69d)

− 2

NI−1
∑

i=1

λ̇T (Eli − Eli+1)(x⋆ − x)|τ⋆
i+1

(τ⋆ − τ) (5.69e)

+

NI−1
∑

i=1

[
1

2
(H li

;t − H
li+1

;t ) − λ̇T (Eli − Eli+1)ẋ⋆ − λT (Eli − Eli+1)ẍ⋆

]

τ⋆
i+1

(τ⋆ − τ)2, (5.69f)

using (5.68). From (5.57d) and (5.57e) we get that

λ̇T Eli

∣
∣
∣
τi+1

=
1

2
(ηli)T [gli

;xt(t, x) + gli
;xx(t, x)ẋ]

∣
∣
τi+1

,

λ̇T (Eli − Eli+1)
∣
∣
∣
τi+1

=
1

2
(ηli)T [gli

;xt(t, x) + gli
;xx(t, x)ẋ]

∣
∣
τi+1

,

H li
;t − H

li+1

;t

∣
∣
∣
τi+1

= −(ηli)T [gli
;tt(t, x) + gli

;tx(t, x)ẋ]
∣
∣
τi+1

,

such that the terms (5.69c), (5.69d), (5.69e) and (5.69f) vanish and we obtain

d2φ

ds2

∣
∣
∣
∣
s=1

=(x⋆ − x)T M(x⋆ − x) +

NI∑

i=1

[
x⋆ − x

u⋆ − u

]T [
Qli Sli

ST
li

Rli

] [
x⋆ − x

u⋆ − u

]

(τ⋆
i+1 − τ⋆

i )

+
1

2

NI−1
∑

i=1

(x⋆ − x)T (ηli)T gli
;xx(t, x⋆)(x⋆ − x)

∣
∣
∣
τ⋆
i+1

.

Since M and

[
Qli Sli

ST
li

Rli

]

are positive semidefinite for all modes and

(ηli)T gli
;xx(τ

⋆
i+1, x

⋆(τ ⋆
i+1)) ≥ 0

for all li ∈ M we have that d2φ

ds2

∣
∣
∣
s=1

≥ 0.

Thus, if the matrices

[
Qli Sli

ST
li

Rli

]

are positive definite for each mode li, the condition (5.65)

holds for the switching functions, and if x⋆, λ⋆, u⋆, τ⋆, and η satisfy the boundary value
problem (5.57) with the given transversality conditions, then x⋆, u⋆ and τ⋆ form the optimal
solution of the hybrid optimal control problem (5.56). Unfortunately, these conditions are,
in general, not necessary, since the solution of the boundary value problem (5.57) may
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not exist or may not be unique. The solution of the boundary value problem (5.57) for
each mode li ∈ M can be obtained by solving an initial value problem for a matrix Riccati
equation in the same way as in the standard linear-quadratic optimal control problem for
DAEs, see e.g. [83].

5.6.4 Sliding Mode Control

The freedom in the choice of the controls ul in each mode can also be used to steer the
system dynamics during sliding motion in such a way that the solution trajectory of the
hybrid system stays on the switching surface and in addition evolves as smooth as possible
over the switch point. Thus, the principle of sliding mode control is to choose a control
law, such that the solution of the descriptor system is forced to stay on a certain switching
surface. Sliding mode control is widely used in the control theory for ordinary differential
equations, for an introduction to sliding mode control see e.g. [145, 146]. To force the
system state to stay on a switching surface, one must ensure that the system is able to
reach the switching surface from any initial condition and, having reached the switching
surface, that the control action is able to maintain the system state on the switching
surface. In the following, we consider a linear hybrid system H that switches between two
modes l and k described by the linear time-invariant descriptor systems

Elẋl = Alxl + Blul + bl(t), (5.70)

and

Ekẋk = Akxk + Bkuk + bk(t), (5.71)

with xl(t), xk(t) ∈ R
n. Here, we have again omitted the output equations as they do not

contribute to the following analysis. We assume that switching occurs along the switching
surface gl

j1
(t, xl) = −gk

j2
(t, xk) = 0 with j1 ∈ J l, j2 ∈ Jk and that a sliding condition is

satisfied. Further, we assume that the descriptor systems (5.70) and (5.71) are regular
and R-controllable as well as R-observable, i.e., the Assumption 5.37 should be satisfied,
and further the transition function T k

l should provide a smooth solution. Using a behavior
approach, i.e., by setting

zl =

[
xl

ul

]

,

the two systems can be transformed to strangeness-free form, i.e., we can consider equiva-
lent strangeness-free descriptor systems similar as in Theorem 2.34.

Theorem 5.48. Let E,A ∈ Rn,n, B ∈ Rn,k and (E,A) be regular (i.e. the corresponding
descriptor system is consistent and regular due to Corollary 5.32). Then, the correspond-
ing descriptor system is equivalent (in the sense that the solution sets are in one-to one
correspondence via a scaling by nonsingular matrices) to a descriptor system of the form

ẋ1 = B12u2 + b1(t),

0 = x2 + B22u2 + b2(t).
(5.72)
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Here, dµ and aµ are again the number of differential and algebraic equations.

Proof. See [84, Theorem 7].

Thus, using Theorem 5.48, without loss of generality we can consider the following two
reduced descriptor systems

ẋl
1 = Bl

12u
l
2 + bl

1(t),

0 = xl
2 + Bl

22u
l
2 + bl

2(t),
(5.73)

and

ẋk
1 = Bk

12u
k
2 + bk

1(t),

0 = xk
2 + Bk

22u
k
2 + bk

2(t).
(5.74)

Next, we want to determine an equivalent control ueq that forces the solutions of the
two descriptor systems (5.73) and (5.74) onto the switching surface. For convenience, we
assume that the switching function gl

j1
is linear in x and already partitioned according to

the reduced form (5.73), i.e.,

gl
j1

(t, xl) = C l
1x

l
1 + C l

2x
l
2, (5.75)

with C l
1 ∈ R

1,dl
µ, C l

2 ∈ R
1,al

µ . From the equivalent control method introduced in Section
5.5.1 for ordinary differential equations we know that an equivalent control ul

2,eq for system
(5.73) can be obtained from the sliding condition via the solution of the system

d

dt
gl

j1
(t, xl) = C l

1ẋ
l
1 + C l

2ẋ
l
2 = 0.

Using the differential equation in (5.73) and the derivative of the algebraic equation in
(5.73) we get

ul
2,eq = (C l

1B
l
12)

−1[C l
2ḃ

l
2(t) − C l

1b
l
1(t)],

assuming that ul
2 is a piecewise constant function, i.e., u̇l

2 = 0, and assuming that C l
1B

l
12is

invertible (transversality condition). Then, substituting the equivalent control ul
2,eq into

(5.73) yields the differential-algebraic system during sliding motion of the form

ẋl
1 = Bl

12(C
l
1B

l
12)

−1[C l
2ḃ

l
2(t) − C l

1b
l
1(t)] + bl

1(t),

0 = xl
2 + Bl

22(C
l
1B

l
12)

−1[C l
2ḃ

l
2(t) − C l

1b
l
1(t)] + bl

2(t).
(5.76)

Analogously, an equivalent control uk
2,eq and a differential-algebraic system in sliding motion

can be derived for the descriptor system (5.74).

Theorem 5.49. Consider the reduced regular descriptor system (5.73). Assume that
gl

j1
(t, xl) is given by (5.75) and C l

1B
l
12 is nonsingular. Then, the differential-algebraic

system (5.76) during sliding is regular and strangeness-free.

Proof. The differential-algebraic system (5.76) consists of an ordinary differential equa-
tion for xl

1 and a decoupled algebraic equation for xl
2. Thus, the system is regular and

strangeness-free.
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5.7 Future Work

A number of open questions remain in the analysis and in particular in the control of
general nonlinear hybrid differential-algebraic systems. In the modeling of hybrid systems
an important point is to allow that multiple transition conditions can be satisfied at the
same point in time. Hybrid systems with this property arise frequently in practical appli-
cations, due to the use of modeling tools that implicitly define switching functions for each
model component. Coupling together a number of similar components each having its own
switching function often leads to hybrid models where a number of switching functions
change their values at the same time. Further, we have assumed that the successor mode is
uniquely determined by the mode allocation function. In practical applications this might
be difficult to realize since the successor mode can depend on the system state. Another
problem that arises is that the transition condition that causes the mode switching might
not be fulfilled anymore after the consistent reinitialization. This problem of so-called
discontinuity sticking as well as consistent event location is treated e.g. in [13].
In Section 5.6 we have extended the basic concepts of control theory for linear time-invariant
descriptor systems to the case of hybrid systems. A more detailed investigation of control
theoretical concepts is required considerig time-variant hybrid systems as well as nonlinear
systems. Again, the control theory for linear DAEs with variable coefficients as presented
in [9, 51, 77] and the theory for nonlinear DAEs as presented in [79, 83] can be used to
describe the control theoretical concepts for the system in each mode, such that the results
obtained in Section 5.6 in principle can also be extended to linear time-variant and nonlinear
hybrid systems. Again, the number of characteristic values and therefore also the number
of controls can change at a switch point, such that an investigation of the transitions
at a mode change is required. For hybrid optimal control problems necessary conditions
for optimality have been derived that lead to a sequence of boundary value problems with
additional transversality conditions at the switch points, under the assumption that a fixed
number of switch points occur. The problem to determine an optimal number of switch
points and a corresponding optimal sequence of modes has to be considered for hybrid
optimal control problems. Further, a more detailed investigation of sliding mode control
for differential-algebraic systems with variable coefficients as well as nonlinear differential-
algebraic systems is required considering also more general switching functions.





Chapter 6

Numerical Methods for Switched

Differential-Algebraic Systems

The numerical simulation of hybrid differential-algebraic systems requires the efficient treat-
ment of certain aspects in the hybrid system behavior. Besides the robust numerical inte-
gration of the DAEs in each operation mode, the points in time at which a mode change
occur have to be detected accurately and in strict temporal sequence as they influence the
mode switching and the future behavior of the hybrid systems. Thus, the points in time at
which a transition condition changes its logical value have to be detected, which correspond
to roots of the switching functions. These switch points have to be located presicely, as
they are the initial points for the further integration. Further, the system state at the
switch point has to be determined to restart the integration method in the new mode.
Since the switch points will in general not coincide with the points chosen by the stepsize
control, an interpolation method is needed that interpolates the computed solution at the
detected switch point. In the following, we describe how these aspects of hybrid system
simulation can be treated efficiently. At first, in Section 6.1 we review some basic aspects
of polynomial interpolation. Next, in Section 6.2 we present numerical integration meth-
ods for DAEs, namely BDF methods and implicit Runge-Kutta methods, and show how
interpolation between gridpoints can be realized using these methods. In Section 6.3 we
consider the state event location and detection and present a root finding procedure based
on a modified secant method that is used to determine the roots of the switching functions.
Finally, in Section 6.4 we design a mode controller that combines the previously discussed
methods for the numerical solution of hybrid differential-algebraic systems.

6.1 Polynomial Interpolation

In this section we consider the problem to approximate a function f(t) for which function
values fi at discrete points ti are given. The most frequently used method to approximate
the function f(t) is polynomial interpolation. The proofs of the following results are given
e.g. in [134, Chapter 3].

Let (n + 1) discrete, pairwise disjoint nodes t0, . . . , tn and corresponding values f0, . . . , fn

be given. Further, let Πn denote the space of polynomials of maximal degree n, i.e.,

Πn := {p : R → R | p(t) =
k∑

i=0

ait
i, ai ∈ R, k ≤ n}. (6.1)

197
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The aim of polynomial interpolation is to find a polynomial pn ∈ Πn of degree n which
satisfies the interpolation condition

pn(ti) = fi, for i = 0, . . . , n. (6.2)

The existence and uniqueness of polynomial interpolation is the basis for the following
observations.

Theorem 6.1. Consider (n+1) arbitrary points (ti, fi), i = 0, . . . , n with pairwise disjoint
nodes ti 6= tj for all i 6= j. Then, there exists a unique interpolation polynomial pn(t) ∈ Πn

such that pn(ti) = fi for all i = 0, . . . , n.

There are different possibilities to represent the interpolation polynomial. On the one hand,
the Lagrange interpolation formula can be used. For given nodes t0, . . . , tn we consider the
Lagrange interpolation polynomials

Li(t) =
n∏

j=0
j 6=i

t − tj
ti − tj

, i = 0, . . . , n. (6.3)

These polynomials of degree n have the property

Li(tk) =

{

1, if i = k,

0, if i 6= k
,

and the polynomial defined by

pn(t) :=

n∑

i=0

fiLi(t) (6.4)

fulfills the interpolation condition (6.2). The explicit computation of the Lagrange polyno-
mials is too expensive for the calculate of an interpolation polynomial, but the Lagrange
interpolation formula (6.4) allows to derive formulas for numerical differentiations.

Theorem 6.2. Let f ∈ Cn([t0, tn], R). Then, there exists an ξ ∈ (t0, tn) such that

f (n) = n!
n∑

i=0

fi

n∏

j=0
j 6=i

1

ti − tj
.

The error in the polynomial interpolation depends on the degree of the interpolation poly-
nomial.

Theorem 6.3. Let f ∈ Cn+1([t0, tn], R) and consider an interpolation polynomial pn ∈ Πn

with pairwise disjoint nodes (t0, f0), . . . , (tn, fn). Then for each t̄ ∈ [t0, tn] we have

f(t̄) − pn(t̄) =
f (n+1)(ξ)

(n + 1)!

n∏

i=0

(t̄ − ti), ξ ∈ (t0, tn).
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On the other hand, the Newton interpolation formula can be used for the formulation of
the interpolation polynomial.

Definition 6.4 (Divided difference). For a given number of nodes (tj , fj), j = 0, . . . , n
the recursion

f [tj ] := fj,

f [tj , . . . , tj+k] :=
f [tj+1, . . . , tj+k] − f [tj , . . . , tj+k−1]

tj+k − tj
,

for j = 0, . . . , n, k = 0, . . . , n− j, defines the k-th divided difference of (t0, f0), . . . , (tn, fn).

Using divided differences, the polynomial pn(t) of degree n that interpolates (ti, fi) for
i = 0, . . . , n can be expressed by the Newton interpolation formula

pn(t) =
n∑

j=0

j−1
∏

l=0

(t − tl)f [t0, . . . tj ]. (6.5)

The Newton interpolation formula (6.5) allows to simply add further nodes and thus in-
crease the degree of the interpolation polynomial successively.

6.2 DAE Integration Methods

In the numerical integration of DAEs, it is known for some time that applying standard
discretization schemes for ordinary differential equations directly to differential-algebraic
equations may lead to many difficulties due to the algebraic and hidden constraints, see
e.g. [17, 59]. It may happen that the solution of the discretized equation is not uniquely
solvable, while the original problem has a unique solution, or the numerical solution may
drift-off from the analytical solution due to discretization errors. Further, many differential-
algebraic systems behave like stiff differential equations which forces one to use methods
with good stability properties. Therefore, not all numerical methods that are suitable for
ordinary differential equations are also suitable for the numerical treatment of differential-
algebraic equations. Further, the consistency of the approximate solution plays an im-
portant role in the accuracy and stability of numerical algorithms. In the following, we
will use implicit Runge-Kutta methods and BDF methods for the numerical integration of
differential-algebraic equations. We restrict to BDF and collocation Runge-Kutta methods
since they have the great advantage to provide continuous solution representations which
enable an efficient interpolation at switch points and since they are well suited for the
numerical integration of DAEs.

In the following, we consider an initial value problem for nonlinear DAEs of the form (2.3)
with initial value (2.4) in an interval I = [t0, tf ], and we assume that the system has a unique
solution provided that the initial value is consistent, i.e., the system is regular. As described
in Section 2.2.2, we can transform a higher index problem (2.3) to a strangeness-free system
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with the same solution. Therefore, in the following, we restrict our considerations to regular
strangeness-free DAEs of the form

F̂1(t, x, ẋ) = 0,

F̂2(t, x) = 0,
(6.6)

i.e., instead of the direct discretization of a higher index differential-algebraic equation
(2.3), we discretize the equivalent strangeness-free formulation (6.6). The advantage of
this equivalent strangeness-free formulation is that a parameterization of the constraint
manifold is explicitly available, such that the numerical solution can be forced to lie on
this manifold. In the following, let t0 < t1 < t2 < · · · < tN = tf be the gridpoints in the
interval I with ti = ti−1 + h and stepsize h, and we denote by xi the approximations to
the solution x(ti) at time ti, for i = 1, . . . , N . Here, we concentrate on a fixed stepsize
h =

tf−t0

N
in order to present the main results. A discretization method for the solution of

(6.6) is given by an iteration

Xi+1 = Φ(ti,Xi, h), (6.7)

where Xi ∈ Rn is an approximation to the solution at ti, and X (ti) ∈ Rn represents the
actual solution at ti.

Definition 6.5 (Consistency of a discretization method). A discretization method
(6.7) is said to be consistent of order p if

‖X (ti+1) − Φ(ti,X (ti), h)‖ ≤ Chp+1,

for a constant C independent of h.

Definition 6.6 (Stability of a discretization method). A discretization method (6.7)
is said to be stable if there exists a vector norm ‖.‖ such that

‖Φ(ti,X (ti), h) − Φ(ti,Xi, h)‖ ≤ (1 + hK)‖X (ti) − Xi‖

in this vector norm, with a constant K independent of h.

Definition 6.7 (Convergence of a discretization method). A discretization method
(6.7) is said to be convergent of order p if

‖X (tN) − XN‖ ≤ Chp,

with a constant C independent of h, provided that

‖X (t0) − X0‖ ≤ C̃hp,

with a constant C̃ independent of h.

Theorem 6.8. If the discretization method (6.7) is stable and consistent of order p, then
it is convergent of order p.

Proof. See [82, Theorem 5.4].

In the following we consider two types of discretization methods (6.7), namely Runge-Kutta
methods and BDF methods.
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6.2.1 Runge-Kutta Methods

In this section we consider the discretization of the strangeness-free DAE (6.6) via Runge-
Kutta methods. An s-stage Runge-Kutta method for the computation of numerical approx-
imations xi to the values x(ti) of a solution x of (6.6) has the form

xi+1 = xi + h
s∑

j=1

βjẊi,j , (6.8a)

where for j = 1, . . . , s the values Ẋi,j are given as solutions of the nonlinear system

F̂1(ti + γjh,Xi,j , Ẋi,j) = 0,

F̂2(ti + γjh,Xi,j) = 0,
(6.8b)

and the so-called internal stages Xi,j are given by

Xi,j = xi + h

s∑

l=1

αjlẊi,l, j = 1, . . . , s. (6.8c)

The coefficients αjl, βj and γj determine a particular Runge-Kutta method. In general,
the coefficients are assumed to satisfy the condition

γj =
s∑

l=1

αjl, i = 1, . . . , s,

and the remaining freedom in the coefficients is used to obtain a certain order of consistency.
Setting Xi = xi, X (ti) = x(ti), and Φ(ti,Xi, h) = xi + h

∑s

j=1 βjẊi,j, the Runge-Kutta
method (6.8) can be seen as a general discretization method (6.7).

Theorem 6.9. If the coefficients αjl, βj and γj of the Runge-Kutta method given by (6.8)
satisfy the conditions

B(p) :
s∑

j=1

βjγ
k−1
j =

1

k
, k = 1, . . . , p,

C(q) :
s∑

l=1

αjlγ
k−1
l =

1

k
γk

j , j = 1, . . . , s, k = 1, . . . , q, (6.9)

D(r) :
s∑

j=1

βjγ
k−1
j αjl =

1

k
βl(1 − γk

l ), l = 1, . . . , s, k = 1, . . . , r,

with p ≤ q + r +1 and p ≤ 2q +2, then the method is consistent and convergent of order p.

Proof. See e.g. [58, p. 208].
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An important class of Runge-Kutta methods for differential-algebraic equations are the
so-called stiffly accurate Runge-Kutta methods, see e.g. [59]. These are defined to satisfy

βj = αsj for all j = 1, . . . , s. (6.10)

From (6.10) it follows that the numerical solution xi+1 coincides with the last stage Xi,s.
Therefore, it can be guaranteed that the numerical solution obtained by a stiffly accurate
Runge-Kutta method is consistent with the strangeness-free DAE (6.6).
Another important class of Runge-Kutta methods are the so-called collocation Runge-Kutta
methods. Starting with parameters γj, j = 1, . . . , s, that satisfy

0 < γ1 < · · · < γs = 1, (6.11)

and setting γ0 = 0, we can define the Lagrange interpolation polynomials corresponding to
the parameters γj

Ll(ξ) =
k∏

j=0
j 6=l

ξ − γj

γl − γj

, L̃l(ξ) =
k∏

m=l
m 6=l

ξ − γm

γl − γm

, (6.12)

and the coefficients

αjl =

∫ γj

0

L̃l(ξ)dξ, βj =

∫ 1

0

L̃j(ξ)dξ, j, l = 1, . . . , s. (6.13)

This choice fixes a Runge-Kutta method with βj = αsj for j = 1, . . . , s, and thus the
collocation methods are stiffly accurate. The stage values Xi,l, l = 1, . . . , s, together with
Xi,0 = xi define a polynomial πs ∈ Πs via

πs(t) =
s∑

l=0

Xi,lLl

(
t − ti

h

)

, (6.14)

and the derivative of πs at the internal stages is given by

Ẋi,j = π̇s(ti + γjh) =
1

h

s∑

l=0

Xi,lL̇l(γj), j = 1, . . . , s.

Thus, in order to fix the new approximation xi+1 = πs(ti+1) = Xi,s we require that the
polynomial πs given by (6.14) satisfies the strangeness-free system (6.6) at the so-called
collocation points tij = ti + γjh, j = 1, . . . , s.

Theorem 6.10. The collocation Runge-Kutta methods defined by (6.8) and xi+1 = Xi,s

with coefficients (6.13) and collocation points as in (6.11) are convergent of order p = s.

Proof. See [82, Theorem 5.17].



6.2 DAE Integration Methods 203

A special class of Runge-Kutta methods that are covered by Theorem 6.10 are the so-called
Radau IIa methods defined by the conditions B(2s−1), C(s), and D(s−1) of (6.9) together
with γs = 1.

Theorem 6.11. Choosing the nodes γj, j = 1, . . . , s, in (6.11) and the coefficient αjl and
βj such that B(2s − 1), C(s), and D(s − 1) of (6.9) are satisfied, then the corresponding
collocation Runge-Kutta method defined by (6.8) and xi+1 = Xi,s is convergent of order
p = 2s − 1.

Proof. See [82, Theorem 5.18].

Due to the special choice of the nodes, the order of the Radau IIa methods is higher than
suggested by Theorem 6.10. This effect is also called superconvergence. Therefore, Radau
IIa methods have a large number of advantages as a high convergence rate and excellent
stability properties, see also [59].

Further, Radau IIa methods are stiffly accurate by construction such that the consistency
of the approximation xi obtained from a Radau IIa method applied to strangeness-free
DAEs of the form (6.6) follows from the consistency of the stages. These facts make the
Radau IIa methods excellent candidates for the numerical integration of initial value prob-
lems for strangeness-free differential-algebraic equations of the form (6.6). All presented
convergence results are based on the assumption that we use a constant stepsize. In the
case of regular strangeness-free problems it is possible to use the same stepsize selection
techniques as in the case of ordinary differential equations, see, e.g., [58]. Thus, the easy
development of a suitable and efficient stepsize control, see e.g. [59], is a further advantage
of Radau IIa methods. On the other hand, the discretization and the implementation of
implicit Runge-Kutta methods is very technical and the solution of the nonlinear systems
(6.8b) arising in every integration step is expensive.

6.2.2 BDF Methods

Besides one-step methods as the Runge-Kutta methods presented in the previous section
also multi-step methods are frequently used for the numerical integration of DAEs. The
general idea of a multi-step method is to use several previous approximations xi, . . . , xi−k+1

for the computation of the approximation xi+1 to the solution value x(ti+1). In the context
of differential-algebraic equations, the most popular linear multi-step methods are the
so-called BDF methods, where the abbreviation BDF stands for backward differentiation
formulae. For the numerical solution of a regular strangeness-free differential-algebraic
equation of the form (6.6) a BDF discretization is given by

F̂1(ti+1, xi+1, Dhxi+1) = 0,

F̂2(ti+1, xi+1) = 0,
(6.15)
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αk−l l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

k = 1 1 −1

k = 2 3
2

−2 1
2

k = 3 11
6

−3 3
2

−1
3

k = 4 25
12

−4 3 −4
3

1
4

k = 5 137
60

−5 5 −10
3

5
4

−1
5

k = 6 147
60

−6 15
2

−20
3

15
4

−6
5

1
6

Table 6.1: Coefficients for BDF methods

where

Dhxi+1 =
1

h

k∑

l=0

αk−lxi+1−l, (6.16)

with coefficients αk−l given in Table 6.1 for the simplest BDF methods. By the implicit
function theorem F̂1(ti+1, xi+1, Dhxi+1) = 0 can be locally solved for xi+1 by

xi+1 = S(ti+1, xi, . . . , xi−k+1, h).

Then, by setting

Xi =








xi

xi−1
...

xi−k+1








, X (ti) =








x(ti)
x(ti−1)

...
x(ti−k+1)








, Φ(ti,Xi, h) =








S(ti+1, xi, . . . , xi−k+1, h)
xi

...
xi−k+2








,

the BDF method (6.16) can also be seen as a general discretization method (6.7). Note
that we must provide x0, . . . , xk−1 to initialize the iteration. These starting values are
usually generated via appropriate one-step methods or within a combined order and stepsize
control.
The basic idea for the derivation of BDF methods is to differentiate a polynomial πk ∈
Πk, which interpolates values xi−k+1, . . . , xi+1 of x. We assume that the approximations
xi−k+1, . . . , xi to the exact solution x(t) at ti−k+1, . . . , ti are known and we consider the
polynomial πk(t) of order k, which interpolates these values , i.e.,

πk(ti−j+1) = xi−j+1, j = 0, . . . , k. (6.17)

By Newton’s interpolation formula (6.5) this polynomial can be expressed in terms of
backward differences, see e.g. [59], as

πk(t) = πk(ti + sh) =
k∑

j=0

(−1)j
(−s+1

j

)
∇jxi+1, (6.18)

where the backward differences are defined as follows.
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Definition 6.12 (Backward difference). Let xn, xn−1, . . . , xn−j−1 ∈ Rn be given. Then
the j-th backward difference ∇jxn is recursively defined by

∇0xn = xn,

∇j+1xn = ∇jxn −∇jxn−1 for j ≥ 0.

The unknown value xi+1 will now be determined in such a way that the polynomial πk(t)
satisfies the differential-algebraic equation at ti+1. We have

dπk(t)

dt

∣
∣
∣
∣
t=ti+1

=
1

h

k∑

j=0

(−1)j d
ds

(−s+1
j

)
∣
∣
∣
s=1

∇jxi+1

=
1

h

k∑

j=0

δj∇
jxi+1, (6.19)

with coefficients
δj := (−1)j d

ds

(−s+1
j

)
∣
∣
∣
s=1

.

Using the definition of the binomial coefficients

(−1)j
(−s+1

j

)
=

1

j!
(s − 1)s(s + 1) . . . (s + j − 2) for j > 0

and
(−s+1

0

)
= 1, the coefficients δj are given by

δ0 = 0, δj =
1

j
for j ≥ 1.

Formula (6.19), therefore, becomes

ẋi+1 = π̇k(ti+1) =
1

h

k∑

j=1

1

j
∇jxi+1,

and expressing this formula in terms of xi+1−l, for l = 0, . . . , k gives (6.16).
In contrast to Runge-Kutta methods, the stability properties of BDF methods are some-
what restricted.

Theorem 6.13. The k-step BDF method (6.16) is stable for 1 ≤ k ≤ 6, and unstable for
k ≥ 7.

Proof. See, e.g. [58, p. 381].

Theorem 6.14. The BDF discretization (6.15) of (6.6) is convergent of order p = k for
1 ≤ k ≤ 6 provided that the initial values x0, . . . , xk−1 are consistent.

Proof. See [82, Theorem 5.27].
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A nice property of BDF methods is that all numerical approximations xi+1 satisfy the
algebraic constraints if the starting values x0, . . . , xk−1 satisfy the algebraic constraints as
well, which follows immediately from (6.15), such that consistency of the numerical solution
is guaranteed.
The BDF-formulas (6.16) can be extended in a natural way to variable stepsizes hi =
ti − ti−1. In this case, the polynomial πk(t) of degree k that interpolates (tj, xj) for j =
i + 1, i, . . . , i − k + 1 can be expressed by Newton’s interpolation formula (6.5) as

πk(t) =
k∑

j=0

j−1
∏

l=0

(t − ti+1−l)x[ti+1, . . . ti−j+1]. (6.20)

The variable stepsize BDF method is then given by

Dhi
xi+1 =

k∑

j=1

j−1
∏

l=1

(ti+1 − ti+1−l)x[ti+1, . . . , ti−j+1]. (6.21)

Note, that the coefficients of the BDF method now depend on the past and current stepsizes.
In the same way as for Runge-Kutta methods, there are no difficulties to supply BDF
methods with a stepsize and order control if we restrict to regular strangeness-free problems
of the form (6.6), see also [17] for more details.
Altogether, BDF methods provide an easy discretization and implementation for the nu-
merical integration of DAEs and the solution of the nonlinear systems (6.15) arising in
every integration step is relatively cheap. On the other hand, the development of a step-
size control is complicated and it is not very flexible in the choice of the stepsizes, see
[48, 49]. A further disadvantage of BDF methods is that they are not stable for k > 6.

6.2.3 Interpolation

During the numerical solution of a hybrid system, the state of the system at the switch
points is required. In addition, in order to evaluate the switching functions in the root-
finding process, the numerical solution is required between gridpoints. Therefore, we need
a continuous representation of the solution that enables an efficient interpolation of the
approximate solution between gridpoints.
In standard applications a continuous representation of the solution is used only for output
purpose, such that it is sufficient to require that the order q of the interpolation is such
that the error in the interpolated values is of the size of the global error of the method.
Thus, for a discretization method of order p it is sufficient to require that q = p − 1. But,
in the case of hybrid system simulation the interpolated values are used for continuing the
integration, such that we should require that q = p. Further, the interpolation error is
propagated as it influences the determination of the switch points and the computation of
the initial values used to restart the integration method. Thus, we need an error controlled
continuous representation of the solution to ensure that the interpolation error is controlled.
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For discretization methods based on a polynomial representation of the solution or its
derivatives, like BDF methods or Runge-Kutta methods based on collocation, the construc-
tion of a continuous solution representation is straightforward as it is given by construction
of the method. In the case of collocation Runge-Kutta methods the collocation polynomi-
als πs ∈ Πs as in (6.14) can be used for the continuous representation of the solution, and
for BDF methods the polynomials πk ∈ Πk as in (6.20) can be used.

Theorem 6.15. The continuous representation based on a collocation polynomial πs of an
s-stage Runge-Kutta method is of order q = s, i.e., for all ti ≤ t̂ ≤ ti + h we have

‖x(t̂) − πs(t̂)‖ ≤ Chs+1.

Moreover, for the derivatives of πs we have

‖x(j)(t̂) − π(j)
s (t̂)‖ ≤ Chs+1−j, j = 0, . . . , s.

Proof. Setting π̇s(t0 + γjh) = kj, then from the Lagrange interpolation formula (6.4) we
have

π̇s(t0 + th) =
s∑

j=1

kjLj(t),

with Lj as in (6.12). Then, integration from 0 to γj yields

πs(t0 + γih) = πs(t0) + h

∫ γi

0

s∑

j=1

kjLj(t)dt. (6.22)

The exact solution x(t) satisfies the strangeness-free system (6.6) everywhere, hence also
at the collocation points t0 + γih. We can apply the Lagrange interpolation formula (6.4)
also to ẋ(t) to get

ẋ(t0 + th) =
s∑

j=1

ẋ(t0 + γjh)Lj(t) + hsR(t, h),

where the rest term R(t, h) is a smooth function. Integration from 0 to γj yields

x(t0 + γih) = x(t0) + h

∫ γi

0

s∑

j=1

ẋ(t0 + γjh)Lj(t)dt + h

∫ γi

0

hsR(t, h)dt (6.23)

and subtracting (6.22) from (6.23) with γi = t yields

x(t0 + th) − πs(t0 + th) = h
s∑

j=1

∆j

∫ t

0

Lj(τ)dτ + hs+1

∫ t

0

R(τ, h)dτ, (6.24)
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with ∆j = ẋ(t0 + γjh) − π̇s(t0 + γjh). The k-th derivative of (6.24) with respect to t is
given by

hk
(
x(k)(t0 + th) − π(k)

s (t0 + th)
)

= h
s∑

j=1

∆jL
(k−1)
j (t) + hs+1 ∂k−1

∂tk−1
R(t, h),

such that

‖x(k)(t0 + th) − π(k)
s (t0 + th)‖ ≤ h1−k‖

s∑

j=1

∆jL
(k−1)
j (t)‖ + hs+1−k‖

∂k−1

∂tk−1
R(t, h)‖.

Because of C(s) the exact solution satisfies

x(t0 + γjh) = x(t0) + h
s∑

l=1

αjlẋ(t0 + γlh) + O(hs+1)

by Taylor expansion, such that for the internal stages Xi,j = x0 + h
∑s

l=1 αjlkl we get

x(t0 + γjh) − Xi,j = h
s∑

l=1

αjl(ẋ(t0 + γlh) − kl) + O(hs+1), for j = 1, . . . , s.

Thus, x(t0 + γjh) − Xi,j = O(hs+1) and the result follows from the boundedness of the
derivative of R(t, h) and from ∆j = O(hs+1). See also [58, Theorem 7.10, p. 213].

Thus, unfortunately for many collocation methods the order of the continuous representa-
tion is lower that the convergence order of the method, e.g., the continuous representation
of the 5th order Radau IIa method has order q = 3. Alternatively, other interpolation
schemes, as e.g. Hermite interpolation, might be applied if collocation Runge-Kutta meth-
ods are used as integration methods.

Theorem 6.16. The continuous representation based on the collocation polynomial πk of
a k-step BDF method is of order q = k, i.e., for all ti ≤ t̂ ≤ ti + h we have

‖x(t̂) − πs(t̂)‖ ≤ Chk+1.

Moreover, for the derivatives of πk we have

‖x(j)(t̂) − π
(j)
k (t̂)‖ ≤ Chk+1−j, j = 0, . . . , k.

Proof. The results can be proved similar as in Theorem 6.15 using the interpolation poly-
nomial πk given by (6.18) instead of πs.

Thus, for BDF methods the interpolant between ti and ti+1 is of the same order k as the
method that was used to advance the solution from ti to ti+1. Note that for integration
methods based on a polynomial representation as the presented BDF or Runge-Kutta
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methods the interpolation error is automatically error controlled by the error control of the
numerical solution. The interpolant is continuous, but it has a discontinuous derivative
at tn and tn+1. It is also possible to define a continuously differentiable interpolant, see
[15, 148], which leads to a more robust code for root finding. Further, note that in general,
the algebraic constraints for DAEs are not automatically satisfied at interpolated points.
To restart the integration at the interpolated points consistent values need to be computed
since the interpolated values at the switch points are in general not consistent with the
algebraic equations.

6.3 Detection and Location of Events

A hybrid system H changes between different modes whenever a transition condition
Ll

j(t, x
l, ẋl) is satisfied, i.e., at the occurrence of an event that is implicitly described in

terms of roots of switching functions. During the simulation, the numerical solution must
be advanced speculatively until a transition condition is satisfied and the integration is
stopped. This means that after each integration step from ti to ti+1 changes in the logical
values of the transition conditions Ll

j(t, x
l, ẋl) are detected. Then the exact event time is

determined by a root finding procedure as the root of a switching function in the interval
[ti, ti+1] in order to permit a re-initialization at the switch point. In general, during the
numerical integration of a hybrid system all events have to be detected and located in strict
temporal sequence and particularly no event should be missed in order to determine the
correct mode changes. If more than one root is found in an integration interval, then the
earliest event time is required. Note, that due to the assumptions in the Definition 5.3 of
a hybrid system only one transition should be satisfied at a time.

Remark 6.17. In [13] it has been noted that events might be missed during the integration
of a hybrid system, since the stepsize selection is only sensitive to the solution behavior of
the DAE, but not to the behavior of the switching functions. Therefore, it is proposed to
append the switching functions to the system of DAEs in mode l and introduce additional
variables, the so-called switching variables zl, such that an augmented system

F l(t, xl, ẋl) = 0,

gl(t, xl, ẋl) = zl
(6.25)

is integrated. In this way, interpolation polynomials are constructed that interpolate zl

with the same accuracy as xl. The drawback of this approach is that adding the switching
functions to the system of DAEs might result in an increase in the index. For example,
consider the linear DAE

[
1 0
0 0

] [
ẋl

1

ẋl
2

]

=

[
1 0
0 1

] [
xl

1

xl
2

]

+

[
f l

1

f l
2

]

in some mode l of a hybrid system and a switching function gl(t, xl, ẋl) = ẋl
2−f l

3(t). Then,
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the augmented system





1 0 0
0 0 0
0 1 0









ẋl
1

ẋl
2

żl



 =





1 0 0
0 1 0
0 0 1









xl
1

xl
2

zl



+





f l
1

f l
2

f l
3





has strangeness index µ = 1, while the original system is strangeness-free.
Further, the integration of the augmented system may require more steps because proper-
ties of discontinuity functions may limit the stepsize. However, to locate zero crossings
accurately it is unavoidable to adapt the stepsize to the behavior of the switching functions.
Nevertheless, we prefer a direct adaption of the stepsize selection to the behavior of the
switching functions instead of the numerical integration of an augmented system (6.25).

6.3.1 The Root Finding Procedure

In order to localize an event, i.e., the earliest time t⋆ in an integration interval [ti, ti+1] at
which a transition condition is satisfied, the roots of the corresponding switching functions
must be found with sufficiently high accuracy. In particular, the root finding procedure
must ensure that all events are located precisely and if multiple roots exist in an interval
the earliest event time must be located. Since the exact solution is not known, the roots of
the switching functions are computed for a numerical solution. As the switching functions
are evaluated over the whole integration interval, the system state has to be interpolated
between meshpoints. Thus, the root finding procedure depends on interpolation formulas
which are provided by the BDF formulas or by the Runge-Kutta method, see Section
6.2.3. Note, that BDF and Runge-Kutta methods guarantee consistency of differential and
algebraic variables at meshpoints, but not necessarily at interpolated points.

In the following, we describe the procedure used to find the roots of a set of switching
functions

gl
j(t, x

l, ẋl), with j = 1, . . . , nl
T , l ∈ M

in an interval [ti, ti+1]. The chosen method is an adapted version of the root finding
procedure of the SUNDIALS code IDA [64] that checks for sign changes of any gl

j(t, x
l, ẋl)

in [ti, ti+1] and then computes the roots with a modified secant method. The basic idea
of the secant method is derived from Newton’s method by approximating the derivatives
using a finite difference approximation

d

dt
gl

j(tm, xl, ẋl) ≈
gl

j(tm, xl, ẋl) − gl
j(tm−1, x

l, ẋl)

tm − tm−1
.

Then, the secant method is defined by the iterative relation

tm+1 = tm − gl
j(tm, xl, ẋl)

tm − tm−1

gl
j(tm, xl, ẋl) − gl

j(tm−1, xl, ẋl)
. (6.26)
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The iterates {tm} of the secant method (6.26) converge to a simple root of gl
j, if the starting

values t0 and t1 are sufficiently close to the root t⋆, and if d
dt

gl
j(t

⋆, xl, ẋl) 6= 0, as well as

gl
j ∈ C2. Then, the order of convergence of (6.26) is p = 1+

√
5

2
, see e.g. [134, p. 201].

At first, the algorithm checks if gl
j has an exact root at ti. If an exact root of any gl

j

is found at time ti, then gl
j(ti + δ, xl, ẋl) is computed for a small increment δ > 0. If

gl
j(ti + δ, xl, ẋl) = 0 also has an exact root, then the procedure stops with an error message.

In this way, it is guaranteed that the values of all gl
j are nonzero at some past value of ti,

beyond which a search for roots is done. In the next step, if no roots at ti were found, the
algorithm checks gl

j at ti+1 for exact zeros and detect sign changes in (ti, ti+1). If no sign
changes are found, then either a root is reported if some gl

j(ti+1, x
l, ẋl) = 0, or no root is

found in (ti, ti+1). If one or more sign changes were found, then a loop is entered to locate
the roots within a tolerance TTOL, given by

TTOL = 100 U(|ti+1| + |h|), (6.27)

where U is the rounding unit of the machine. When sign changes are found in two or more
switching functions gl

j , j = 1, . . . , nl
T , then the one with the largest value of

|gl
j(ti+1, x

l, ẋl)|

|gl
j(ti+1, xl, ẋl) − gl

j(ti, x
l, ẋl)|

,

corresponding to the secant method value closest to ti, is the one where most likely the
sign change occurs first. At each pass through the loop, a new value tmid within the search
interval is set and the values of gl

j(tmid, x
l, ẋl) are checked. The point tmid is computed via

tmid = ti+1 − gl
j(ti+1, x

l, ẋl)
ti+1 − ti

gl
j(ti+1, xl, ẋl) − αgl

j(ti, x
l, ẋl)

, (6.28)

where α is a weight parameter. On the first two passes through the loop, α is set to 1,
such that tmid is the classical secant method value. Afterwards, α is reset according to the
side of the subinterval in which the sign change was found in the previous two steps. The
value of tmid is closer to ti when α < 1 and closer to ti+1 when α > 1. If the value of
tmid in (6.28) is within TTOL/2 of ti or ti+1, it is adjusted inward, such that its distance
from the endpoint relatively to the interval size is between 0.1 and 0.5, with 0.5 being the
midpoint, and the actual distance from the endpoint is at least TTOL/2. Then, either ti
or ti+1 is reset to tmid according to which subinterval is found to have the sign change. If
there is no sign change in (ti, tmid), then that root is reported. The loop continues until
|ti+1 − ti| < TTOL, and then the reported root location is ti+1.
In general, the root finding procedure is only able to find roots of odd multiplicity that
corresponds to a sign change in one of the switching functions gl

j(t, x
l, ẋl), or exact zeros

at ti or ti+1. If more than one switching function gl
j has a root in the given interval or if

multiple roots are found for one switching function, then the one closest to ti is returned.
If a switching function has a root of even multiplicity, it will probably be missed. If such a
root is desired, the switching function should be reformulated such that it changes sign at



212 Numerical Methods for Switched Differential-Algebraic Systems

the desired root. In general, the switching functions should be chosen as simple as possible,
e.g. linear, and if possible, different switching functions should be used for different mode
transitions.

Remark 6.18. Numerical integration methods for DAEs require continuity of the solutions
and sometimes also of the derivatives of the solution depending on the order of the method
and the error control. If discontinuities are present in the solution, wrong error estimates
and a failure of stepsize and error control can result. Missing events during the numerical
integration of a hybrid system can lead to inefficient behavior or even to the failure of
integration methods, since large error estimates can cause repeated step rejections and a
drastic reduction of the stepsize until eventually a discontinuity resulting from the event is
passed. Thus, a hybrid system integrator and the root finding procedure should provide a
reliable event detection and location to ensure an efficient integration of hybrid systems.

6.4 A Hybrid Mode Controller

In this section we describe the basic ideas for the construction of a hybrid mode controller
for the numerical solution of hybrid differential-algebraic systems. For the numerical inte-
gration of the DAEs in each mode existing integration methods for continuous differential-
algebraic systems can be embedded in the mode controller. These integration methods
are used to proceed the solution in time, while the mode controller determines the switch
points, organizes the mode switching, and provides consistent initial values after mode
switching to restart the integration method at the switch point.
In general, the mode controller can be designed and implemented independently of the
integration method, the index reduction procedure, or the switch point location method.
Ideally, the index reduction technique and the integration method should be chosen accord-
ing to the type of the DAE in the current mode. Otherwise, any integration method suited
for strangeness-free differential-algebraic systems that provides a continuous representation
of the solution, as e.g. the BDF or Runge-Kutta methods introduced in Section 6.2, can
be used for the numerical integration of the DAEs in each mode.

In the following, we assume that the DAEs in each mode are mathematically well-behaved
in a small interval following an event. This assumption is necessary to ensure that the
solution of each DAE is a smooth function over the whole integration step and, in particular,
that a solution of the DAE in mode l exists until the end of the integration step, such that
the DAE in mode l is not allowed to have a singularity at the switch point. Using this
assumption we can lock the function evaluation for the DAE solver during an integration
step. This means that the equations evaluated cannot be changed while a time step is
taken even if the transition condition is satisfied (this is sometimes called discontinuity
locking [12]). Once a successful time step from ti to ti+1 has been taken, the integration
routine determines if events have occurred during the time step. If so, then the control
is returned to the mode controller and the exact event time in the integration interval
[ti, ti+1] is located. The switch point is determined within a certain tolerance as root of the
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switching functions using a root finding procedure. Then the mode controller backtracks
to the earliest event and performs the required transition. This means that the successor
mode k is determined by the mode allocation function Sl(j) = k and the system state at
the switch point, determined by interpolation, is transfered to the initial state of the next
mode k with the help of the transition function T k

l defined in (5.6) via

T k
l (xl(τi), ẋ

l(τi)) = [x⋆, ẋ⋆].

Before the integration can be restarted in the new mode k the initial value x⋆ has to be
checked for consistency, since x⋆ is not necessarily consistent with the DAE in mode k. If
x⋆ is not consistent, then a consistent initial value xk(τi) at τi is computed on the basis of
x⋆ in such a way that the solution xk extends the past solution xl in a physically reasonable
way by fixing the differential variables, see Section 5.4. Note that we may have different
characteristic values for the DAE in the new mode. Then the integration can be restarted
at the switch point τi in the new mode k with initial value xk(τi). Note that one-step
methods like Runge-Kutta methods can be restarted at any point τi since no past values
are used. This is different for multi-step method like BDF methods which use past values
to approximate the solution. In this case, changing to a lower order method is necessary if
discontinuities in the solution due to an event occur. If the discontinuity is of order m, i.e.,
the m-th derivative of the solution x exhibit a jump, then the order of the discretization
method has to be reduced in order to meet the smoothness requirements of the method.
For a k-step BDF method we need a (k + 1)-times continuously differentiable solution
such that the order has to be reduced to m − 2. This implies the knowledge of the order
of discontinuity which is usually not known. Therefore, and also for safety reasons, we
always restart the BDF method with k = 1 and use the information available from last
interval before the discontinuity, e.g., we can use the backward differences to estimate an
appropriate stepsize to restart the integration.
Further, chattering behavior, i.e., repeated switching between modes, is to be detected
during the numerical integration of hybrid systems. If chattering occurs, e.g. if a maximal
allowed number of successive mode switching in a short time period is exceeded or if the
sliding condition (5.42) approximated by (5.43) is fulfilled, then the mode controller should
enable sliding mode simulation. This means that the system behavior is approximated by
the corresponding DAE in sliding mode (5.38) which is alternatively integrated until the
system leaves the sliding region.

Altogether, a hybrid mode controller can be realized as follows:

1. Check if the given initial values are consistent with the DAE in the current mode l.
If necessary, determine new consistent initial values.

2. Integration from ti to ti+1 using an appropriate discretization method:

(a) Index reduction.

(b) Integration of the reduced system.
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(c) Detection of changes in the index or characteristic values. If changes occur, then
stop the integration.

(d) Check whether a transition condition Ll
j is satisfied. If a transition condition is

satisfied, then return to the mode controller (Goto 3.), otherwise continue the
integration for the next time step (Goto 2.).

3. Localization of the switch point t⋆ ∈ [ti, ti+1] as root of a switching function gl
j .

4. Determination of the system state at the switch point t⋆ by interpolation, i.e., xl(t⋆) =
π(t⋆), where π is an interpolation polynomial.

5. Determination of the successor mode by the mode allocation function Sl(j) = k.

6. Check if chattering has occurred. If so, provision of the possibility to switch to sliding
mode.

7. Transfer of the system state to the new initial values in mode k using the transition
function.

8. Set current mode l := k. Restart of the integration method (Goto 1.).

Remark 6.19. We have assumed that it is possible to extend the solution of the differential-
algebraic equation in the current mode in a small interval beyond the event time. This is
sometimes not possible or not in a unique way, e.g., at impasse points [123], or when
characteristic values change. Sometimes events are employed to switch the DAE system at
these critical points and thus continue the simulation. However, if the solution cannot be
extended past the event, the proposed event location algorithm does not apply. In principle,
the event can be moved slightly to the left of the critical point, but even this can effect the
error and stepsize control if the integrator attempts to locate a point beyond the event.

Remark 6.20. The concept of the proposed hybrid mode controller is based on the assump-
tion that only one transition condition can be satisfied at the same point in time. Further,
we assume that the successor mode is uniquely determined by the mode allocation function.
In practical applications this might be difficult to realize since the successor mode can de-
pend on the system state and multiple transitions at a switch point occur. It also might
happen that an immediate transition occurs if a transition condition is satisfied directly af-
ter the transfer of the state or the computation of consistent initial values. Another problem
that arises is that the transition condition that causes the mode switching might not be ful-
filled anymore after the consistent reinitialization. This problem of so-called discontinuity
sticking as well as consistent event location is also treated in [13].
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Figure 6.1: The hybrid mode controller





Chapter 7

A Mode Controller for Switched

Differential-Algebraic Systems

In this chapter we describe the hybrid mode controller that has been implemented for
the numerical solution of general nonlinear hybrid DAE systems. The mode controller
is based on the numerical schemes presented in Chapter 6 and has been implemented
in the FORTRAN code GESDA as a solver for GEneral Switched Differential-Algebraic
equations. For the numerical integration of the differential-algebraic systems inside each
mode the differential-algebraic system solvers GELDA [85] and GENDA [87] have been
embedded. In the following, we will describe the procedures used in the solver GESDA
and discuss their features in detail. In Section 7.1.1, we describe the DAE solvers GELDA
and GENDA that are used inside the mode controller for the numerical integration of the
underlying DAEs. In Section 7.1.2, we describe the implementation of the sliding mode
simulation. Finally, in Section 7.2 we present some numerical examples to demonstrate the
applicability of the solver, and in Section 7.3 we give a short overview of further available
DAE and hybrid system solvers.

7.1 The Hybrid System Solver GESDA

The solver GESDA is designed for the numerical solution of initial value problems for hy-
brid differential-algebraic systems as introduced in Definition 5.3 that consist of a number
of either nonlinear DAEs of the form (5.3) or linear DAEs of the form (5.7) for each mode
l ∈ M. Mode switching occurs on the basis of transition conditions and the exact switch
points are determined as the roots of switching functions. The user has to provide the
descriptions of the DAEs in each mode together with a sufficient number of derivatives
of the system depending on the index of the DAE in each mode. For linear DAEs of the
form (5.7) the matrices El, Al, and the right-hand sides bl for all l ∈ M together with the
corresponding derivatives up to a certain order k have to be provided in the subroutine
MATSUB. For nonlinear DAE systems of the form (5.3) the functions F l together with
the corresponding derivatives up to order k have to be provided in the subroutine FUN,
and the corresponding Jacobians in the subroutine DFUN. Further, the user has to specify
the transition conditions for each mode in the subroutine UINTER and the correspond-
ing switching functions in the subroutine GFUN. The roots of the switching functions
defined in GFUN have to correspond to the points in time where a transition condition
defined in UINTER changes its logical value. The successor modes are determined by the
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mode allocation functions implemented in a user-provided subroutine MCHNG. Finally,
the transition functions have to be provided in the subroutine TRANS that transfer the
state of the system at a switch point to the initial state in the successor mode. For a
detailed description of the user-supplied subroutines see the documentation of the code in
the appendix.
The implemented solver follows the lines of the hybrid mode controller described in Sec-
tion 6.4. After the possible computation of consistent initial conditions in the initial mode,
the DAE in the current mode is numerically integrated according to its structure with an
appropriate DAE solver, e.g. GELDA or GENDA, until an event occurs. After each suc-
cessful time step of the numerical integration in the current mode l ∈ M, the DAE solver
checks whether a transition condition is satisfied by calls to the user-provided subroutine
UINTER. Further, the DAE solver checks for changes in the index or in the characteristic
values of the current DAE. If a transition condition is satisfied or changes in the character-
istic values occur, then the integration is stopped. Changes in the characteristic values can
only be handled by introducing further mode changes and additional modes, such that each
DAE is well-defined in a small interval following a switch point. Otherwise, if a transition
condition is satisfied, the switch point is localized as the root of a switching function. The
root finding procedure implemented in the subroutine DRTFND uses the modified secant
method described in Section 6.3.1. The default value for the tolerance TTOL used in the
root finding procedure is computed by (6.27). This value can be adapted to a specific prob-
lem by the user. After the computation of the switch point, the state of the system at the
switch point is determined by interpolation. The subroutines DCONTS and DBDTRP pro-
vide interpolation routines for Runge-Kutta and BDF methods, respectively, as described
in Section 6.2.3. Next, the successor mode is determined using the subroutine MCHNG
and the state is transfered to the new mode using the transition functions implemented in
the subroutine TRANS. If the transfered state is consistent with the DAE in the new mode,
then the DAE solver is restarted for the DAE in the new mode. Otherwise, new consistent
values are determined in a least squares sense as described in Section 5.4 and then the
DAE solver is restarted for the DAE in the successor mode. To restart the integration the
order of the BDF method used in the next step is reset to k = 1 and the initial stepsize is
set to the stepsize used in the last successful step in the predecessor mode. If no smooth
transition at a mode change is possible, due to inconsistency of initial values or due to the
user-defined transition functions, the code displays a warning. It might happen that after
a mode switching event an immediate mode change is detected in the new mode. If only
one transition is possible from the new mode, then this transition is carried out and the
integration is resumed. If several transitions are possible, it is not clear which transition
should be carried out, such that the code exits with an error message. If immediate mode
changes occur repeatedly, i.e., if more than a maximal number MAXCGN of successive
mode changes occur, the integration is stuck and the code exits with an error message. In
this case, the transition conditions should be reformulated, e.g., if applicable, hysteresis
can be used. The default value for the maximal number of immediate mode changes is
given by MAXCGN=100, it can be adapted by the user. In addition, the maximal stepsize
is restricted to HMAX in order to avoid stepping over regions. By default HMAX is set to
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Subroutines within GESDA
DGELDA general linear differential-algebraic equation solver
DGENDA general nonlinear differential-algebraic equation solver
DRTFND root finding procedure
DBDTRP computes a solution at a fixed time by backward

differentiation interpolation
DCONTS computes a solution at a fixed time by interpolation
DCKCON checks consistency of initial values and if necessary

computes consistent initial values

User-supplied subroutines
USCAL user-supplied scaling routine
UINTER user-supplied subroutine defining transition conditions
TRANS user-supplied subroutine defining transition functions
MCHNG user-supplied subroutine defining mode allocation functions
GFUN user-supplied subroutine defining switching functions
MATSUB user-supplied subroutine for linear problems
FUN/DFUN user-supplied subroutines for nonlinear problems

Table 7.1: The subroutines of GESDA and their purposes

HMAX=1.0. Also the maximal stepsize can be adapted by the user.

In Table 7.1 the subroutines of GESDA and their purposes as well as the user-supplied
subroutines are summarized. For a more detailed description of the usage and the imple-
mentation of the code GESDA see the documentation of the code in the appendix.

7.1.1 The Embedded DAE Solvers

For the numerical integration of the DAEs inside each mode two DAE solvers have been
embedded in the hybrid system solver GESDA. For general linear DAE systems the solver
GELDA is used and for general nonlinear systems we use the solver GENDA. Note, that no
restrictions on the index of the DAEs (5.3) or (5.7) are needed, since both solvers are con-
structed for the solution of DAE systems of arbitrary high index. There are several further
routines for the numerical solution of differential-algebraic systems, which robustly solve
continuous systems, see also Section 7.3, including solvers adapted to special structures
arising e.g. in the equations of motion of multibody systems or in circuit equations. In
general, further DAE solvers can be appended, in particular those suited for specially struc-
tured systems, such that the solution of the DAEs inside each mode can be adapted to the
structure of the equations. Depending on the type of the differential-algebraic equations
in each mode, an appropriate differential-algebraic system solver should be chosen.
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The DAE solver GELDA

The first DAE solver that is embedded in GESDA is the solver GELDA [85] that was
designed for the numerical integration of linear DAEs with variable coefficients of the
form (2.5) with initial values x(t0) = x0 not necessarily consistent. While most of the
standard integration methods are suitable only for regular strangeness-free DAEs, GELDA
is suitable for the numerical integration of linear DAEs of arbitrary index and also allows
the solution of over- and underdetermined systems. The implementation of GELDA is
based on the combination of an index reduction procedure introduced in [72], that was
shortly presented in Section 2.2.2, which first determines all the local invariants and then
transforms the linear DAE (2.5) into an equivalent strangeness-free DAE (2.24) with the
same solution set, followed by a discretization of the strangeness-free DAE either using
a Runge-Kutta scheme adapted from the code RADAU5 [59] or a BDF method adapted
from DASSL [17, 115]. The user has to provide the necessary number of derivatives of
all system matrices. At each time step ti the strangeness index µ and the characteristic
quantities dµ, aµ, uµ are computed iteratively using the derivative arrays (Ml,Nl) as in
(2.22), for l = 0, 1, . . . , µ. Then, unitary projections Z1(ti), Z2(ti) and T2(ti), as defined in
Theorem 2.41, are computed via singular value decompositions, that are used to extract
the strangeness-free system. By computing the characteristic values at each time step ti
the code checks if changes in the characteristic values occur, and if so returns control to
the calling program, setting an error flag. Consistent initial conditions are computed via
correction of the given initial values by solving a minimization problem as described in
Remark 5.27. For a detailed description of the code GELDA and of the order and stepsize
control see [85]. Note that the code GELDA can also be used to solve descriptor systems
of the form (5.49) using the behavior approach.

The DAE solver GENDA

The second embedded DAE solver is the solver GENDA [87], a nonlinear version of the
code GELDA, that has been developed for nonlinear square problems of the form (2.3) of
arbitrary index with initial values x(t0) = x0 not necessarily consistent. The code GENDA
combines the index reduction technique described in Section 2.2.2 with the discretization
of an equivalent strangeness-free formulation (2.19) of the DAE by use of BDF methods
as described in Section 6.2. The user has to provide the necessary number of derivatives
of the whole DAE, in particular, the whole derivative array Fl of level l given in (2.15), as
well as the corresponding Jacobians. In addition, the characteristic quantities have to be
provided by the user. Consistent initial values are computed as described in Section 5.4.
In every integration step a nonlinear system of equations of the form

Fµ(ti + h, x, ẋ, ..., x(µ+1)) = 0, (7.1a)

Z̃T
1 F (ti + h, x,Dhx) = 0, (7.1b)

is solved, where Z̃1 denotes some approximation to Z1 at the desired solution. Equation
(7.1a) ensures that the algebraic constraints are satisfied and (7.1b) is a discretization of
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the differential part of the reduced system (2.19). The solution of the underdetermined sys-
tem of nonlinear equations (7.1a) is computed in a least squares sense using the subroutine
NLSCON [111] which is an implementation of the Gauss-Newton method. In the computa-
tion of consistent initial values the solver enables the user to choose the differential variables
to be kept fixed during the Gauss-Newton iterations. If any of the algebraic variables are
chosen to be kept fixed the code returns an error message. Note, that the Jacobian of (7.1)
is generally nonsquare but has full row rank at every solution (x, ẋ, ..., x(µ+1)) of the DAE
(2.3) if Z̃1 is a sufficiently good approximation to Z1 and the stepsize is sufficiently small.
This property extends to a neighborhood of the solution set, thus we get quadratic conver-
gence to a solution and a simplified Gauss-Newton method [113] can be applied by fixing
the Jacobian at any timestep. Before any rank decisions are made during the computation,
the matrix [−Nµ Mµ], with Mµ and Nµ as in (2.17), is equilibrated to lower its condition
number by computing appropriate row and column scaling vectors. Optionally, the user
can supply a scaling subroutine USCAL if an appropriate scaling method is known. On
the other hand, it is also possible to completely deactivate scaling. Further, the user can
require the code to verify the given characteristic values after consistent initial values have
been computed or after the BDF solver successfully completed an iteration. In this case,
GENDA returns an error message if any changes in the characteristic values are detected.
For details of the integration routine see [87].

7.1.2 Sliding Mode Simulation

The code GESDA enables sliding mode simulation. During the simulation the code detects
chattering, either by checking the sliding condition (5.42) using the approximation (5.43),
or by comparing the distance between the last detected switch points. That means, if
the distance between the last three detected switch points τi+1, τi, τi−1 is lower than a
chattering tolerance TOLC, i.e., if τi+1 − τi < TOLC and τi − τi−1 < TOLC with τi+1

the last detected switch point, then the code assumes that chattering occurs. The default
value for the chattering tolerance TOLC is given by TOLC = 10−3 and the default value
for the parameter δ that is used in the approximation of the directional derivatives (5.43)
is given by δ = 10−5. The default values can be adapted to the problem by the user.

Sliding mode simulation is initiated by the user using reverse communication. If chattering
occurs, then the code stops with a warning message. The user can decide to switch to
sliding mode, otherwise, the integration is resumed until a user-defined maximal number
of switchings has occurred and the code stops with an error message. In the case of sliding
mode simulation, the user has to provide the DAE describing the system during sliding
motion that can be defined as in (5.46). Further, the user can completely disable the
detection of chattering and the checking of the sliding condition.
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Mode l Transition j Transition condition Ll
j Successor mode k = Sl(j)

1 1 iD < −η 3
2 switch S is closed 4

2 1 vD < −η 4
2 switch S is opened 3

3 1 vD > η 1
2 switch S is closed 2

4 1 iD < −η 2
2 switch S is opened 1

Table 7.2: Transition conditions for the boost converter

7.2 Numerical Examples

In this section, we give a number of examples for hybrid differential-algebraic systems that
were solved using the code GESDA. The first example is the boost converter introduced in
Example 5.1. Further canonical examples are stick-slip vibrations of mechanical systems
with dry friction that are considered in Sections 7.2.2 and 7.2.3. Finally, we consider the
model of a bowed string exhibiting slip-stick transition behavior in Section 7.2.4. Note that
throughout the whole section we omit physical units like meters or seconds.

7.2.1 The Boost Converter

As a first example we consider the boost converter that has been introduced in Example 5.1,
consisting of an inductor L, a diode D, a capacitor C, a resistor R, a switch S, and a voltage
source Vi. The system is modeled as a hybrid system with four operation modes according
to Example 5.1. In each mode we have a linear DAE of size m = n = 7, consisting of
the equations (5.1) together with the algebraic constraints (5.2), with characteristic values
given in the following tabular.

Mode l Characteristic values (µl, dl
µ, al

µ, vl
µ, ul

µ)

1 (0, 2, 5, 0, 0)
2 (0, 2, 5, 0, 0)
3 (1, 1, 6, 0, 0)
4 (1, 1, 6, 0, 0)

The transition conditions for the four modes depend on the state of the switch, on the
current through the diode, and on the voltage across the diode. They are given in Table
7.2, where iD and vD denote the current through the diode and the voltage across the
diode, respectively, and η is a small tolerance. The hybrid system is solved with the
solver GESDA in the interval [0, 1], using the BDF method of the DAE solver GELDA to
integrate the DAEs in each mode, with the parameters Vi = 48, R = 2, C = 10−2, L = 1,
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Figure 7.1: Simulation results for the boost converter

and η = 10−6, the error tolerances RTOL = ATOL = 10−8 and the initial value vector
[10, 10, 10, 10, 10, 10, 10]T in the initial mode 1. Note that the code checks the initial values
for consistency and corrects possible inconsistencies in a least squares sense. The results
of the numerical simulation for the voltages vC , vD and vS are given in Figure 7.1 together
with the prescribed conducting and blocking time periods for the switch S. The switch
is off for a period of length 0.1 and on for a period of length 0.06. After an initial phase
the voltages adapt a periodic solution depending on the state of the switch. Further, the
numerical error in the computed voltage vD compared with the exact solution is plotted in
Figure 7.2. We can observe higher errors at the switch points, i.e., after each restart of the
numerical integration, due to the computation of the initial values. Altogether, the code
detects 13 switch points during the numerical integration.

7.2.2 Stick-slip Friction Between Rigid Bodies

The second example considers stick-slip friction between two rigid bodies as depicted in
Figure 7.3, see also Example 5.2 and [34]. The equations of motion of the multibody system
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Figure 7.2: Numerical error in the computed voltage vD
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Figure 7.3: Stick-slip friction between rigid bodies

consisting of two masses with dry friction between them are given by

ṗ1 = v1,

ṗ2 = v2,

m1v̇1 = f1 − µf‖FN‖ sign(v1 − v2),

m2v̇2 = f2 + µf‖FN‖ sign(v1 − v2),

(7.2)

where p1, p2 describe the positions of the bodies and v1, v2 are the corresponding velocities.
Further, f1 and f2 are the applied forces, µf is the coefficient of friction, and FN is the
normal force on the surface between the two bodies. Thus, the system (7.2) represents a
hybrid system consisting of two modes depending on the direction of the relative velocity
between the bodies, i.e., the system is in mode 1 if sign(v1 − v2) = 1 and the system is in
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Figure 7.4: Solution of (7.2) and relative velocities between the two bodies

mode 2 if sign(v1 − v2) = −1. Note that the model equations (7.2) cannot be applied if
the relative velocity is vrel = v1 − v2 = 0, since sign(0) is not defined. We apply a small
hysteresis band [−ε, ε] around zero relative velocity to define the transition conditions

L1
1(v1, v2) = v1 − v2 < −ε,

L2
1(v1, v2) = v1 − v2 > ε.

The hybrid system (7.2) is solved with the solver GESDA using the BDF method of the
DAE solver GELDA. Since (7.2) is an ordinary differential equation, the characteristic
values in both modes are given by µ = 0, dµ = 4, aµ = vµ = uµ = 0. The solution is
computed in the interval [0, 10] using m1 = m2 = 1, f1 = sin(t), f2 = 0, FN = 1, µf = 0.4,
and ε = 0.003 with relative and absolute error tolerance ATOL = RTOL = 10−8 and initial
values p1(0) = p2(0) = 1, v1(0) = v2(0) = 0 in initial mode 1. The computed solution of
the system and the relative velocity vrel between the two bodies are given in Figure 7.4.
We can see that in the beginning both bodies move together, since the applied force is
less than the friction force. If the applied force exceeds the friction force, the velocity of
the first body becomes greater than the velocity of the second body and the bodies slid
over each other until the applied force is again lower than the friction force and the two
bodies stick together once more. The relative velocity between the bodies can be seen to
oscillate around zero during stiction, resulting in a large number of integration steps and
a high computational effort. Altogether, the code requires 8209 integration steps, and 396
mode switches are detected. Physically, these oscillations do not occur, since in the case
of stiction both bodies move together and the relative velocity is zero. Using sliding mode
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Figure 7.5: Solution and relative velocity using sliding mode simulation

simulation we can define the system behavior during stiction for vrel = 0 by

ṗ1 = v1,

ṗ2 = v2,

m1v̇1 = f1 − µf‖FN‖ + λS,

m2v̇2 = f2 + µf‖FN‖ − λS,

0 = v1 − v2,

(7.3)

defining the DAE in sliding mode (mode 3). Now, system (7.3) represents a DAE with
characteristic quantities µ = 1, dµ = 4, and aµ = 1. The system stays in sliding mode
as long as the applied force is less than the friction force. If the applied force exceeds
the friction force, then the system leaves the sliding mode, i.e., if sin (t) − 2µs > 0, then
the system switches back to mode 1, and if sin (t) + 2µs < 0, then the system switches
back to mode 2. The system is solved with GESDA using sliding mode simulation with
chattering tolerance TOLC = 0.01 and δ = 10−5 used in the approximation of the sliding
condition (5.43). The solution of the system together with the relative velocity vrel using
sliding mode simulation whenever chattering is detected by the code is given in Figure
7.5. We can see that the oscillations in the relative velocity during stiction disappear.
Altogether, 12 switch points are detected during the numerical integration using sliding
mode simulation and the number of integration step is reduced to 4737. The switch points
together with the corresponding mode changes are given in Table 7.3. Note that in Figure
7.4 and in Figure 7.5 the solution is plotted only at predefined output points.

7.2.3 Stick-Slip Vibrations

In this example we consider stick-slip vibrations in a single-degree-of-freedom model given
in Figure 7.6, see also [91]. We consider a mass m attached to the inertial space by a spring
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Switch points t⋆ Mode changes
0.0038 1 → 2
0.0112 2 → 1
0.0188 1 → 3
0.9273 3 → 1
2.8719 1 → 2
2.8776 2 → 1
2.8886 1 → 3
4.0689 3 → 2
6.0340 2 → 3
7.2105 3 → 1
9.1465 1 → 2
9.1521 2 → 3

Table 7.3: Detected switch points in the solution of (7.2) using sliding mode simulation

Figure 7.6: Model of a mass riding on a belt

of stiffness k that is riding on a driving belt moving at a constant velocity vdr. Between
mass and belt dry friction occurs, with a friction force F depending on the relative velocity
between mass and belt. The equations of motion describing this system are given by

ẋ = v,

mv̇ = −kx − F (vrel),
(7.4)

where vrel = v − vdr denotes the relative velocity of the mass with respect to the belt and
the friction force F is given by

F (vrel) =

{

−µd‖FN‖ = −Fs

1+γ|vrel| if vrel > 0,

µd‖FN‖ = Fs

1+γ|vrel| if vrel < 0.

Here, the dynamic friction coefficient µd is given by

µd =
µs

1 + γ|vrel|
,
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Figure 7.7: Solution of system (7.4) and phase portrait

where the positive parameter γ measures the rate at which µd decreases with an increase
in |vrel|, µs denotes the constant static friction coefficient, FN is the normal force, and Fs

denotes the maximum static friction force given by Fs = µs‖FN‖. Thus, the system (7.4)
is a hybrid system consisting of two modes depending on the sign of the relative velocity,
i.e., the system is in mode 1 if sign(vrel) = 1 and the system is in mode 2 if sign(vrel) = −1.
The transition conditions for the two modes are given by

L1
1(v) = v − vdr ≤ −ε,

L2
1(v) = v − vdr ≥ ε,

applying a small hysteresis band [−ε, ε] around zero relative velocity, where ε ≪ vdr. Again,
system (7.4) is an ordinary differential equation with characteristic values µ = 0, dµ = 2,
aµ = vµ = uµ = 0. The hybrid system is solved with GESDA using the BDF method of
the DAE solver GENDA in the interval [0, 15] with parameters m = 1, k = 3, Fs = 1, vdr =
0.2, γ = 3.0, ε = 10−5, with relative and absolute error tolerance RTOL = ATOL = 10−8

and initial values x(0) = 0, v(0) = 1 in initial mode 1. The computed solution of the
system and the phase portrait are given in Figure 7.7. We can see a regular cycle of stick-
slip phases and a stable stick-slip periodic solution of the system. During the numerical
integration chattering occurs in regions of near-zero relative velocity. Altogether, the code
detects 247709 switch points and requires 272864 integration steps to solve the system.
Again, we can use sliding mode simulation to handle the chattering behavior. We define
the system behavior during stiction by

ẋ = v,

mv̇ = −kx − (2λ − 1)Fs,

0 = v − vdr,

(7.5)
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Figure 7.8: Solution of system (7.4) and phase portrait using sliding mode simulation

see also Example 5.30. The system (7.5) represents a DAE with characteristic quantities
µ = 1, dµ = 1, aµ = 2, vµ = uµ = 0. The system is solved with GESDA using sliding mode
simulation with chattering tolerance TOLC = 10−3 and δ = 10−8. The system stays in
sliding mode as long as the applied force is less than the friction force. If the applied force
fa = kx exceeds the friction force, then the system leaves the sliding mode, i.e., if Fs < −fa

the system switches back to mode 1, and if Fs < fa, then the system switches back to mode
2. The computed solution of the system (7.4) with DAE in sliding mode (7.5) together
with the phase portrait using sliding mode simulation whenever chattering is detected
by the code is given in Figure 7.8. Also in this case, the number of integration steps is
reduced drastically to 9276 and only 9 switch points occur. The detected switch points
and the corresponding mode changes are given in Table 7.4. We can see that an immediate
mode transition occurs at the switch point t⋆ = 9.4820. Further, at the beginning of the
integration, an immediate mode change from the initial mode 1 to mode 2 occurs. In both
simulations, i.e., without sliding mode and using sliding mode simulation, the maximal
stepsize is restricted to HMAX = 0.1 in order to avoid stepping over regions.

7.2.4 The Bowed String

In this example we consider a one-dimensional violin string that is scraped by a bow as
depicted in Figure 7.9. We assume an idealized string of length L > 0 and mass mS, which
is clamped at position x = 0 and x = L under tension T . The string is bowed with a bow
of mass mb of negligible width at a bowing point xc. This model of a bowed string is also
called the Raman-Model, see also [43, 68, 122]. The motion of the string is governed by
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Switch points t⋆ Mode changes
0.2676 2 → 3
1.8000 3 → 2
4.4263 2 → 3
6.9000 3 → 2
9.4819 2 → 1
9.4820 1 → 2
9.4820 2 → 3
11.998 3 → 2
14.638 2 → 3

Table 7.4: Detected switch points in the solution of (7.4) using sliding mode simulation

x

y
mb

vb(t)

x = 0 x = L

x = xc

Figure 7.9: The bowed string

the one-dimensional wave equation

ρ
∂2u(x, t)

∂t2
= T

∂2u(x, t)

∂x2
+ P (x, t), (7.6a)

where u(x, t) denotes the transversal displacement of the string at position x ∈ [0, L] and
time t ∈ I = [0, tf ] and ρ > 0 is the mass density, which is assumed to be constant ρ = mS

L
.

Further, P (x, t) denotes the external frictional force exerted by the bow on the string. We
assume that the string is initially at rest in the undeformed configuration, i.e., we have the
boundary conditions

u(0, t) = u(L, t) = 0 for all t > 0, (7.6b)

and the initial conditions

u(x, 0) = 0 for all x ∈ [0, L],

∂u

∂t
(x, 0) = 0 for all x ∈ [0, L].

(7.6c)

The partial differential equation (7.6a) is discretized by the method of lines, see e.g. [131],
i.e., we semidiscretize the spatial derivatives by second order central finite differences

∂2u(x, t)

∂x2
≈

u(x + ∆x, t) − 2u(x, t) + u(x − ∆x, t)

∆x2
+ O(∆x2),
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to reduce the partial differential equation (7.6a) to a DAE system. Considering an equidis-
tant grid xi = iL

N
, i = 0, . . . , N for the spatial variable x with spacing ∆x = L

N
, we get

approximations ui(t) to u(xi, t). Incorporating the zero boundary conditions the semidis-
cretized equations are give by

ρü0(t) = T
u1(t) − 2u0(t)

∆x2
+ P (x0, t),

ρüi(t) = T
ui+1(t) − 2ui(t) + ui−1(t)

∆x2
+ P (xi, t), for 1 ≤ i ≤ N − 1,

ρüN(t) = T
−2uN(t) + uN−1(t)

∆x2
+ P (xN , t).

(7.7a)

With the boundary conditions (7.6b) and the initial conditions (7.6c) we get in addition
the algebraic equations

u0(t) = 0,

uN (t) = 0,
(7.7b)

as well as the initial conditions

ui(0) = 0, u̇i(0) = 0 for i = 0, . . . , N. (7.7c)

The external frictional force P (x, t) is of the form

P (x, t) =

{

F (vrel(t)) for x = xc

0 else
,

since the bow exerts frictional force on the string only at the contact point xc, where
F (vrel(t)) is a function depending on the relative velocity between bow and string at the
bowing point xc given by

vrel(t) =
∂u(xc, t)

∂t
− vb(t) = u̇c(t) − vb(t),

where xc = cL
N

, 1 ≤ c ≤ N − 1 is defined to be a grid point of the spatial discretization,
and vb denotes the bow velocity. The friction force F (vrel(t)) is of the form

F (vrel(t)) =

{

µf‖FN‖ if vrel > 0,

−µf‖FN‖ if vrel < 0,

where FN is the normal bow force acting on the string and µf is the coefficient of friction.
The equation of motion of the bow is given by

mbÿb(t) = fk(t) − F (vrel(t)),
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where fk(t) is the excitation of the bow. Altogether, after transformation to first order by
introducing new variables vi = u̇i and vb = ẏb for the velocities, the bow-string system can
be modeled as a multibody system of the form

ẏb = vb,

ẏs = vs,

mbv̇b(t) = fk(t) − F (vrel(t)),

ρv̇s = Ays − GT λ + ecF (vrel(t)),

0 = Gys,

(7.8)

with ys = [u0, . . . , uN ]T ∈ R
N+1, vs = [v0, . . . , vN ]T ∈ R

N+1, and λ ∈ R
2, as well as

A =
T

∆x2











−2 1 0 . . . 0

1 −2 1
...

0 1
. . .

. . . 0
...

. . . −2 1
0 . . . 0 1 −2











∈ R
N+1,N+1, G =

[
1 0 . . . 0 0
0 0 . . . 0 1

]

∈ R
2,N+1,

ec = [0 . . . 0 1 0 . . . 0]T ∈ R
N+1,

where ec is the unit vector with 1 at position c and zeros otherwise, together with the
initial conditions

ys(0) = 0, vs(0) = 0, yb(0) = 0, vb(0) = v0, λ(0) = 0. (7.9)

The characteristic values of the differential-algebraic system (7.8) are given by µ = 2, dµ =
2N, aµ = 6, and vµ = uµ = 0. Thus, we have a hybrid DAE system with two modes
M = {1, 2} corresponding to the states of F (vrel(t)). The transition conditions are given
by

L1
1 = vc − vb ≤ −ε,

L2
1 = vc − vb > ε,

where ε is a small constant defining a hysteresis band around zero relative velocity. The
bowed string system (7.8) is solved with GESDA in the interval [0, 6] using the BDF method
of the DAE solver GELDA with error tolerance ATOL = RTOL = 10−10, initial values
(7.9) in initial mode 1, and using the parameters given in Table 7.5. The displacement and
the velocity of the bow together with the current mode as well as the phase portrait of the
bow motion are given in Figure 7.10. The displacement of the string at the bowing point
and at an intermediate point on the string together with the current mode of the hybrid
system are given in Figure 7.11. We can see that the motion of the bow results in a stable
periodic solution. Further, fast changing between the two modes in regions of near zero



7.2 Numerical Examples 233

L = 0.7 length of the string
T = 5.5 tension on the string
ρ = 0.5 mass density of the string
v0 = 0.5 initial bow velocity
Ω = 2 frequency of excitation
fk = −v0Ω sin(Ωt) sinusoidal excitation
µf = 0.4 coefficients of friction
FN = 1.8 bow pressure
mb = 1 bow mass
N = 100 grid size for spatial discretization
xc = 10

N
L = 0.07 bowing point

ε = 0.005 capture and break-away velocity
Table 7.5: Parameters for the bowed string
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Figure 7.10: Motion of the bow and phase portrait

relative velocity can be observed, i.e., chattering occurs. In the plots of the current mode
overlapping regions point to fast alternating changes between the two modes. Further, the
computed relative velocity between string and bow is given in Figure 7.12. Again, we can
see the oscillations around zero relative velocity. Altogether, the code detects 88 switch
points. In the second case the bow-string system (7.8) is solved with GESDA using sliding
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Figure 7.11: Displacement and velocity of the string

mode simulation. The system during sliding motion is defined by

ẏb = vb,

ẏs = vs,

mbv̇b(t) = fk(t) + λS,

ρv̇s = Ays − GT λ − eCλS,

0 = Gys,

0 = vb − vc,

(7.10)

with characteristic values µ = 2, dµ = 2N, aµ = 7, and vµ = uµ = 0. Once chattering is
detected or the sliding condition is fulfilled during the simulation, the system switches to
sliding mode and stays within sliding mode as long as the applied force is less than the
friction force, i.e., as long as

|fk(t)| ≤ µf‖FN‖.

The relative velocity between string and bow using sliding mode simulation is given in
Figure 7.13. We can see that the oscillations around zero relative velocity observed in the
previous simulation do not occur. Further, the displacement and the velocity of the bow
and the phase portrait of the bow motion are given in Figure 7.14, and the displacement
of the string at the bowing point and at an intermediate point on the string are given in
Figure 7.15. In the regions of zero relative velocity the system is integrated in the sliding
mode and alternating changes between modes are prevented. During the simulation only
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Figure 7.13: Relative velocity between bow and string using sliding mode simulation

8 switch points are detected and the solution of the bow motion exhibit a more regular
periodic cycle as in the previous simulation.

Remark 7.1. The idealized motion of a bowed string was examined experimentally by
Helmholtz. These investigations were extended by Raman [122]. Under ideal bowing condi-
tions, the bow and string interaction results in a motion of the string of a regular cycle of
stick-slip phases. In the beginning, the shear force causes the string to move under the bow
until the part of the string that is connected with the bow has a velocity equal to that of the
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Figure 7.14: Motion of the bow and phase portrait using sliding mode simulation
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Figure 7.15: Displacement and velocity of the string using sliding mode simulation
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bow. Then the string will stick for a while to the bow until the tension force on the string
becomes too strong and the string moves back slipping again under the bow, and so on. The
beginning and end of the slip phase are triggered by the arrival of a propagating bend or
so-called Helmholtz corner. This idealized motion of an one-dimensional bowed string is
also called the Helmholtz motion, where the Helmholtz corner is traveling back and forth
on the string under an approximately parabolic envelope.

7.3 Further DAE Solvers

There is a wide number of software packages available that have been designed for the
numerical solution of differential-algebraic equations, many of which are specially designed
for DAE systems of a certain application class. In the following, we give an overview over
available and commonly used numerical solvers for the numerical integration of DAEs. In
general, any of the following DAE solvers that enables an interruption of the integration
via a user-supplied subroutine can be embedded in the designed mode controller.
One of the first software packages developed for the numerical solution of DAEs is the
software package DASSL [17, 115] based on backward differentiation formulas with stepsize
and order control that was designed to integrate nonlinear differential-algebraic equations
of the form (2.3) of d-index at most one. This code is widely used in numerous applications
and works efficiently for nonstiff systems. In addition, the solvers DASPK and DASRT
[18], extensions of DASSL, have been designed for large scale DAEs. They are also based
on backward differentiation formulas with stepsize and order control, but in contrast to
DASSL the numerical solution of the arising linear systems is done via iterative methods.
The latest versions of DASPK and DASRT also include a sensitivity analysis and a root
finding procedure.
Another solver for DAEs is the code RADAU5 [59] that has been designed for the numerical
integration of differential-algebraic initial value problems of the form

Eẋ = f(t, x), x(t0) = x0, (7.11)

where E is a constant square and possibly singular matrix. The code RADAU5 is based
on the 2-stage implicit Runge-Kutta method of Radau IIa type of order 5 and allows
the numerical integration of DAEs of the form (7.11) up to d-index 3. Further solvers
available for the solution of (7.11) are the solvers SDIRK4, a diagonally-implicit Runge-
Kutta method of order 4, and the solver RODAS, a Rosenbrock method of order 4(3), see
[59]. In addition, the package DAESOLVE [121, 125] has been implemented for different
classes of quasilinear problems. Note that in contrast to the solvers GELDA and GENDA,
all the above listed codes have limitations to the index that they can handle, which is
typically a differentiation index of at most three.
There are also many algorithms that have been implemented for special application classes.
For the numerical integration of the equations of motion (1.1) of mechanical multibody sys-
tems a large number of numerical methods have been developed. First, we want to mention
the code ODASSL [34, 44] that uses a backward differences discretization, similar as the
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code DASSL, to solve systems of overdetermined DAEs that stem from the equations of
motions augmented with the time derivatives of the algebraic constraints. Further, the
numerical integrator MEXAX [93] (originally called MEXX) has been designed for the
numerical solution of constrained mechanical systems, including dry friction and external
dynamics. The code is based on coordinate projection and uses relatively expensive but
very accurate extrapolation methods for the integration. Further, the subroutine library
MBSpack [136] provides a collection of numerical integration methods based on explicit
Runge-Kutta methods for the equations of motion (1.1). Recently, the code GEOMS
[137, 138] has been developed for the numerical integration of general equations of motion
of multibody systems that also allows redundant constraints and takes into account pos-
sibly existing information concerning solution invariants. The code GEOMS combines a
stabilization technique with an implicit Runge-Kutta scheme (a Radau IIa method of order
5) as discretization of a strangeness-free formulation of the equations of motion. Further,
commercial software packages for the dynamic analysis of mechanical systems with the
multibody system method are available in packages like SIMPACK [127, 130], ADAMS
[128, 130] or DYMOLA [114]. They comprise the computation of the symbolic equations
of motion or the evaluation of the residuals of the model equations and the simulation of
the dynamical behavior.
Also, for the numerical simulation of electrical circuits a number of software packages
has been developed. The most prominent code is the general purpose electronic circuit
simulator SPICE [109]. Further, the circuit simulator TITAN [38] has been developed.
Usually, circuit simulation programs take a text netlist describing the circuit elements
(transistors, resistors, capacitors, etc.) and their connections, and translate this description
into equations to be solved. The general equations produced are nonlinear differential-
algebraic equations which are solved using implicit integration methods, Newton’s method
and sparse matrix techniques.

For the numerical simulation of switched systems not only the numerical integration but
also the modeling has to be taken into account. There are some, mostly commercial, soft-
ware packages which combine the modeling with the numerical simulation and also allow
the treatment of switched systems. The modeling environment and simulator ABACUSS
II [29], that was developed for chemical engineering applications, supports hybrid DAE
models. It uses the software library DAEPACK [143] that uses automatic differentiation
to determine the analytical derivatives of the original model to reformulate DAE systems
as ODEs. The simulator ABACUSS II incorporates hybrid discrete/continuous dynamic
simulation with state event location, but it cannot solve DAEs of d-index higher that one
and does not treat chattering behavior. Further, there is the software package DYMOLA
[114], a modeling and simulation environment for integrated and complex systems within a
wide field of applications, based on the object-oriented modeling language Modelica [100],
that allows the convenient modeling of complex physical systems, e.g., systems contain-
ing mechanical, electrical, hydraulic, thermal or control components. Within DYMOLA
the differential-algebraic systems are converted symbolically to state-space form. Graph-
theoretical algorithms are used to determine which variable to solve for in each equation
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and to find minimal systems of equations that have to be solved simultaneously. The
equations are then solved symbolically. DYMOLA also supports instantaneous and discon-
tinuous equations. Next, we want to mention HYBRSIM [108], a modeling and simulation
environment for hybrid systems using hybrid bond graph representations and allowing DAE
models. HYBRSIM performs event detection and location based on a bisectional search,
handles runtime causality changes, including derivative causality, and performs consistent
reinitialization, but it does not support the handling of chattering behavior. The contin-
uous behavior is handled by a simple Forward Euler integration scheme. Further, OmSim
[3], based on the object-oriented modeling language Omola [3], is an environment for the
modeling and simulation of continuous time and discrete event dynamics. Omola supports
behavioral descriptions in terms of differential-algebraic equations. OmSim analyzes and
manipulates the model including elimination of algebraic variables from the dynamic prob-
lem when feasible, to reduce the index of the DAE, that is then solved using the solvers
DASRT and RADAU5. OmSim does not support reinitialization during the integration
or the treatment of chattering. Finally, we want to mention MOSILAB [112], a simu-
lation tool for the modeling and simulation of complex technical systems also based on
the modeling language Modelica, that also supports hybrid models, and SIMULINK the
block diagram based modeling and simulation environment of MathWorks. The treatment
of sliding modes is currently not supported in available simulators, see also [104], but a
sliding mode simulation algorithm has been proposed e.g. in [106]. For an overview of
simulation packages for hybrid systems see also [104].

Remark 7.2. In the numerical simulation of DAEs essentially two approaches are taken.
The first approach [3, 114, 143] uses a reformulation of the system that solves all the
constraint equations (e.g., via computer algebra packages) and generates an ordinary dif-
ferential equation for the dynamics, for which standard simulation methods are available.
There are several disadvantages of this approach. First of all, the methods are expensive
and the output of the manipulations are often huge formulas that have doubtful numerical
properties. Second, all the constraints are solved in finite precision arithmetic such that the
approximate solution deviates from the constraints leading to physically meaningless results.
Furthermore, the resulting variables are usually non-physical and thus the results are diffi-
cult to interprete. The second approach [34, 82, 137] that we have used in this thesis uses
a reformulation as strangeness-free or low index DAE, while preserving the constraints and
keeping the original variables and their physical meaning. This makes initialization easy
and avoids that the numerical solution drifts off from the solution manifold. On the other
hand, this reformulation is often costly as well and it is frequently necessary to introduce
further variables in this process, which increases the system size. In circuit simulation and
multibody dynamics [7, 8, 36, 137] network based methods have been derived that yields
efficient ways to do this reformulation.
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7.4 Future Work

The solver GESDA enables the solution of general hybrid differential-algebraic systems
consisting of linear or nonlinear DAEs of arbitrary high index in each mode. Furthermore,
even over- and underdetermined linear differential-algebraic systems can be solved within
GESDA using the DAE solver GELDA. The solver GESDA provides wide freedom in
the definition of the transition conditions as well as in the transition functions. Further,
the consistent reinitialization provides the possibility to fix initial values for differential
components while consistent values for algebraic components are computed, thus providing
a solution as smooth as possible. A particular feature of the solver GESDA is the use of
sliding mode simulation that allows an efficient treatment of chattering behavior during the
numerical simulation and thus provides the possibility to reduce the computational effort
drastically. Nevertheless, not all phenomena in hybrid system behavior can be treated with
GESDA. In particular, the possibility that multiple transitions can occur at the same time
should be included in the solver. In this case, we need to find ways to decide which mode
change should be performed. Further, we have to investigate a stepsize selection strategy to
make sure that the numerical solution is adapted to the behavior of the switching functions
such that in particular no event is missed during the numerical integration. So far, we only
include the possibility to restrict the maximal allowed stepsize in order to avoid stepping
over regions. In addition, further DAE solvers can be embedded in the mode controller,
e.g. solvers for the equations of motion of multibody systems.



Chapter 8

Conclusion

The numerical simulation of complex dynamical systems described by differential-algebraic
equations plays an important role in technical applications. In this thesis, we have consid-
ered the analysis as well as the numerical solution of structured and switched differential-
algebraic systems. Basically, we have focused on three topics. The achievements of each
topic are summarized in the following.

First, we have considered higher order differential-algebraic systems, in particular second
order DAEs that arise frequently in technical applications. It is known that the classical
order reduction, that is usually used to transform ordinary differential equations of higher
order into first order systems, leads to a number of difficulties when applied to DAEs,
as e.g. an increase in the index of the DAE, see [102]. In [102, 135] condensed forms
for linear higher order DAEs and a stepwise index reduction procedure based on global
equivalence transformations have been derived that allow to transform a linear higher
order DAE into a so-called strangeness-free higher order system. From this strangeness-
free system we can read off which higher order derivatives of variables can be replaced
by new variables to transform the system into a first order system without increasing the
index. Unfortunately, this algebraic approach is not numerically computable as it involves
the derivatives of computed transformation matrices. In this thesis, we have derived a new
index reduction method for second order DAEs based on a derivative array approach using
the condensed forms given in [102]. At first, a characterization of the relationship between
the characteristic values in each step of the index reduction procedure in terms of ranks
of submatrices of the corresponding matrix triple is given in Lemma 3.15. Here, we use a
slightly different index reduction procedure compared to [102, 135] concerning the sequence
of differentiations of equations. This difference also effects the definition of the strangeness
index, see Remark 3.10. Next, we use a derivative array approach to derive an index
reduction method that allows to transform the second order system locally at each point
into a strangeness-free system in a numerical feasible way. In Theorem 3.18 it is shown
that the local characteristic quantities of the inflated system, given by the derivatives of
the original second order system, are invariant under global equivalence transformations
of the original system. In Theorem 3.19 we have shown how the local quantities of the
inflated system are related to the global characteristic quantities of the original system
for differential-algebraic systems of strangeness index µ ≤ 2. Using these results we can
determine a number of projections (Theorem 3.21) that allow to extract a reduced second
order system from the enlarged derivative array system locally at each point. This reduced
second order system can be shown to be strangeness-free with the same characteristic
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values as the strangeness-free system obtained by the stepwise index reduction procedure
and locally with the same solution as the original system, see Theorem 3.22. In Section
3.2, the derived index reduction method is extended to nonlinear second order system
using linearization along solution trajectories. In particular, linearization of the nonlinear
second order system and differentiation of the system commute, see Theorem 3.25, such
that the results obtained for linear second order systems can also be applied in the nonlinear
case. Hypothesis 3.26 is formulated that is invariant under equivalence transformations of
the original system and that allows to extract locally a reduced nonlinear second order
system that is strangeness-free and has locally the same solution as the original second
order system, see Theorems 3.29 and 3.30. Further, the approach allows the formulation
of a numerically computable trimmed first order system given in Lemma 3.35 that is also
strangeness-free. For linear time-invariant second order systems this trimmed first order
formulation also allows an explicit solution representation in terms of the original matrix-
valued functions. Theorems 3.19 and 3.21 have been proven only for the case that the
strangeness index is µ ≤ 2. Nevertheless, the assertions are expected to be also valid for
higher index problems. If a condensed form similar to the form given in [82, Theorem
3.21] could be proved, then we might be able to prove Theorems 3.19 and 3.21 also for
the case that µ > 2. With respect to this, Hypothesis 3.26 in the nonlinear case has been
formulated for arbitrary index µ. In general, all results obtained in Chapter 3 can also be
extended to arbitrary high order systems in an analogous way, see also Remark 3.24.

The second part of this thesis involves structure preservation for symmetric and self-adjoint
linear differential-algebraic systems that arise e.g. in mechanical systems or in optimal con-
trol problems. Since the structure of a system describes its physical properties, the struc-
ture should be preserved during the numerical solution. Otherwise, physical meaningless
solutions may result as rounding errors obscure the physical properties. In Theorem 4.10
a structure preserving condensed form for symmetric pairs of matrix-valued functions has
been derived. It has emerged that for symmetric time-variant systems strong assumptions
on the coefficient matrices, in particular on the kernel of E(t) given in Assumption 4.8, are
needed in order to be able to obtain a structure preserving condensed form using global
congruence transformations. It does not seem to be possible to lessen these assumptions
while preserving the symmetric structure during the transformation into condensed form
using global congruence transformations. Nevertheless, it has emerged that the self-adjoint
structure is better suited for studying structure preserving condensed forms, since global
congruence transformations preserve the self-adjoint structure of pairs of matrix-valued
functions without further assumptions. A structure preserving condensed form for self-
adjoint pairs of matrix-valued functions is given in Theorem 4.25. We have seen that in
both cases, i.e., for symmetric and self-adjoint linear systems, even under Assumption 4.8, a
structure preserving strangeness-free formulation only exists if the strangeness-index of the
system is lower or equal to 1. Furthermore, an index reduction methods based on minimal
extension of the original system has been derived for self-adjoint systems of strangeness
index µ = 1 that allows the formulation of a structure preserving strangeness-free sys-
tem and therefore enables a structure preserving numerical treatment of linear self-adjoint
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DAEs. This approach is also applicable in the case of linear symmetric differential-algebraic
systems of strangeness index µ = 1 without the need of Assumption 4.8.

The third part of this thesis involves differential-algebraic systems that switch between
different modes of operation. As a framework for the analysis and numerical solution
we choose the formulation of switched DAE systems as so-called hybrid systems as given
in Definition 5.3, i.e., a combination of DAEs describing the continuous dynamics of the
system and transition conditions describing the discrete mode changes. This formulation
allows to describe a huge number of possible system configurations and a wide scope of
definitions of switching conditions and therefore enables the description of different phe-
nomena in hybrid system behavior. An index reduction for hybrid systems can be realized
in the same way as for general nonlinear DAEs separately in each mode. Since the index
reduction is done locally at each time point, a reduced system can be extracted in each
mode independently of the previous or future system behavior. Further, a strangeness-free
hybrid system with the same solution as the original hybrid system can be obtained, see
Theorem 5.9. Next, the existence and uniqueness of solutions of hybrid systems after mode
switching are considered. Under the assumption that the differential-algebraic system in
each mode is solvable and has a well-defined strangeness index, conditions for the existence
and uniqueness of continuous solutions of a hybrid system are given in Theorem 5.18. Fur-
ther, conditions for the existence and uniqueness of generalized solutions that also allow
jumps or discontinuities in the state vector at the mode switches are given in Theorem 5.21.
In general, in order to ensure the existence of a solution, the transition functions have to
guarantee that the initial values after mode switching are consistent with the DAE in the
new mode. The chosen concept of impulsive smooth distributions allows the treatment of
discontinuities, but it requires that the coefficient matrices are infinitely often continuously
differentiable which is not always guaranteed. Another distributional approach is presented
in [144] that also allows discontinuities in the coefficients. For nonlinear hybrid systems
conditions for the solvability are given in Theorem 5.24.
One of the difficulties in the numerical solution of DAEs is to compute consistent initial
values before starting the integration. In contrast to the numerical solution of standard
DAEs, for switched DAE systems consistent initial values are needed not only at the initial
time t0 but also at every switch point τi. Consistent initial values for nonlinear DAEs can
be obtained by solving a nonlinear system of equations arising from the derivative arrays.
In addition, we fix certain components of the initial value vector during the solution of
the nonlinear system in order to find a reasonable continuation of the previous solution,
i.e., if possible, differential variables are continued smoothly over a switch point, whereas
algebraic variables are chosen consistently with the DAE in the current mode.
Another problem in the numerical simulation of switched systems is the occurrence of nu-
merical chattering, i.e., fast changing between different modes of operation. The numerical
solution of a switched system exhibiting chattering behavior requires high computational
costs due to repeated mode switchings and reinitializations and since small stepsizes are
required to restart the integration after each mode change. In the worst case, the numerical
integration breaks down as it does not proceed in time, but chatters between modes. One
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possibility to prevent numerical chattering is the introduction of hysteresis such that the
integration in each mode is done in an interval of a length bounded from below. Another
way to avoid oscillations around switching surfaces is to approximate the system dynamics
along the switching surface in the sliding region. An additional mode, the so-called sliding
mode, can be inserted into the system that represents the dynamics during sliding. For
discontinuous and switched differential-algebraic systems the behavior of the system during
sliding is approximated via a convex combination such that the solution trajectory stays
on the switching surface along which chattering occurs. The corresponding DAE in sliding
motion, that is based on the reduced systems in each mode, is of strangeness index µ = 1,
see Theorem 5.29. In this way, high computational costs due to fast oscillations along the
switching surface can be prevented.
Further, we have considered hybrid control problems for linear time-invariant descriptor
systems. In general, classical control concepts for DAEs can be applied to hybrid systems
locally in every mode, but some attention has to be paid to the transitions of the system
state between modes. Choosing a control ul in some mode l influences the transition condi-
tions and mode changes of the hybrid system as well as the points in time at with switching
occur. Thus, changes in the controls lead to a huge number of possible hybrid mode trajec-
tories and hybrid time trajectories and mode transitions often cause nonsmoothness of the
solution which complicates the minimization problem used in the optimal control theory.
Under the assumption that the descriptor system in each mode is controllable and observ-
able within the reachable set, necessary conditions for the controllability and observability
of a linear hybrid system are given in Theorem 5.42. Further, necessary conditions for
optimality of a hybrid optimal control problem under some transversality conditions are
given in Theorem 5.46.
Finally, a hybrid mode controller has been implemented that enables the numerical solution
of general nonlinear switched DAE systems. For the numerical integration of the DAEs in
each mode the two DAE solvers GELDA and GENDA have been embedded. During the
numerical integration, the solver checks if a transition condition is satisfied, and if so, the
control is returned to the mode controller which organizes the mode switching and restarts
of the integration method as well as the consistent reinitialization. The switch points
are determined as the roots of the switching functions using a modified secant method.
Further, the state of the system at a switch point is determined by interpolation using
the interpolation polynomials given by a Runge-Kutta or BDF method, respectively. In
particular, the code detects if chattering occurs during the simulation and enables the use
of sliding mode simulation. Concluding, we have demonstrated the applicability of the
implemented solver at several examples given in Section 7.2.
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Documentation of the code GESDA

SUBROUTINE DGESDA(INFO, MATSUB, FUN, DFUN, USCAL, UINTER, TRANSF,

$ MDCHNG, GFUN, MXTRAN, TRAN, SOLVER, METHOD,

$ M, N, NMAX, T, TOUT, TS, LTS, NSP, X, XPRIME,

$ CVAL, IPAR, LIPAR, RPAR, IFIX, IDIFCO, SCALC,

$ SCALR, RTOL, ATOL, MDHIST, IWORK, LIW, RWORK,

$ LRW, STATS, DWORK, ISMTH, IWARN, IERR)

C

C PURPOSE

C

C DGESDA solves nonlinear hybrid DAEs of the form

C

C F_1(t,x_1(t),x_1’(t)) = 0,

C ...

C F_n(t,x_2(t),x_2’(t)) = 0, x(t0) = x0,

C

C consisting of n systems of nonlinear DAEs with transition conditions

C between the systems, or linear hybrid DAEs of the form

C

C E_1(t)x_1’=A_1(t)x_1 = f_1(t),

C ...

C E_n(t)x_n’=A_n(t)x_n = f_n(t), x(t0) = x0,

C

C consisting of n systems of linear DAEs, for x in a specified range of

C the independent variable t.

C

C ARGUMENT LIST

C

C USER-SUPPLIED SUBROUTINES

C

C MATSUB - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the

C matrices E_l(t) and A_l(t) and the right hand sides f_l(t) for

C each mode l as well as their derivatives. It has the form

C

C SUBROUTINE MATSUB(IMAT, M, N, T, IDIF, W, LDW, IPAR, RPAR, IERR).

C

C The subroutine takes as input the number of equations M in the

C current mode, the number of unknowns N in the current mode,

C the time T and the integer parameters IMAT and IDIF. Further, the

C integer and double precision arrays IPAR and RPAR that can be used

C for communication between the calling program and the MATSUB

C subroutine. Note that IPAR(1) gives the current mode of the hybrid
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C system. As output W, the subroutine produces the IDIF-th derivative

C of E_l(t) at time T if IMAT=1, the IDIF-th derivative of A_l(t) at

C time T if IMAT=2, or the IDIF-th derivative of f_l(t) at time T if

C IMAT=3 for the current mode l defined in IPAR(1).

C In the calling program, MATSUB must be declared as external.

C

C FUN - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the

C nonlinear differential-algebraic equations F_l and its derivatives for

C each mode l. It has the form

C

C SUBROUTINE FUN (T, IDIF, F, X, IPAR, RPAR, IERR).

C

C The subroutine takes as input the time T, the vector X containing an

C approximation to the solution x and its first (MXINDX+2) derivatives,

C and the integer parameter IDIF. Further, the integer and double

C precision arrays IPAR and RPAR that can be used for communication

C between the calling program and the FUN subroutine. Note that IPAR(1)

C gives the current mode of the hybrid system. As output, the subroutine

C produces the IDIF-th derivative of the DAE in the current mode at time

C T and state X in the first M elements of the 1-dimensional array F.

C In the calling program, FUN must be declared as external.

C

C DFUN - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the

C Jacobian of F_l and its derivatives for each mode l. It is of the form

C

C SUBROUTINE DFUN (T, IDIF, JAC, LDJAC, X, IPAR, RPAR, IERR).

C

C The subroutine takes as input the time T, the vector X containing an

C approximation to the solution x and its first (MXINDX+2) derivatives,

C and the integer parameter IDIF. Further, the integer and double

C precision arrays IPAR and RPAR that can be used for communication

C between the calling program and the DFUN subroutine. Note that IPAR(1)

C gives the current mode of the system. As output, the subroutine

C produces all partial derivatives of the IDIF-th derivative of the DAE

C in the current mode IPAR(1) with respect to all entries of X in the

C first M rows and (MXINDX+2)*N columns of the 2-dimensional array JAC.

C

C USCAL - User supplied scaling SUBROUTINE of the form

C

C SUBROUTINE USCAL( MQ, NQ, A, LDA, SCALC, SCALR, IERR).

C

C (See Documentation of GENDA.)

C

C UINTER - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the transition

C conditions of the hybrid system. It is of the form

C

C SUBROUTINE UINTER(T,X,XPRIME,RPAR,IPAR,ATOL,IRTRN).

C
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C The subroutine takes as input the time T, the vector X

C containing an approximation to the solution x, the vector XPRIME

C containing an approximation to the derivative x’, the integer and

C double precision arrays IPAR and RPAR used for communication between

C the calling program and the UINTER subroutine, and the absolute error

C tolerance ATOL. IPAR(1) defines the current mode. The subroutine is

C called after each intermediate step in the integration by the solver

C GELDA or GENDA to check if a transition conditions is satisfied.

C As output the subroutine has to provide an integer value IRTRN that

C indicates if a transition condition is satisfied. The integration

C process is stopped if IRTRN =-1 and the control is return to GESDA.

C If IRTRN=0 the integration is continued.

C

C TRANSF - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the transition

C functions of the form

C

C SUBROUTINE TRANSF(XNEW,XOLD,N,MODNEW,MODOLD,IERR).

C

C The subroutine takes as input the vector XOLD containing an

C approximation to the solution in the old mode, the integer N

C containing the size of X, and the integers MODNEW and MODOLD defining

C the successor and predecessor modes. As output the subroutine provides

C the vector XNEW containing the solution after transfer to the new

C mode. If an error occurs IERR should be < 0.

C

C MDCHNG - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the mode

C allocation functions of the form

C

C SUBROUTINE MDCHNG(MODE, J, NMODE, MXTRAN, NEWMOD, IERR).

C

C As input the subroutine takes the integer MODE defining the current

C mode, the integer J providing the active transition, the integer NMODE

C providing the number of modes, the integer MXTRAN providing the

C maximal number oftransitions. As output the subroutine provides the

C integer NEWMOD defining the new mode. If an error occurs

C IERR should be < 0.

C

C GFUN - User supplied SUBROUTINE.

C This is a subroutine which the user provides to define the switching

C functions. It is of the form

C

C SUBROUTINE GFUN(T,IDIF, X, XPRIME, GT, NRTFN, IPAR, RPAR, IERR).

C

C The subroutine takes as input the time T, and integer IDIF, the

C vector X containing an approximation to the solution x, the vector

C XPRIME containing an approximation to the derivative x’, the integer

C and double precision arrays IPAR and RPAR used for communication

C between the calling program and the GFUN subroutine, and the integer

C NRTFN providing the number of switching functions in the current mode
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C defined by IPAR(1). As output the subroutine provides the array GT

C containing the values of the switching functions in the current mode

C at time T and state X. If an error occurs IERR should be < 0.

C

C

C ARGUMENTS IN

C

C MAXTRAN- INTEGER.

C The maximal number of transition.

C

C TRAN - INTEGER array of DIMENSION NMODE.

C The number of possible transitions for each mode.

C

C SOLVER - INTEGER array of DIMENSION NMODE.

C Indicates which solver should be used in each mode as follows:

C SOLVER(i)=1 the code uses the solver GENDA.

C SOLVER(i)=2 the code uses the solver GELDA.

C

C METHOD - INTEGER array of DIMENSION NMODE.

C Indicates which integration method should be used in each mode as

C follows:

C METHOD(i)=1 the code uses the BDF solver.

C METHOD(i)=2 the code uses the Runge-Kutta solver.

C

C M - INTEGER array of DIMENSION NMODE.

C The number of equations in the DAE system for each mode.

C M(i) .GE. 1.

C

C N - INTEGER array of DIMENSION NMODE.

C The number of components of x for each mode.

C N(i) = M(i) in this version of DGENDA.

C

C NMAX- INTEGER.

C The maximal size of the vector X given by MAX[(MXINDX+2)*N(i)].

C

C T - DOUBLE PRECISION.

C The initial point of the integration.

C NOTE that this scalar is overwritten.

C

C TOUT - DOUBLE PRECISION.

C The point at which a solution is desired. Integration

C either forward in T (TOUT > T) or backward in T (TOUT < T)

C is allowed.

C

C X - DOUBLE PRECISION array of DIMENSION (NMAX).

C If INFO(11)=0, this array can contain a guess for the

C initial value. A consistent initial value close (in the

C least square sense) to this guess is then computed. If no

C guess is available, set all elements of X to zero.

C If INFO(11)=1, this array must contain consistent initial

C values of the NMAX solution components at the initial point
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C T. NOTE that this array is overwritten.

C

C CVAL - INTEGER array of DIMENSION (5,NMODE).

C Contains the characteristic values of the DAE in each mode:

C CVAL(1,i) contains the strangeness index MU.

C CVAL(2,i) contains the number DMU of differential

C components.

C CVAL(3,i) contains the number AMU of algebraic components.

C CVAL(4,i) contains the number UMU of undetermined

C components.

C CVAL(5,i) contains the number VMU of redundancies.

C

C IPAR - INTEGER array of DIMENSION (LIPAR).

C This integer array can be used for communication between

C the calling program and the user-provided subroutines.

C IPAR needs to contain the following parameters:

C IPAR(1) - initial mode,

C IPAR(2) - number of modes,

C IPAR(3) - sliding mode (if dot defined set =0).

C

C LIPAR - The length of IPAR.

C

C RPAR - DOUBLE PRECISION array of DIMENSION (*).

C This real array can be used for communication between the

C calling program and the user-provided subroutines.

C

C IFIX - INTEGER array of DIMENSION (NMAX).

C

C IDIFCO - INTEGER array of DIMENSION (NMODE*NMAX).

C Contains information of differential components.

C By setting IDIFCO(i)=1 the corresponding variables is kept

C fixed during the computations of consistent initial values.

C

C RTOL - DOUBLE PRECISION array of DIMENSION (*)

C The relative error tolerances which the user provides to

C indicate how accurately he wishes the solution to be

C computed. (See documentation of GELD/GENDA.)

C

C ATOL - DOUBLE PRECISION array of DIMENSION (*)

C The absolute error tolerances which the user provides.

C (See documentation of GELD/GENDA.)

C

C ARGUMENTS OUT

C

C T - DOUBLE PRECISION.

C The solution was successfully advanced to the output value

C of T.

C

C TS- DOUBLE PRECISION array of DIMENSION (LTS).

C Contains the detected switch points.

C
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C LTS- The length of TS.

C

C NSP- INTEGER.

C The number of detected switch points.

C

C X - DOUBLE PRECISION array of DIMENSION (NMAX).

C Contains the computed solution approximation at T.

C

C XPRIME - DOUBLE PRECISION array of DIMENSION (NMAX).

C Contains the computed first derivative of the solution

C approximation at T.

C

C MDHIST - INTEGER array of DIMENSION (LTS+1).

C Contains the mode history.

C

C IWORK - INTEGER array of DIMENSION at least (LIW).

C (See documentation of GELD/GENDA.)

C

C LIW - The length of IWORK. (See documentation of GELD/GENDA.)

C

C RWORK - DOUBLE PRECISION array of DIMENSION at least (LRW).

C

C LRW - The length of RWORK. (See documentation of GELD/GENDA.)

C

C STATS - INTEGER array of DIMENSION(5).

C The array STATS contains some statistic of the integration:

C STATS(1) = number of integration steps so far

C STATS(2) = number of calls to MATSUB or FUN so far

C STATS(3) = number of factorizations so far

C STATS(4) = number of error test failures

C STATS(5) = number of convergence test failures

C

C DWORK - DOUBLE PRECISION array of DIMENSION (4+NNMAX)

C providing the workspace used in GESDA.

C (See documentation of the INFO array).

C

C DWORK(1) contains the tolerance TTOL used in the root

C finding procedure DRTFND.

C DWORK(2) contains chattering tolerance.

C DWORK(3) contains tolerance delta in the approximation of

C the sliding condition.

C DWORK(4) contains maximal allowed number of immediate transitions.

C DWORK(5) contains the interpolated and transfered solution at

C the last detected switch point.

C

C ISMTH - INTEGER.

C Integer indicating if nonsmooth transitions occur.

C ISMTH = 0: only smooth transitions occur

C ISMTH = -1: no smooth transition due to transition function

C ISMTH = -2: no smooth transition due to consistent initialization

C
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C IWARN - INTEGER.

C Integer containing warnings:

C IWARN >=0: the strangeness index has changed and IWARN contains

C the new value of the strangeness index.

C IWARN =-1: a high number of switch points occur, possible chattering!

C IWARN =-2: an immediate mode change occur.

C

C IERR - INTEGER.

C Error indicator. Unless the code detects an error, IERR

C contains a positive value on exit.

C (See also documentation of GELDA/GENDA.)

C

C INFO - INTEGER array of DIMENSION (27)

C The basic task of the code is to solve the system from T

C to TOUT and return an answer at TOUT. INFO is an integer

C array which is used to communicate exactly how the user

C wants this task to be carried out. The simplest use of the

C code corresponds to setting all entries of INFO to 0.

C

C INFO(1)-INFO(22) are used in the solvers GELDA, GENDA,

C see documentation of GELDA and GENDA.

C INFO(7) The user can specify a maximum (absolute value of)

C stepsize, so that the code will avoid passing over regions.

C DO YOU WANT THE CODE TO USE THE DEFAULT MAXIMUM

C STEPSIZE HMAX = 1.0D0 ...

C Yes - Set INFO(7)=0

C No - Set INFO(7)=1

C and define HMAX by setting RWORK(2)=HMAX

C

C INFO(23) This parameter determines if a routine UINTER is to be

C called after each successful integration step, i.e. if

C a switched system is to be solved. UINTER can be used

C for checking thresholds or intermediate outputs, etc.

C DO YOU WANT CALLS TO UINTER AFTER EACH SUCCESSFUL STEP

C Yes - SET INFO(23) = 0

C No - SET INFO(23) = 1

C

C INFO(24) The root finding procedure DRTFND determines the switch

C point within a tolerance of TTOL. By default the TTOL

C is computed by TTOL = (|THI|+|H|)*UROUND*100

C where UROUND is the unit roundof.

C DO YOU WANT TO USE THE DEFAULT TOLERANCE ...

C Yes - Set INFO(24)=0

C No - Set INFO(24)=1

C and define TTOL by setting DWORK(1)=TTOL.

C

C INFO(25) The codes detect chattering behavior. by default the

C chattering tolerance TOLC is set to TOLC=10^{-5} and

C the parameter DELTA used for the approximation of the

C sliding condition is DELTA=10^{-5}.

C DO YOU WANT TO USE THE DEFAULT TOLERANCES ...
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C Yes - Set INFO(25)=0

C No - Set INFO(25)=1

C and define TOLC and DELTA by setting DWORK(2)=TOLC

C and DWORK(3)=DELTA

C

C INFO(26) The codes enables sliding mode simulation. The detection

C of chattering can de disabled.

C DO YOU WANT THE CODE TO DETECT CHATTERING ...

C Yes - Set INFO(26)=0

C No - Set INFO(26)=1

C

C INFO(27) The codes allows a maximal number of immediate mode

C changes. The default value for the maximal allowed number

C of immediate transitions is given by MAXCGN=100.

C DO YOU WANT TO USE THE DEFAULT VALUE ...

C Yes - Set INFO(27)=0

C No - Set INFO(27)=1

C and define MAXCGN by setting DWORK(4)=MAXCGN

C

C ERRORS DETECTED BY THE ROUTINE (See also documentation of GELDA/GENDA.)

C

C IERR = -201 : Some element of INFO vector is not zero or one.

C IERR = -202 : NMODE .LE. 0.

C IERR = -203 : Current mode exceeds NMODE.

C IERR = -204 : N(I).LE. 0 OR M(I).LE. 0.

C IERR = -205 : Mode chattering occur.

C IERR = -206 : METHOD(I)>1 not possible for the nonlinear case.

C IERR = -207 : Wrong maximal transition.

C IERR = -208 : TRAN(I) has an invalid value.

C IERR = -209 : TTOL has an invalid value.

C IERR = -211 : An error occurred in the subroutine DRTFND.

C IERR = -212 : IERR in DMCHNG has a negative value.

C IERR = -213 : IERR in DTRANS has a negative value.

C IERR = -215 : Chosen solver not implemented yet.

C IERR = -216 : Wrong transition function detected.

C IERR = -217 : Number of switch points exceeds LTS.

C IERR = -218 : Wrong arguments in DWORK array.

C IERR = -219 : No root found by DRTFND, but an event was detected by UINTER.

C IERR = -220 : Too many immediate mode changes occur.

C IERR = -221 : An error occurred in the subroutine DCKCON

C IERR = -222 : Invalid value in IDIFCO.

C IERR = -223 : An immediate mode change occur and TRAN(i).GT.1.

C

C VERSION : July 1, 2008

C

C AUTHOR : L. Wunderlich (Technische Universitaet Berlin, Germany)

C wunder@math.tu-berlin.de

C

C REFERENCES : L. Wunderlich. Analysis and Numerical Solution of Structured

C and Switched Differential-Algebraic Systems. PhD Thesis,

C TU Berlin, Institut fuer Mathematik, 2008.
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