
 Foundations of computing Volume 11

Universitätsverlag der TU Berlin

Tim Jungnickel

On the Feasibility of Multi-Leader Replication
in the Early Tiers

Tim Jungnickel
On the Feasibility of Multi-Leader Replication

in the Early Tiers

The scientific series Foundations of computing of the
Technische Universität Berlin is edited by:
Prof. Dr. Rolf Niedermeier,
Prof. Dr. Uwe Nestmann,
Prof. Dr. Stephan Kreutzer

Foundations of computing | 11

Tim Jungnickel
On the Feasibility of Multi-Leader Replication

in the Early Tiers

Universitätsverlag der TU Berlin

Bibliographic information of the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the
Deutsche Nationalbibliografie; detailed bibliographic data
are available on the Internet at http://dnb.dnb.de.

Universitätsverlag der TU Berlin, 2018
http://verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133

E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2018

Gutachter: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Uwe Nestmann
Gutachter: Prof. Dr. Gero Mühl (Universität Rostock)
Die Arbeit wurde am 30. Mai 2018 an der Fakultät IV unter
Vorsitz von Prof. Dr. Florian Tschorsch erfolgreich verteidigt.

This work—except for quotes, figures and where otherwise noted—is
licensed under the Creatice Commons Licence CC BY 4.0
https://creativecommons.org/licenses/by/4.0

Cover image: NASA/JHUAPL/SwRI | „The Rich Color Variations of
Pluto“ (cropped)
https://www.nasa.gov/image-feature/the-rich-color-variations-of-pluto
public domain

Print: docupoint GmbH
Layout/Typesetting: Tim Jungnickel

ISBN 978-3-7983-3001-6 (print)
ISBN 978-3-7983-3002-3 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Published online on the institutional Repository of the
Technische Universität Berlin:
DOI 10.14279/depositonce-7109

http://dx.doi.org/10.14279/depositonce-7109

http://dnb.dnb.de
http://verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
https://creativecommons.org/licenses/by/4.0
https://www.nasa.gov/image-feature/the-rich-color-variations-of-pluto
http://dx.doi.org/10.14279/depositonce-7109

A B S T R A C T

In traditional service architectures that follow the service stateless-
ness principle, the state is primarily held in the data tier. Here,
service operators utilize tailored storage solutions to guarantee the
required availability; even though failures can occur at any time.
This centralized approach to store and process an application’s state
in the data tier implies that outages of the entire tier cannot be
tolerated. An alternative approach, which is in focus of this thesis, is
to decentralize the processing of state information and to use more
stateful components in the early tiers.

The possibility to tolerate a temporary outage of an entire tier
implies that the application’s state can be manipulated by the re-
maining tiers without waiting for approval from the unavailable tier.
This setup requires multi-leader replication, where every replica
can accept writes and forwards the resulting changes to the other
replicas.

This thesis explores the feasibility of using multi-leader replication
to store and process state in a decentralized manner across multiple
tiers. To this end, two replication mechanisms, namely Conflict-
free Replicated Data Types and Operational Transformation, are
under particular investigation. We use and extend both mechanisms
to demonstrate that the aforementioned decentralization is worth
considering when designing a service architecture.

The challenges that arise when following our approach go back
to fundamental impossibility results in distributed systems research,
i.e. the impossibility to achieve a fault-tolerant consensus mecha-
nism in asynchronous systems and the inevitable trade-off between
availability and consistency in the presence of failures. With this
thesis, we contribute to close the exposed gaps of both results by pro-
viding usable alternatives for standard IT services. We exemplify the
feasibility of our alternatives with a fully distributed IMAP service
and a programming library that provides the necessary extension
to utilize our approach in a variety of web-based applications.

All contributions of this thesis are based on both theory and prac-
tice. In particular, all extensions to the existing multi-leader repli-

v

cation mechanisms were proven to satisfy the necessary properties.
Moreover, those extensions were also implemented as prototypi-
cal applications and evaluated against the corresponding de facto
standard software from the industry.

vi

Z U S A M M E N FA S S U N G

Basierend auf dem „service statelessness principle“ ist es üblich,
Softwaredienste so zu entwerfen, dass der Zustand des Dienstes
primär in einer gekapselten Datenschicht verarbeitet wird. Innerhalb
der Datenschicht werden spezielle Lösungen verwendet, um die
Verfügbarkeit der Daten sicherzustellen. Dieser zentralisierte Ansatz
hat zur Folge, dass ein Ausfall oder eine temporäre Nichtverfügbar-
keit der gesamten Datenschicht zwangsweise zur Nichtverfügbarkeit
des gesamten Dienstes führt. Ein alternativer Ansatz, welcher in die-
ser Arbeit erforscht wird, ist die dezentralisierte Speicherung und
Verarbeitung der Daten in den darüberliegenden Softwareschichten.

Um in diesem Ansatz einen Ausfall der gesamten Datenschicht zu
kompensieren, ist es zwingend notwendig, dass die verbleibenden
Schichten die eingehenden Anfragen ohne die Bestätigung durch
die Datenschicht beantworten können. Hierfür wird eine Replikati-
onsarchitektur benötigt, in der jedes Replikat die Anfragen direkt
beantworten kann; die so genannte „multi-leader replication“.

In dieser Arbeit werden diese Replikationsarchitekturen verwen-
det, um den Zustand und die Daten eines Dienstes zu dezentralisie-
ren und über mehrere Schichten zu replizieren. Hierbei werden zwei
Mechanismen detaillierter betrachtet: „Conflict-free Replicated Data
Types“ und „Operational Transformation“. Anschließend werden
beide Mechanismen erweitert und hinsichtlich der Verwendbarkeit
für den beschriebenen Ansatz geprüft. Als Ergebnis dieser Arbeit
wird gezeigt, dass ein dezentralisierter Ansatz mit den vorgestellten
Mechanismen in Betracht gezogen werden kann.

Die Herausforderungen, die bei der Anwendung dieses Ansatzes
entstehen, basieren auf nachweislich unlösbaren Problemen aus der
Forschung von Verteilten Systemen. Dazu gehört die Unlösbarkeit
von Konsensus und die unausweichliche Abwägung zwischen Ver-
fügbarkeit und Konsistenz in einem verteilten System mit Ausfällen.
Diese Arbeit trägt dazu bei, die entstehenden Lücken, welche aus
diesen fundamentalen Ergebnissen resultieren, zu schließen und
die vorgeschlagenen Lösungen für reale IT Dienste anwendbar zu

vii

machen. Dieses wird anhand eines dezentralen IMAP Dienstes und
einer Programmierbibliothek für Webanwendungen verdeutlicht.

Alle Bestandteile dieser Doktorarbeit verbinden Theorie und Pra-
xis. Alle vorgeschlagenen Erweiterungen für bestehende Replikati-
onssysteme werden in formalen Modellen verifiziert und prototy-
pisch implementiert. Die Implementierungen werden außerdem mit
vergleichbarer Standardsoftware, welche dem heutigen Stand der
Technik entspricht, in praktischen Experimenten evaluiert.

viii

A C K N O W L E D G M E N T S

The Committee

I would like to express my sincere gratitude to my advisor Odej
Kao for welcoming me in his research group in 2014 and giving me
the opportunity to follow my ideas. On this way, Odej provided not

CIT

Alexander Acker
Sören Becker
Jana Bechstein
Anne Grohnert
Anton Gulenko
Vincent Henning
Tobias Herb
Mareike Höger
Peter Janacik
Britta Kitanova
Andreas Kliem
Marc Körner
Björn Lohrmann
Sasho Nedelkoski
Thomas Renner
Florian Schmidt
Alexander Stanik
Lauritz Thamsen
Ilya Verbitskiy
Paul Völker
M. Wallschläger
Meike Zehlike

MTV

Benjamin Bisping
Paul Brodmann
David Karcher
Tobias Prehn
Kirstin Peters
Christina Rickmann
Christoph Wagner
A. Wilhelm-Weidner
Svea Wilkending

only the resources, but also the necessary freedom and trust so that
I was able to identify the questions that I wanted to answer in this
thesis.

Furthermore, I would like to thank Uwe Nestmann for his guid-
ance during, and before this dissertation project. The experience to
be part of his research group as a student teaching assistant paved
my way for this thesis. Thank you, Uwe, for providing an addi-
tional office, which I regularly used to keep in touch with you, the
colleagues, and the research on the theory of distributed systems.

I also want to thank Gero Mühl for accepting to review this thesis
and his valuable comments and feedback.

The Colleagues

I want to emphasize that my surroundings were highly influential in
my daily work and that I am thankful for the enjoyable atmosphere
that everyone of my colleagues created. I thank you all for sharing
your knowledge and experience, and the countless discussions that
we had during our lunch breaks and after our presentations.

The Faculty

For almost 10 years I was able to benefit from the achievements of
my faculty. This was made possible by the countless people that
contributed to the development and growth, especially in teaching,
research, and administration. Fortunately, I was able to make my
own small contributions as well. I am thankful for the amount of
appreciation that encountered to me, especially for my work in the
faculty’s boards. Among the many people that I met there, I par-
ticularly thank Hanna Wesner and my friends in the Freitagsrunde
for their support and the exceptional work to make the university a
better place.

ix

The Students

I would like to thank the many students that worked with me dur-
ing my research. In particular, I want to thank Ronny Bräunlich,
Juan Cabello, Matthias Loibl, and Lennart Oldenburg for their inspi-
rational minds and their contributions to this thesis. Many lines of
code that were written for this thesis carry their signature for which
I am indefinitely thankful.

The Family

Ultimately, I thank my family for their unquestionable love and
support. My mother, Ina Weber, for raising me with the right values
and the confidence that I succeed on the path that I chose. My father,
Lutz Jungnickel, for his unconditional support and his counsel.
Steffen Laubner, for the many skills that I have learned from him.
My grandparents, who provided the necessary contrast to the life
in the big city. And, most importantly, Maike and our kids Paul and
Charlotte for their love and patience with me, especially during the
most intense phases of my study.

Tim
Berlin, April 2018

x

This is for you,
Paul, Charlotte & Maike.

In loving memory of Werner Jungnickel.

1935 – 2017

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Challenges and Problem Statement 2

1.3 Outline of this Thesis 4

1.4 Main Contributions and Publications 5

2 background 9

2.1 State in Service-Oriented Architectures 9

2.2 Scaling with Replication and Partitioning 14

3 on stateful logic tiers with crdts 25

3.1 Chapter Overview . 25

3.2 Conflict-free Replicated Data Types 26

3.3 A Case Study for IMAP 34

3.4 pluto: The Planetary-Scale IMAP Server 63

3.5 Evaluation . 70

3.6 Discussion . 84

3.7 Related Work . 89

3.8 Chapter Summary . 94

4 on stateful presentation tiers with ot 97

4.1 Chapter Overview . 97

4.2 Operational Transformation 98

4.3 From Tree Transformations to JSON Operations . . . 106

4.4 Open-Source Collaborative Patient Documentation . 119

4.5 formic: A Library for Collaborative Applications . . . 125

4.6 Evaluation . 131

4.7 Related Work . 138

4.8 Chapter Summary . 143

5 outlook and discussion 145

5.1 Transferability . 145

5.2 Perspectives . 148

6 conclusion 153

xiii

xiv contents

bibliography 156

a appendix : operational transformation 171

a.1 The Wave Control Algorithm 171

a.2 The Remaining Tree Transformation Functions 172

a.3 Extended Evaluation Results 175

1I N T R O D U C T I O N

1.1 motivation

Over the last years we have observed an ongoing centralization
of the services we use on the Internet. This trend manifests in the
increased popularity of services that aggregate the data of many
users to deliver the necessary convenience to be successful. For
example, the possibility to use a personal photo library on multiple
devices like smartphones and tablets convinces users to upload their
private data to a central instance like iCloud, Dropbox, or Google
Drive. The same holds true for office applications or social networks.

Surprisingly, this trend can also be observed for services that are
designed to run in a decentralized fashion, like the email system. In
the original email system, everyone could participate in a network of
mail servers and be responsible for the delivery and the reception of
messages for their domain. Nowadays, only a minority of the people
run their own mail server and huge mail providers are used instead.
For example, two years ago Google’s mail service GMail crossed
the mark of 1 billion monthly active users [Mil16]. In the context of
blockchains and the Bitcoin network we observe that many people
buy their digital currency on centralized services like Coinbase that
aggregate the wallets of users [Shi17]. In a sense, these centralized
services can be seen as a bank, which is strange manifestation
of the opposite of the original motivation of the Bitcoin network,
i.e. to have a decentralized digital currency without centralized
authorities.

The reason for this ongoing centralization is the convenience that
is provided by centralized services. Decentralized services, however,
are typically seen as difficult to maintain and prone to configuration
errors or concurrency related bugs. On the other hand, centralized
services require a certain confidence that the reliability expectations
are fulfilled.

The trend of centralization can also be observed in the design and
development of software services with respect to managing data

1

2 introduction

and state information. As a guiding principle, i.e. the service state-
lessness principle [Erl05], processing state information is reduced to
the necessary minimum. This typically results in application designs
where data and state is held exclusively in the data tier, and the
other tiers follow stateless designs. The data tier is in turn held
at a single provider like Amazon Web Services or at the Google
Cloud Platform where, consequently, convenience in maintainability
is again traded against the required confidence in the reliability
guarantees of those providers.

Unfortunately, the consequences of a failure of the single and
centralized point where the state is processed can be severe. For
example, an outage of Amazon’s S3 system that happened in 2017

resulted in service disruption of major websites like GitHub, Slack,
or Twitch for over four hours [Nic17]. During that time, no EC2

compute instances could be launched and other important storage
systems like the Elastic Block Storage were unavailable [Ser17].

To this end, achieving more decentralization in application de-
signs and thus more independence between the different tiers of
an application’s architecture is a desirable goal. The requirement
to achieve this, is that designing and maintaining a decentralized
system is as convenient as designing a centralized system. Therefore,
an exploration and advancement of the existing decentralization
mechanisms is necessary.

1.2 challenges and problem statement

In today’s commonly used architectures for applications of a scale
that exceeds the capabilities of a single server, functionalities are
encapsulated in independent software components which are in
turn placed on multiple servers. One typically used alignment of
these independent software components is the 3-tier architecture,
which defines a hierarchical structure of presentation, logic, and
data [Fow02].

While this approach to design an application is certainly beneficial,
the requirement to operate such an application is that all tiers are
working properly. A temporary interruption of any of the tiers
would result in service disruption, or at least reduced functionality.
In order to prevent this, certain measures are taken to increase the
reliability of the application. We note that the critical part, which

1.2 challenges and problem statement 3

makes increasing reliability a nontrivial challenge, is in fact the
application’s state. Therefore, the commonly applied architectural
approach is to process the application’s state in the data tier only;
making the components in the presentation and logic tier mostly
stateless.

The stateful components in the data tier are in turn subject
of special consideration to achieve the necessary high availability.
The typical mechanisms that are applied to increase the reliability
while achieving the needed performance are replication and parti-
tioning [Kle16]. For example, databases like PostgreSQL or MySQL
use single-leader replication to avoid relying on a single copy of
data [Pos18; Ora18]. Other approaches allocate specialized hard-
ware or duplicate the entire service (active replication), resulting in
extraordinary high demands of resources [AT09; AT03].

We note that the underlying strategy is to avoid maintaining
more state than necessary at any cost, which can be seen as a
direct consequence of the service statelessness principle. In this
thesis, however, we propose a different approach by purposely
breaking this principle and allowing the maintenance of more state
the the early tiers. Hence, in contrast to avoiding the problem of
processing and storing more state than necessary, we are addressing
the problem directly and propose the needed extensions to existing
replication mechanisms in order to transfer our approach to real-life
applications.

The major challenge behind our approach is that achieving more
independent and autonomous tiers requires a more complex repli-
cation architecture, namely multi-leader replication. In this archi-
tecture, the state is replicated across multiple tiers, enabling com-
ponents in the early tiers to respond to a client’s request without
waiting for data tier to process the state. The presence of conflicting
updates is inevitable in this scenario, making conflict resolution
mechanisms necessary for all kind of situations that occur with
concurrent updates. Designing a complete and sound conflict reso-
lution mechanism is a challenging and error-prone task that requires
careful consideration.

The overarching problem is the manifestation of the CAP dilemma,
which represents a fundamental and still unsolved problem in
distributed systems research [Bre00; GL02]. By replicating the ap-
plication state across multiple tiers, we effectively face the CAP

4 introduction

consequences that designing an application that simultaneously
guarantees high availability, consistency, and partition tolerance
is impossible. The challenge in our approach is to mitigate this
dilemma and to propose a practical solution for IT services.

In this thesis we aim to demonstrate the feasibility of storing
and processing more state in the presentation and logic tier, and
thus improving the reliability of applications. We use existing multi-
leader replication mechanisms and extend them in a way that they
can be applied in standard IT services. We carefully take the arising
challenges both on a theoretical and practical level, i.e. all proposed
extensions are verified and implemented.

To this end, we assert the following statement in this thesis: In
order to improve the reliability and performance of applications in a 3-tier
architecture, replicating state across the presentation or logic tier is worth
considering.

1.3 outline of this thesis

We begin by providing the necessary background and the fundamen-
tal perspectives for this thesis in Chapter 2. This chapter includes
an overview about the most important contributions in the field of
distributed systems that are referenced in the later chapters. We look
closer at the recent achievements in the field of software architec-
tures, e.g. service-oriented architectures, microservices, layered-ar-
chitectures, and the 3-tier architecture. Furthermore, we summarize
the often used approaches partitioning and replication to scale-out
applications and look closer at the CAP dilemma to understand the
options for an application in presence of failures. Ultimately, we
define the consistency models that are of particular interest in the
rest of this thesis.

In Chapter 3 we present one of the two main explorations of this
thesis: the opportunities and disadvantages of handling more state
in the logic tier. Therefore, we present the necessary foundations
of the used multi-leader replication mechanism, i.e. Conflict-free
Replicated Data Types (CRDTs), before we exemplify our approach
with the Internet Message Access Protocol (IMAP). As one of our
main contributions, we present our proposal of an IMAP-CRDT
and the associated verification of the necessary properties with
the interactive theorem prover Isabelle/HOL. Moreover, we show

1.4 main contributions and publications 5

the feasibility and applicability of our approach by presenting our
research prototype pluto and an evaluation against the de facto
standard IMAP server Dovecot. Subsequently, we discuss the related
work and our contributions to the research community.

In Chapter 4 we present the second main exploration: handling
more state in the presentation tier. Here, we summarize and use
Operational Transformation (OT) as multi-leader replication mecha-
nism. We present our generalization of OT by introducing a verified
transformation function that enables simultaneous editing of JSON
objects, which is highly relevant for modern web development. To
demonstrate the applicability in the presentation tier, we present our
prototypical application of a collaborative patient documentation
system. Thereafter, we transfer the gained insights to a program-
ming library, which we use to evaluate our extension in various
collaborative editing scenarios against Google Docs and ShareDB,
and confirm the limitations of OT.

We take the acquired insights from the previous chapters and
discuss the transferability of our approach to other than the ex-
plored software services in Chapter 5. Since both of the used mech-
anisms for multi-leader replication have their advantages and dis-
advantages, we discuss the sweet spot and further explore possible
application areas. Moreover, we discuss the implications and the
possibilities that arise when further following our approach in a
future work section.

Ultimately, we conclude and summarize this thesis in Chapter 6.

1.4 main contributions and publications

The contributions to the scientific community can be summarized
as follows:

1. We propose a novel approach for placing stateful software
components with integrated multi-leader replication in a 3-
tier architecture by breaking the widely applied service state-
lessness principle. The resulting decentralization yields new
opportunities for deploying services in inter-cloud and hybrid-
cloud setups up to planetary scale.

2. We present a new and verified Conflict-free Replicated Data
Type that reflects the state of an IMAP server and supports all

6 introduction

write-commands from RFC 3501. With our datatype design
we propose a novel approach to use CRDTs in standard IT
services. Furthermore, with the implementation of our verifi-
cation in Isabelle we contribute another example for a recently
proposed CRDT verification framework to the Isabelle com-
munity.

3. We unveil the limitations of the currently used replication
mechanism (dsync) in the de facto standard IMAP server Dove-
cot. The evaluation of our open-source prototype pluto includes
a benchmark tool that generates write-intensive workloads,
which can be used to stress test other IMAP servers, for ex-
ample GMail or Microsoft Exchange. With our evaluation at
planetary-scale we demonstrate how our approach can be
used to significantly reduce the replication lag.

4. We contribute our extension of Operational Transformation
to support simultaneous editing of JSON objects by introduc-
ing a mapping between the JSON structure and our verified
transformation function for ordered n-ary trees. We further
contribute an open-source example application that exempli-
fies the applicability of our extension in modern web develop-
ment. With our evaluation we confirm the limitations of OT
in real-time collaboration systems at large scale and compare
our programming library to the existing open-source solution
ShareDB.

5. With our extensions for two commonly used multi-leader
replication mechanisms we further contribute to bridging the
gap that is exposed by the CAP theorem, which represents
an open and fundamental problem in distributed systems
research, that has high influence to the IT industry.

We want to emphasize that all contributions of this thesis are
a result of a scientific process that includes a theoretical analysis
of the problem, an abstract solution, a formal verification of the
necessary properties, a prototypical implementation, and a practical
evaluation. Hence, we would like to add this interplay of theory
and practice to solve a particular problem to the list of engineering-
related contributions, together with all open-source prototypes that
have been developed for this thesis.

1.4 main contributions and publications 7

Publications

Most parts of this thesis, and the corresponding contributions, have
been published in the following list of peer-reviewed articles [JH16;
JCR17; JO17; JB17; JOL17a] and technical reports [JH15; JOL17b]:

[JB17] Tim Jungnickel and Ronny Bräunlich. 2017. formic:
Building Collaborative Applications with Operational
Transformation. In: Conference on Distributed Applica-
tions and Interoperable Systems (DAIS), 138–145.

[JCR17] Tim Jungnickel, Juan Cabello, and Klemens Raile. 2017.
HotPi: Open-Source Collaborative Patient Documenta-
tion. In: ACM Conference on Computer-Supported Coop-
erative Work and Social Computing Companion (CSCW),
219–222.

[JH15] Tim Jungnickel and Tobias Herb. 2015. TP1-valid Trans-
formation Functions for Operations on ordered n-ary Trees.
� arxiv.org

[JH16] Tim Jungnickel and Tobias Herb. 2016. Simultaneous
Editing of JSON Objects via Operational Transforma-
tion. In: ACM Symposium on Applied Computing (SAC),
812–815.

[JO17] Tim Jungnickel and Lennart Oldenburg. 2017. pluto:
The CRDT-Driven IMAP Server. In: Workshop on Prin-
ciples and Practice of Consistency for Distributed Data
(PaPoC), 1:1–1:5.

[JOL17a] Tim Jungnickel, Lennart Oldenburg, and Matthias
Loibl. 2017. Designing a Planetary-Scale IMAP Ser-
vice with Conflict-free Replicated Data Types. In: Con-
ference on Principles of Distributed Systems (OPODIS),
23:1–23:17.

[JOL17b] Tim Jungnickel, Lennart Oldenburg, and Matthias
Loibl. 2017. The IMAP CmRDT. Isabelle Archive of
Formal Proofs. � isa-afp.org

https://arxiv.org/abs/1512.05949
http://isa-afp.org/entries/IMAP-CRDT.html

2B A C K G R O U N D

2.1 state in service-oriented architectures

At the time of writing this thesis, service-oriented architectures
(SOA) were introduced more than 20 years ago by Schulze and
Natiz in a research report from Gartner. Since then, it has been
actively researched and various extensions and patterns emerged
and ultimately SOA became the de facto standard architecture for
enterprise applications. More recently, the term microservices has
been introduced as a variant of SOA. Now, and almost 20 years after
the introduction of SOA, architectures based on microservices are
state-of-the-art and used in almost all major large-scale websites
like Netflix, Amazon, or eBay [Fow14]. However, precisely defining
the conceptual difference between microservice architectures and
SOA is difficult, as microservices are often seen as a reinvention of
the almost outdated SOA principles. In this section we introduce
the needed definitions that have emerged from the past years of
SOA related research. We want to emphasize that even though we
base some of our contributions on the rather old SOA definitions,
the concepts behind those definitions are more than ever relevant in
modern IT architectures.

2.1.1 Service Statelessness Principle

Service-oriented architectures are typically defined as an architec-
tural style that uses software services as the smallest building block
of a bigger infrastructure. The services are usually seen as loosely
coupled, coarse-grained, and autonomous [RGO12]. Services can
interact with each other over messages at discoverable addresses
called endpoints.

In the literature there is a distinction between stateful and state-
less services [AT09]. A stateless service treats each request as an
independent one, where the response is not related to any previous
request. In contrast to that, a stateful service stores data beyond one

9

10 background

request. This distinction will become important because both types
of services have fundamentally different properties when it comes
to scalability and fault tolerance.

In addition to the mentioned distinction between stateful and
stateless services, Thomas Erl further defines the architectual princi-
ples of SOA [Erl05]. Among those principles is the service statelessness
principle. According to this principle, services should minimize the
usage of resources and limit itself to storing and processing state
information only when it is absolutely necessary. We note that the
distinction between stateful and stateless services is, in fact, a man-
ifestation of the service statelessness principle, because following
the idea of minimizing the processed state information leads to
only two options: either delegating state management (stateless) or
handle state explicitly (stateful).

2.1.2 3-tier Architecture

Apart from service-oriented architectures there is another architec-
tural pattern called the layered architecture [Bus+96]. In the layered
architecture, the software functionality is partitioned into horizontal
subsystems that encapsulate certain features. One benefit of these
encapsulations is that the functionality on one layer can evolve in-
dependently from other layers. For example, user interfaces tend
to change at a higher rate than the application logic, therefore the
layered structure allows to redesign the interface without modifying
the logic.

The major challenge in a layered architecture is to define the right
number of layers. While too few layers may result in inflexibility
regarding the rate of change that is necessary, too many layers
can fragment the architecture too much, which in turn results in
unnecessary overhead and poor maintainability. To this end, there
is a common approach to define three layers, i.e. the 3-layered
architecture:

presentation layer : The presentation layer contains the user
interface and all interface-related functionality. Typical func-
tionality includes the invocation of requests to the other layers
and the translation of the result of one request to a form that
can be understood by the user.

2.1 state in service-oriented architectures 11

application layer : The application layer contains the logic of
an application. This layer typically contains the functions that
are responsible to compute a result for a request.

persistence layer : The persistence layer typically contains all
functionality to store and retrieve data. For example, this layer
could include functions to search the data or reorganize the
used data layout.

We note that the layered architecture can be seen as a logical
separation of code or functionality. The presented definition makes
no assumptions about how these layers should interact or how the
layers could be placed on IT infrastructure. To this end, an opposing
version of the layered architecture emerged: the multitier architecture.

The multitier architecture focuses on the physical components
and where the code is deployed on [Fow02]. In combination with
the layered architecture, the multitier architecture defines which
layers should be placed on which group of physical machines. Con-
sequently, it is possible to run a system with a 3-layered architecture
on a single tier.

We note that there exist some confusion and misinterpretation
of the term tier. In very strict definitions, the term tier refers to a
single physical machine. We find that this strict definition is rather
inconvenient. Following this logic, an application that can automat-
ically scale to a higher number of nodes in case of an increased
workload would result in an ever-changing-tier architecture and the
separation into tiers would be pointless.

In this thesis we use the term tier as a group of physical machines
that are responsible for a particular layer. Since we focus on systems
of a certain scale, we neglect the possibility that multiple layers run
on one tier. Consequently, there is no mismatch between the number
of tiers and the number of layers in our definition1.

In accordance with the 3-layered architecture is the 3-tier archi-
tecture. In the 3-tier architecture, the tiers can be interpreted as
physical machines that are connected over a network to exchange
messages. The three tiers are typically called presentation tier, logic

1 This is actually a very common interpretation. Some definitions go even further
and make no difference between the terms tier and layer, because nowadays
the separation of functionality on different nodes can be easily achieved with
virtualization and containerized applications.

12 background

tier, and data tier. The functionality that is typically deployed in
those tiers can be derived from the above-presented definitions of
the three layers.

State in a 3-tier Architecture

We note that this encapsulation of functionality in smaller building
blocks that are communicating over messages is closely related to
SOA. The major restriction of 3-tier architectures compared to SOA
is that the type and the number of services is predetermined.

In this thesis we take a closer look at the state that is handled in
a 3-tier architecture. The distinction between stateless and stateful
services, which we presented earlier, can be applied to the 3-tier
architecture as well. This raises the question which of the tiers
should handle state (stateful) and which tiers should avoid handling
state information (stateless).

Data

Logic

stateless
Presentation

stateless

stateful

Fig. 2.1: State in
a typical 3-tier

architecture.

The answer to the aforementioned question is presented in Fig-
ure 2.1, where we visualize the state in a 3-tier architecture. It is
relatively obvious that the data tier handles state explicitly and
is a stateful component (colored gray). According to the service
statelessness principle and the efforts of the last ten years of cloud
engineering, the tiers above the data tier have typically a stateless
design2.

The reason for this alignment of stateful and stateless components
in a 3-tier architecture is that there is a fundamental difference in
terms of what stateful and stateless services can achieve with respect
to scalability and fault tolerance. In essence, a stateless service
can simply be restarted on another machine in case of a failure.
Moreover, multiple instances of the stateless service in combination
with a load-balancer can be used to increase the throughput and
thus the scalability. In contrast to that, scaling a stateful service and
providing the necessary fault tolerance is difficult. That is why we
use the rest of this chapter to present the challenges that arise when
dealing with stateful services.

2 We note that this is a quite oversimplified statement. In reality, application state in
form of caches can be found on every tier, and therefore no tier is truly stateless.

2.1 state in service-oriented architectures 13

2.1.3 Fault Tolerance

For stateless services it is relatively easy to achieve increased avail-
ability by supporting a failover. In case a server failure is detected,
e.g. by a missing heartbeat, a failover is typically accomplished by
routing new requests to an alternative resource, i.e. another server.
In this case, the new server has taken over the identity of the failed
server [AT03]. This is typically achieved by an update of the DNS
record or by rewriting or reusing the IP [AB00], similar to Floating
IPs in OpenStack or Elastic IPs in AWS.

For stateful services, however, a failover can only be accomplished
if there exists a valid and working up-to-date copy of the state that
can be used by a new server. To this end, there are three common
approaches to preserve the state of a service:

message logging : All incoming requests to the service are tem-
porarily stored on another machine. In case the server fails, the
temporarily stored requests are then replayed to an alternative
server in order to rebuild the state before the server fault.

checkpointing : An up-to-date copy of the state is stored peri-
odically on a redundant server. In case the server fails, this
copy (read checkpoint) is then loaded to an alternative server
that can continue to serve the incoming requests.

active replication : All incoming requests are duplicated and
simultaneously processed by multiple servers. In this setup,
the response is sent from only one server. In case this server
fails, the other server takes over and answers incoming re-
quests.

All of the above-mentioned approaches have their advantages and
disadvantages. For example, message logging and active replication
assume that the result of a request can be deterministically recreated.
Any nondeterminism, for example the use of the system clock,
would result in a different state and yields unexpected results if a
failover is applied. This issue has been addressed in more than ten
years of research on deterministic replay [Che+15; MCT08].

The checkpointing approach is widely applied in high-availability
systems and has been investigated by researchers for over 20 years.
The major disadvantage of this approach is that the maintenance of

14 background

an up-to date copy, i.e. a checkpoint, binds compute resources and
typically has a negative impact on the overall performance of the ser-
vice. For example, Cully et al. included the periodic store of a check-
point on hypervisor level, which enables the use of checkpointing
for virtual machines that run unmodified software [Cul+08]. Their
evaluation revealed that at a checkpoint rate of 20 times per second,
the overhead is 52%, where the costs for the additional resources
to store the checkpoint are excluded. Applying this approach on a
larger scale is, at least at the current state of development, uneco-
nomical.

Despite the need of deterministic operations, active replication
is also widely applied. For example, AWS provides a fault tolerant
storage called Elastic Block Store (EBS), where they achieve high-
availability by replicating all write requests on a volume to three
availability zones within one region [Ama18]. The availability zones
within one region can be seen as isolated data center locations with
a fast and reliable network connection. Due to the fast network
connection, EBS can tolerate failures of a single data center, i.e.
availability zone, without any noticeable performance loss. The
major disadvantage is that this concept is rather expensive and
cannot be applied outside a fast network, for example between
different cloud providers (inter-cloud) or in collaboration with a
local data center (hybrid-cloud).

We note that the described active replication mechanism is a
relatively simple form of replication. In addition to the duplication
of requests, there exists a broad spectrum of replication mechanisms
and resulting consistency models. Those mechanisms are not only
used to increase the reliability of a service, but also to increase the
performance by enabling scalability up to a planetary level. In the
next section we explore this spectrum of replication mechanisms
in depth and present the necessary background in order to enable
replication of stateful components in the logic and presentation tier.

2.2 scaling with replication and partitioning

In the previous section we have presented a layered approach for
software development, i.e. the 3-layered architecture. The compo-
nents on each layer are typically placed on different machines which
communicate over a network, i.e. a 3-tier architecture. Once the num-

2.2 scaling with replication and partitioning 15

ber of requests exceeds the capabilities of one of those machines,
two mechanisms, which often go hand-in-hand, can be applied:
partitioning and replication. In addition to achieving scalability, both
mechanisms are often used to achieve high-availability, fault toler-
ance, and an improved response time.

2.2.1 Partitioning

The intuition of partitioning is to split the data into small subsets
which are then assigned to different nodes. This mechanism is
also known as sharding. To avoid terminological confusion, how-
ever, we prefer the term partitioning. In a 3-tier architecture that
follows the service statelessness principle, the components in the
data tier qualify for this approach. For the sake of simplicity, we
assume a standard SQL database in the data tier and illustrate how
partitioning can be used to achieve more beneficial properties.

For a database there are several ways to split the data into disjoint
subsets. The two commonly used options are partitioning by hashes
or by key range. In the first option, a hash function determines the
partition of the key. This usually results in a uniform distribution
of the data, for the price of a reduced efficiency of range queries,
because multiple partitions must be requested. The second option,
and the more intuitive one, arranges the partitions based on a key
range. For example, the last names of the users in the range from
A-D may form one partition. Queries for data within that range, e.g.
“list all users with last name A”, can be executed more efficiently
because no other partition must be queried. In contrast to hashing
based partitioning, key range partitioning is prone to hot spots and
nonuniform distribution of the data across the partitions.

If a software service is designed to operate with multiple and in-
dependent partitions, it usually follows a shared-nothing architecture.
In contrast to shared-disk or shared-memory architectures, each node
used the CPU, memory, or disk independently. While systems that
are designed in a shared-nothing architecture certainly provide many
benefits, they are also prone to pitfalls. For example, McSharry et
al. showed that a single threaded program can easily outperform a
misaligned service on a cluster of over 100 CPU cores [MIM15].

16 background

2.2.2 Replication

Replication essentially means that a copy of the data is kept on mul-
tiple nodes, called replicas. The beneficial properties of replication
typically include increased fault tolerance and improved perfor-
mance. On the negative side, there is the coordination overhead to
synchronize the shared data, which again depends on the kind of
replication mechanism.

In a 3-tier architecture that follows the service statelessness prin-
ciple, again, only the components in the data tier qualify for replica-
tion. This time, we assume a file system volume that can be mounted
over the network to illustrate two examples where replication can
be applied. The first option is to replicate the entire disk to tolerate
a single disk failure, for example in a RAID-1 configuration. The
second option is to use a service like NFS or GlusterFS to replicate
the volume across multiple nodes. Here, failures of a whole node
can be tolerated and the read-performance is significantly improved.
Similar to partitioning, a naive application of replication can also be
very harmful. In the next chapter we will present that the underly-
ing network between two nodes of a network file system has crucial
impact.

Types of Replication

In the literature there is a classification of three forms of replication
mechanisms [Kle16]:

leaderless : In leaderless replication, requests are simultaneously
sent to multiple replicas. Once a certain quorum is reached,
the request is accepted and a value is updated or returned.
This replication mechanism is typically used in databases like
Amazon’s DynamoDB [DHJ+07], Apache Cassandra [LM10],
or Basho’s Riak [Bas18].

single-leader : In systems with single-leader replication, exactly
one leader is responsible to answer write-requests. There-
after, the write-requests are processed (either synchronously
or asynchronously) at the followers, i.e. the replicas that are
not the leader. The read-requests are typically answered from
the followers directly. This is the standard replication mecha-
nism that is used in most of the SQL-based databases such as

2.2 scaling with replication and partitioning 17

PostgreSQL [Pos18] or MySQL [Ora18], and also for selected
nonrelational databases like MongoDB [Inc18].

multi-leader : In multi-leader replication systems, all replicas
can accept and answer all kinds of requests. After one node
has accepted one request, the request is sent to the other
replicas. Hence, one replica is simultaneously leader and fol-
lower for the other leaders. This mechanism is supported for
some databases via external tools, e.g. Tungsten Replicator
for MySQL [Con14], and often used in online collaboration
applications like Google Docs [DR18] or Etherpad [Fou18b].

We note that all of the above-mentioned systems can be imple-
mented in different ways, which consequently implies different
properties that are guaranteed. For example, there is an important
difference whether the leader in a single-leader system waits until all
followers applied an update (synchronous) or continues to process
updates without waiting for an acknowledgment (asynchronous).
We will address the implied consistency models for selected replica-
tion mechanisms in the end of this section.

In this thesis we focus on systems with multi-leader replication.
We think that the idea that all nodes can accept requests is most
appealing. However, this idea is also the reason why those systems
are difficult to implement. In essence, there are two options: either
all replicas have to agree whether to accept a write-request, or the
system tolerates temporary divergence of the replicas and conflicts
are allowed to occur. In the literature, those options are typically
described as pessimistic- and optimistic replication. Where a pes-
simistic system waits and thus avoids conflicts, an optimistic system
speculates and conflicts are solved after they have occurred [SS05].
This trade-off between waiting and speculating is a manifestation of
the CAP dilemma, which we describe in the next subsection.

2.2.3 CAP Dilemma and Partition Management

The aforementioned dilemma has been summarized by Eric Brewer;
generally known as Brewer’s conjecture [Bre00]. In essence, the con-
jecture states that it is impossible for a distributed system to achieve
the following three guarantees simultaneously: Consistency, Availa-
bility, and Partition tolerance. Unfortunately, there is no common

18 background

definition on what those terms actually mean in this context. The
term Consistency refers to what is now known as a model for strong
consistency, which again lacks a formal definition. Intuitively spo-
ken, strong consistency means that only one consistent state can be
observed in a distributed system of replicas at any time. Availability
in this context has a similarly vague definition. The typical defini-
tions refer to a metric that can be observed on a scale from 0 to 100,
as it is typically stated in service level agreements which claim an
availability of the services of 99.99%. Other definitions state that
every request that is received by a non-failing node must result in a
response [GL02]. Ultimately, Partition tolerance can be interpreted
as “a network partition is among the faults that are assumed to be
possible in the system” [Kle15], even though there are again varying
definitions [FB99; GL02].

The original conjecture, as visualized in Figure 2.2, provides the
intuition that a system must choose to sacrifice one of the three
guarantees, resulting in systems that are either AC, AP, or CP.
Following that logic, a CP would rather wait and loose availability
than risking inconsistent states of the replicas.

A

C P

Fig. 2.2: The
CAP conjecture.

One example for such system is a database management system,
which typically avoids inconsistencies. An AP system, however,
would rather loose the consistent view of the data than leaving
requests unanswered. The Domain Name System (DNS) is one ex-
ample for such systems due to the inherent inconsistent view that
exists because of the used caches at multiple levels. An AC system
sacrifices partition tolerance, which raises the question whether an
application or a distributed system can choose to deny the possi-
bility of partitions. Even if the system operates in a consistent and
available way, if a partition occurs, the system is again faced with
the two options waiting or speculating. In either case, one of the AC

properties must be sacrificed.

Critique of the CAP Theorem

This imprecision in the definitions and the confusion about the
consequences has led to several critiques about Brewer’s conjecture
[Kle15]. While the original result was sound and confirmed in a
formal proof by Gilbert and Lynch [GL02], there exists a mismatch
between the formal abstractions and real distributed systems. For
example, Gilbert and Lynch consider consistency to be what is

2.2 scaling with replication and partitioning 19

known as linearizability, whereas real systems may implement other
consistency models that can be considered strong as well.

Daniel Abadi highlighted, that in the original conjecture the no-
tion of latency is completely missing [Aba12]. According to his
remarks, there is a finer trade-off between low latency, which can
be seen as a special form of availability, and consistency in case no
partition is currently present. To this end, he proposes an alternative
to the initial conjecture which is called PACELC and it translates
to: In case of a partition (P), the application must decide between
availability (A) and consistency (C). In case no partition is currently
present (read else or E), the application can choose between low
latency (L) or consistency (C).

Martin Kleppmann further revealed the fine granular differences
in the definitions between Brewer, Gilbert, and Lynch, which led to
the widely present confusion regarding the CAP Theorem [Kle15].
For a better reasoning about the trade-offs between consistency
guarantees and tolerance of network faults, Kleppmann proposes a
delay-sensitive framework that categorizes the operations either as
sensitive to network delay or as independent. Kleppmann further
redefines the most commonly used definitions to further enhance
the reasoning.

Brewer’s Partition Management

Twelve years after the initial presentation of the conjecture, Brewer
published an updated view of the CAP dilemma and illustrated
how “the rules have changed” in the meantime [Bre12]. He states,
that the intuition that one application has to choose between two
of the three guarantees is misleading. In real systems, this choice
is more fine granular and the choice can even change based on the
current status of the network or other circumstances. To this end,
Brewer suggested a novel approach to handle the occurrence of
network partitions, which we call partition management.

In Figure 2.3 we show an illustration of Brewer’s partition man-
agement. During normal operation, and in the absence of partitions,
the application state evolves from update to update but in a con-
sistent way, i.e. there is only one observable state. We note that in
this phase, the application is both available and consistent. Once a
partition occurs, Brewer suggests that the application switches to
a partition mode, where multiple replicas can accept requests that

20 background

stateful

Partition
recovery

State: S State: S1

State: S2

State: S’

Partition mode Time

Figure 2.3: Evolving application state according to Brewer’s parti-
tion management [Bre12].

individually update the state. As already outlined in the original
CAP conjecture, this necessarily means that consistency must be
sacrificed. Hence, at this point the application prefers availability
over consistency. When the network has recovered, the partition
mode ends. At this point, there is a minimum of two states that
may contain different updates. In order to regain a consistent state,
both states must be reconciled in a partition recovery process. After
the recovery process has finished, the application can continue with
only one observable state.

We note that in the above example, the application switches from
strong consistency guarantees to weaker guarantees and back. The
only thing that enables this agile adjustments is the partition recovery
process. We further note, that the replicas can independently accept
write requests in the presence of a partition and that the state is
reconciled after the network has recovered. This is, effectively, a
scenario where multi-leader replication is applied.

It is important to understand, that the consequence of Brewer’s
partition management is that applications, even if they are intended
to guarantee a strong consistency model in the absence of partitions,
must be designed to support multi-leader replication. This conse-
quence further motivates the goals of this thesis, as we will explore
the opportunities of implementing multi-leader application in the
presentation and logic tier. Hence, we will explore the feasibility of
Brewer’s partition management in 3-tier architectures3.

3 This was actually the working title of this thesis. Later we abandoned this title
because of the ongoing misinterpretation of the CAP dilemma.

2.2 scaling with replication and partitioning 21

Brewer explicitly mentions two mechanisms to implement multi-
leader replication: Operational Transformation [EG89], the mecha-
nism behind collaboration platforms like Google Docs, and Conflict-
free Replicated Data Types [Sha+11b]. In this thesis we will explore
both mechanisms and ultimately show where both mechanisms
have their sweet spot for Brewers’s approach. We note that both
mechanisms provide a consistency model called causal consistency,
which we define and compare to other consistency models in the
following and last subsection of this background chapter.

2.2.4 (Causal) Consistency Models

Consistency models in general are an actively researched topic in
the distributed systems community and the first achievements go
back to the seventies [Lam79]. In essence, a consistency model can
be seen as a contract between the client and the application, which
defines a relation between read and write requests [TS06]. In case of
a replicated system, guaranteeing one model is a challenging task.
That is why there exist a wide range of consistency models that are
implemented in distributed data stores [VV16].

The strongest model to consider is called linearizability [HW90]
(sometimes called strong consistency). The intuition behind lineariz-
ability is that a system appears as if there were only one copy of
data. From an application’s point of view, it is not distinguishable
whether the data store with linearizability runs on one machine
or in fact on multiple replicas. The guarantee that is implied by
linearizability can be summarized as follows: “once a new value has
been written or read, all subsequent reads see the value that was
written, until it is overwritten again”. One more intuitive definition
of linearizability is that if each operation has a precise execution
point somewhere between the invocation of the operation and the
return of the result, then these points (or linearizability markers)
must form a valid sequence of operations and a line that joins up
these points must always move forward in time.

There are certain applications that require linearizability of oper-
ations. For example, if a distributed system of processes needs to
agree on a single leader, e.g. a system with single-leader replication,
distributed locking is used to ensure that only one process becomes
the leader [Bur06]. In this case, acquiring and releasing a lock must

22 background

be linearizable. The implementation of systems with linearizability,
however, underlies the same dilemma which we presented earlier:
the CAP dilemma. In fact, it has been shown that implementing
a linearizable register with more complex atomic operations, such
as compare-and-set, is equivalent to consensus [Her91], which is
theoretically impossible in an asynchronous system where processes
are allowed to crash [FLP85]. As a consequence, systems of a larger
scale tend to implement more relaxed (or weak) consistency models
than linearizability.

At the other end of the scale is a consistency model called eventual
consistency. The intuition behind eventual consistency is that if no
updates take place for a long time, replicas will gradually (and
eventually) become consistent. This intuition has raised controversial
discussions in the research community, because there are no time
bounds for when the replicas become consistent [BEH14]. The fact
that no real-world system ever stops getting requests makes this def-
inition even more problematic. We will define eventual consistency
more precisely in the next chapter.

Causal Consistency and Happened-before Relation

In this thesis we explore multi-leader replication mechanisms that
guarantee a consistency model called causal consistency [Aha+95].
This consistency model is stronger than eventual consistency but
weaker, and therefore easier to implement, than linearizability. The
intuition of causal consistency is that all updates that are causally
related are seen by all replicas in the same order. Updates that are
not causally related, i.e. concurrent, can be seen in a different order
on different machines [TS06].

In order to precisely define causal consistency, the notion of causal-
ity between two events must be defined. In distributed systems
research, causality is expressed with the happened-before relation,
originally introduced by Lamport in 1978 [Lam78].

Definition 1 (happened-before). The happened-before relation ≺ is
defined as a strict partial order of events such that:

• If events a and b occur on the same process, a ≺ b if the
occurrence of event a preceded the occurrence of event b.

2.2 scaling with replication and partitioning 23

• If event a is the sending of a message and event b is the
reception of the message sent in event a, then a ≺ b.

We note that the happened-before relation in Definition 1 cre-
ates a relation between events that are potentially causally related.
With this relation, two events that are technically independent could
be ordered as happened-before, e.g. two consecutively executed
operations that operate on different objects. This imprecision is gen-
erally accepted in the development of distributed systems. There are,
however, ongoing debates whether an application designer should
blindly apply the happened-before relation (by using a causal-order
broadcast middleware) or track the causality manually in the ap-
plication [CS93; Bir94]. A causal-order broadcast middleware is
typically implemented with the help of vector clocks.

3O N S TAT E F U L L O G I C T I E R S W I T H C R D T S

3.1 chapter overview

This chapter is based
on previous work by
the author and
co-authors of [JO17;
JOL17b; JOL17a].

In this chapter we explore the feasibility of storing more state in the
logic tier. In contrast to 3-tier architectures that follow the service
statelessness principle, storing more state than necessary yields
promising opportunities alongside with challenges that need to
be addressed. We explore these opportunities and challenges and
exemplify them with a new approach to handle the state of an IMAP
service.

Among the opportunities are promising benefits for applications
with respect to reduced response time, increased fault tolerance, and
a scalability that can never be achieved with traditional approaches
where state is primarily held in one component or one tier. As we
will show with our later evaluation, the techniques we explore in
this chapter qualify to design systems of planetary-scale; serving
clients from different continents of this planet.

The challenges include the integration of multi-leader replication
into the logic tier of systems that are traditionally not designed
to be replicated. To this end, we utilize Conflict-free Replicated Data
Types (CRDTs), which have been proposed as a method for avoiding
conflicts [Sha+11b] per design. We set out to model, verify, imple-
ment, and evaluate a distributed IMAP service with non-trivial state
based on CRDTs. IMAP is a simple and rather old standard—its
beginnings date back to the mid-1980s—and as part of the email
ecosystem is regularly proclaimed dead in favor of some suppos-
edly more efficient communication service. Yet, email remains to be
ubiquitous in all our lives and will stay so for the foreseeable future.

Even though the provided CRDT primitives [Sha+11a] are concise
and simple, one can fail in numerous ways when constructing
non-trivial system state based on these. We want to be sure of the
correctness of our model and thus put effort into proving it correct.
To this end, we extend the CRDT and network model framework
by Gomes et al. [Gom+17b; Gom+17a], written in the interactive

25

26 on stateful logic tiers with crdts

theorem prover Isabelle/HOL, to include our IMAP-CRDT. After
being assured that state will always be consistent in our model, we
adapt our prototype to adhere to the theoretical proof. This way, we
achieve provable consistency guarantees in practice.

With the achieved multi-leader replication in the logic tier of
an IMAP service, we demonstrate the benefits in a comprehensive
evaluation against the industry standard IMAP software Dovecot. In
addition to the increased fault tolerance, we show that the adapted
system qualifies to run on planetary-scale. From the insights of the
evaluation we derive a discussion on the setups where our approach
can be beneficial.

The contributions that are addressed in this chapter include:

• We propose an IMAP-CRDT by modeling IMAP commands
as operations on a CRDT.

• We verify the convergence of the IMAP-CRDT with the inter-
active theorem prover Isabelle/HOL.

• We propose an open-source prototype pluto that offers IMAP
at planetary-scale with multi-leader replication based on
CRDTs.

• We introduce a benchmark for IMAP services.

• We propose a Kubernetes-based deployment for planet-scale
Dovecot.

• We explore response time performance and replication lag of
planetary-scale IMAP services on public clouds by evaluating
the developed prototype pluto against state-of-the-art Dovecot
setups.

3.2 conflict-free replicated data types

The theoretical concept of a Conflict-free Replicated Data Type has
been formalized by Shapiro et al. in [Sha+11b]. In essence, CRDTs
enable convergence of replicas without requiring a central coordi-
nation server or even a distributed coordination system based on
consensus or locking. To achieve this goal, updates on an applica-
tion’s state based on CRDTs are designed to be conflict-free in the

3.2 conflict-free replicated data types 27

first place. With this property, CRDTs fall into the category of mech-
anisms that can be used for systems with multi-leader replication.

CRDTs offer a simple and theoretically sound approach to even-
tual consistency. In fact, the authors show that the implied consis-
tency model, namely strong eventual consistency, is actually a more
strong and more desirable model than eventual consistency. In this
section we explain the fundamental definitions and properties. Later
in this chapter, when we introduce our own IMAP-CRDT, we will
refer to the definitions that we present here.

System Model

The authors of the original work on CRDTs, and the corresponding
technical report, consider a distributed system of processes that
communicate over an asynchronous network. Partitions of the net-
work can occur and recover at any time, as well as processes can
crash and recover. It is important to assume that the memory of a
crashed process survives crashes, in order for the process to recover.
Non-byzantine behavior of the processes is assumed.

Operation-based CRDTs

CRDTs come in two variants: Convergent Replicated Data Types (called
CvRDT) and Commutative Replicated Data Types (called CmRDT).
CvRDTs, often described as state-based CRDTs, ensure convergence
by defining a merge function that is applied on two diverged states
in order to obtain a consistent state again. The merge function
calculates the least upper bound on a join semi-lattice, and therefore
must be commutative, idempotent, and associative. A replica can
update its local state and send the updated version to all other
replicas which individually apply the merge function to regain a
consistent state. The order in which the merge function is applied is
irrelevant.

In this work we focus on the operation-based variant (CmRDTs),
which we will explain in depth. In contrast to state-based ones, repli-
cas exchange operations directly with minimal state information. A
reliable causal-order broadcast ensures that operations ordered by
the happened-before relation (see Definition 1) on the source replica
are received and applied accordingly at all other replicas.

28 on stateful logic tiers with crdts

Updates that cannot be ordered by happened-before are considered
concurrent and are required to commute. The design of a CmRDT is
a challenging task, fortunately the technical report offers a variety
of specifications for counters, sets, graphs, and even lists [Sha+11a].

Here, the definition of a CmRDT is composed of the following
components:

1. The payload describes the type of state, e.g. a simple integer
or a set. Furthermore, an initial state must be specified, which
represents the initial value of the payload at every replica.

2. A query operation is an operation that does not modify the
state. Typically, query operations are read-operations.

3. An update operation is an operation that modifies the state.
The definition is further divided into an atSource and a down-
stream part. The atSource part contains preconditions that
must hold for the state of the replica that is initiating the
operation. Furthermore, certain information can be queried
from the state of the local replica atSource. The downstream
part is asynchronously executed at every replica, including the
replica that initiated the operation. Typically, the downstream
definitions are state changing functions.

As mentioned, CmRDTs require a reliable causal-order broadcast
to ensure convergence. We note that an implementation of such a
broadcast does not require consensus and can be achieved by use of
vector clocks.

With the commutativity of concurrent updates and a reliable
causal-order broadcast, Shapiro et al. showed that any two replicas
that have seen the same set of operations have equivalent abstract
states and therefore eventually converge [Sha+11b]. The authors
formalize this notion of eventual convergence by introducing the
Causal History as shown in the following definition:

Definition 2 (Causal History). The causal history of a replica x is
defined as follows.

• Initially, C(x) = ∅.

• After executing the downstream phase of operation f at replica
x, C(f(x)) = C(x)∪ {f}

3.2 conflict-free replicated data types 29

In essence, the causal history is the set of all operations that were
executed at a replica. Later in this chapter we rename the causal
history to the event log of a process.

With the notion of the causal history, the authors define Eventual
Convergence as follows:

Definition 3 (Eventual Convergence). Two replicas x and y con-
verge eventually, if the following conditions are met:

• Safety: C(x) = C(y) implies that the abstract states of x and y

are equivalent.

• Liveness: f ∈ C(x) implies that, eventually, f ∈ C(y).

We note that the safety property represents the already mentioned
requirement that two replicas that have seen the same set of opera-
tions, not necessarily in the same order, reach the same abstract state.
Here, two abstract states are equivalent if all query operations, i.e.
read-operations, return the same values for all inputs. The liveness
property, however, ensures that progress can always be made. In the
above introduced system model, it is assumed that processes can
crash and recover and network partitions eventually heal. For the
rest of this chapter we focus on the safety property. In contrast to the
liveness property, which is not related to the design of a CRDT, the
safety property must be respected when operations are designed.

It is noteworthy that CmRDTs require only concurrent operations
to commute. If an update operation would be commutative regard-
less it has happened-before another operation or not, then convergence
is obviously achieved, because all operations can be reordered. We
note that this requirement would be too strong to be practical and
would exclude many valuable CRDT definitions. To this end, show-
ing that only concurrent operations commute is less restrictive.
However, a careful design is still necessary, because mistakes can
easily be made.

We illustrate two examples of a CmRDT, namely a counter and
the Observed-Remove Set, in the rest of this section.

30 on stateful logic tiers with crdts

Specification 1 Counter CmRDT [Sha+11b]

1: payload an integer i ∈ Z ▷ The payload is a single number
2: initial i ≜ 0 ▷ Initially, the value of the counter is 0

3: query value () : integer j
4: let j = i ▷ A side-effect free let instruction
5: update increase ()
6: downstream ()

7: i ≜ i+ 1

8: update decrease ()
9: downstream ()

10: i ≜ i− 1

Two CmRDT Examples

The simplest CmRDT to consider is an integer counter. In essence,
the counter offers operations to read the current value, as well as to
increase and decrease this value by 1. We show the specification of
this Counter CmRDT in Specification 1.

We note that all of the above mentioned components of a Cm-
RDT, i.e. the payload, the initial state, query operations, and update
operations, are defined in the referenced specification. The used pre-
sentation style is adopted from the original introduction of CRDTs
from [Sha+11b]. We refer to the corresponding technical report
[Sha+11a] for further details on CRDT descriptions.

The Counter CmRDT is rather special, because of its simplicity.
For example, the update operations define no preconditions and
therefore the atSource part is empty. Moreover, no parameters are
ever given to any operation. The query operation value is a simple
read operation that returns the current value of the counter at the
replica where the query is executed. We note that the let construct
is used to refer to a side-effect free function that is computed at the
replica where the operation is executed.

For this CRDT, it is obvious that eventual convergence is guaran-
teed. The increase and decrease operations are commutative, regard-
less of whether they are executed concurrently or one happened-before
the other. It is noteworthy that this particular CmRDT converges

3.2 conflict-free replicated data types 31

Specification 2 Observed-Remove Set CmRDT [Sha+11b]

1: payload a set S of pairs of elements and unique-tags
2: initial ∅
3: query lookup (element e) : boolean b

4: letb = (∃u . (e,u) ∈ S) ▷ Checks if an element is in the set
5: update add (element e)
6: atSource (e)

7: letα = unique() ▷ unique() returns a unique value
8: downstream (e,α)
9: S ≜ S∪ {(e,α)}

10: update remove (element e)
11: atSource (e)

12: pre lookup(e)
13: letR = {(e,u) | ∃u . (e,u) ∈ S} ▷ Compute the remove set
14: downstream (R)

15: pre ∀(e,u) ∈ R . add(e,u) has been delivered
16: S ≜ S \ R ▷ Remove R at the downstream replicas

even in case the operations are not causally ordered. So in this case,
the requirement of a causal-order broadcast is unnecessary.

In contrast to that, the second CmRDT we introduce, the
Observed-Remove Set (OR-Set), requires a causal-order broadcast to
guarantee convergence. We show the Specification of the OR-Set in
Specification 2.

The OR-Set’s payload is a set that contains pairs of elements and
unique-tags. The elements are the actual elements or items of the set,
and the unique-tags can be seen as metadata that is required to track
the state of the set. In addition to lookup, which is an intuitive read
function on the set, there are two more update operations defined:
add and remove.

The add operation inserts an element to the set by attaching a
unique tag to it. The unique tag must be globally unique, so that two
add operations for the same element from two different replicas can
be distinguished. More concrete, if two replica concurrently adding
an item i to the set, there would be two pairs with the element i
in the set after the downstream operations are executed at every
replica.

32 on stateful logic tiers with crdts

Replica A Replica B Replica A Replica B
{ } { }

{ a } { a }

{ }

{ a }{ }

{ a }

add(a) add(a)

rmv(a)add
(a)

add(a)

rmv
(a)

{ }

{ (a,42) }

{ (a,42), (a,23) }

add(a)

ad
d(
a,
23
)

add(a,42)

rmv
({(

a,2
3)}

)

{ (a,42) }

{ }

{ (a,23) }

{ }

{ (a,42) }

add(a)

rmv(a)

Figure 3.1: Diverging replicas when applying a naive exchange of
the operations (left) compared to converging replicas of an
OR-Set (right).

The remove operation, however, uses the tags to determine whether
an item should be removed entirely, or concurrent add operations
reinserted the item. We illustrate this puzzle in the left side of
Figure 3.1. Without the tags, applying the operations may lead to
diverged states; in this case ∅ on the left replica and {a} on the
other. We note that causality is not an issue here, because the shown
communication is in accordance with the happened-before relation.

In the right side of Figure 3.1 we show how the OR-Set uses the
tags to reference the corresponding add operations. In this example,
after both replicas concurrently added the element a with two differ-
ent tags, the remove set R is computed at replica B and transmitted
to A. At replica A, the complement of R with respect to the state at
replica A is computed, resulting in {(a, 42)}.

We note that the OR-Set requires a causal-order broadcast to
achieve convergence. Without causal-order delivery, a remove oper-
ation may arrive before the corresponding add is delivered. This
would most likely result in diverging states, because the replica
that receives the operations in the aforementioned order would still
contain the added element, in contrast to the replica that executed
the operations in accordance with the happened-before relation.

The proof of the commutativity of the operations is relatively
simple. Combinations of add-add or remove-remove are in all cases
commutative. The mentioned add-remove puzzle can be proven to be

3.2 conflict-free replicated data types 33

commutative when the tags of the add operation are in fact globally
unique and operations are applied in causal order.

Both of the here presented CRDTs were introduced with the
technical report of the original CRDT publication [Sha+11a]. In
addition to the counter and the OR-Set CRDT, the report includes
many more datatypes, e.g. for ordered lists (RGA) [Roh+11]. More
recently, even more versatile CRDTs, like the JSON-CRDT from
Kleppmann and Beresford, were introduced [KB17]. We summarize
this related work in the end of this chapter.

Strong Eventual Consistency

CRDTs imply a consistency model called strong eventual consistency
(SEC). In contrast to eventual consistency, where it is only guar-
anteed that all replicas eventually reach the same state after all
operations are exchanged and a certain amount of time has passed,
SEC is in fact a stronger model.

Shapiro et al. compare both consistency models with the follow-
ing definitions. In Definition 4 we show the formalized version of
the above mentioned definition of eventual consistency according to
[Sha+11b]. We note that the definition is closely related to the defini-
tion of eventual convergence in Definition 3. Eventual convergence
is a property that is used to describe the desired behavior of two
replicas. In contrast to that, eventual consistency is a property, or a
guarantee, of a system. In essence, the here mentioned definition of
eventual consistency states that eventual convergence holds for any
two correct processes/replicas.

Definition 4 (Eventual Consistency (EC)). Eventual Consistency is
guaranteed, if the following properties hold:

Eventual Delivery: An update delivered at some correct
replica is eventually delivered to all correct replicas.

Convergence: Correct replicas that have delivered the same
updates eventually reach equivalent states.

Termination: All method executions terminate.

Several systems achieve eventual consistency by allowing updates
on one replica immediately, only to discover later that there were

34 on stateful logic tiers with crdts

conflicts with concurrent updates. Such systems resolve detected
conflicts by performing a roll-back to a previous state. Shapiro et
al. discovered, that CRDTs actually imply a stronger version of
eventual consistency, hence SEC. In the above mentioned definition,
convergence is reached eventually after replicas have seen the same
set of updates. CRDTs ensure that replicas that have seen the same
set of updates have in fact equivalent abstract states. To this end,
Shapiro et al. redefine the convergence property by omitting the
eventually in the definition, as shown in Definition 5 [Sha+11b].

Definition 5 (Strong Eventual Consistency (SEC)). Strong Eventual
Consistency is guaranteed if Eventual Consistency is guaranteed and:

Strong Convergence: Correct replicas that have delivered the
same updates have equivalent states.

3.3 a case study for imap

In this section we explore the feasibility of storing state in the
logic tier; exemplified with IMAP. Therefore, we utilize CRDTs to
enable replicated IMAP servers that synchronize the state without
electing a leader. Hence, we propose an IMAP server that allows
multi-leader replication by introducing the IMAP CmRDT. We put a
special focus on the verification of our proposed CRDT to guarantee
that convergence is achieved. Ultimately, we test our approach by
evaluating our research prototype pluto against the de facto standard
IMAP server Dovecot in the next section.

The decision to pick IMAP as example service is based on two
reasons. The first reason is the popularity of IMAP in the sense
that essentially every company of the world uses IMAP as part of
their electronic mail ecosystem. The second reason is that IMAP is a
comparable simple protocol with well defined control commands
and a managable structure of the state.

Before we propose our CRDT-based solution that enables an
IMAP service with multi-leader replication, we explore the currently
existing solutions. Therefore, we present typical configurations of
scaled out IMAP services exemplified with Dovecot in the following
subsection.

3.3 a case study for imap 35

3.3.1 Dovecot and State-of-the-art Configurations

The largest IMAP service we have today is Google’s GMail. Google
recently reported that Gmail exceeds the mark of one billion ac-
tive users [Mil16]. In Germany, the biggest mail provider is the
Deutsche Telekom with over 26 million active users1. Timo Sirainen,
the primary author of Dovecot, reports that the IMAP Service of the
Telekom runs on Dovecot and is one of the biggest German Dovecot
installations.

Dovecot, as the de facto standard IMAP server, enables various
ways of deployment. In the simplest configuration, Dovecot runs
on a single machine; processing IMAP requests from the registered
users and storing the mailboxes on the local disk. While this setup
obviously has limitations in terms of scalability and maintainability,
for example in case of a defective memory module the whole service
needs to be stopped and no requests can be processed at this time,
the performance of Dovecot is quite impressive.

Since this work focuses on systems of a certain scale, i.e. systems
that are build to run on multiple machines and multiple tiers, we
briefly discuss how a scaled out Dovecot system would look like. In
order to achieve a higher scale, the system can be split up into mul-
tiple tiers and can be combined with partitioning (see Section 2.2.1),
where each machine handles mailboxes of a different range of users.
The typical configurations of a scaled out Dovecot system look a
follows:

• A proxy redirects a user’s requests to a random backend
where the requests are processed and the mailboxes are stored
on a shared file system like NFS. In this case, the system is
not designed to use partitions, since the backends are chosen
randomly and every backend is able to process requests for
every user. In order to prevent race conditions with concurrent
updates of the same mailbox, for example by accessing one
mailbox with two different devices, a director service, which
is an extension of the proxy, keeps track of the current connec-

1 An explanation for the popularity of the mail service of the Deutsche Telekom
would be, that back in the days of dial-up modem internet connections, the
Telekom was one of the first German internet providers. Together with the dial-up
program, the T-Online StartCenter, they offered a free pop3 mail client and a first
email address for their customers.

36 on stateful logic tiers with crdts

stateful

stateless

stateless stateless stateless

Dovecot Proxy

Backend 01 Backend 02 Backend 03
Users A-F Users G-R Users S-Z

Dist. Filesystem
(NFS, GlusterFS)

IMAP

Mounted Volume

Figure 3.2: A traditional configuration of a scaled out Dovecot instal-
lation with enabled partitioning.

tions and assigns accesses to the same mailbox to the same
backend.

• A proxy redirects users requests to a particular backend based
on fixed rules. The assigned backend is used whenever pos-
sible. The mailboxes are stored on a shared file system. If a
particular backend is unavailable, any other backend can con-
tinue handling the requests since the critical application state,
i.e. the mailboxes, is stored outside of the unavailable backend.
We illustrate this setup in Figure 3.2, where the components
are arranged in the mentioned tiers and the state is stored on
an NFS/SAN storage solution.

We note that in both cases the backends in the logic tier do not
store mission critical state. Hence, both designs follow the service
statelessness principle. In order to increase the performance of
read-intensive requests, Dovecot can be configured to store caches
(called index files) on the backend. The index files are automatically
created on the first access of the mailbox and reduce the response
time for further read requests. In the first of the two mentioned
configurations, the system can only benefit from temporary caches,
whereas in the second case the caches can be stored permanently
on the backend.

3.3 a case study for imap 37

stateless

stateful stateful

Dovecot Proxy

Backend 1.1 Backend 2.1
Users A-N Users M-Z

IMAP

stateless

stateful stateful

Dovecot Proxy

Backend 1.2 Backend 2.2
Users A-N Users M-Z

dsync
connection

Figure 3.3: A Dovecot-dsync configuration with enabled partitioning
and replication.

Dovecot dsync replication

In addition to partitioning, Dovecot provides a replication extension
to further increase the performance and the tolerance against faults.
The dsync extension enables a one- and two-way synchronization of
the users’ mailboxes, with a maximum number of two replicas. The
typical configuration of a dsync-enabled Dovecot setup include pairs
of backends that store the users mailboxes on the local hard drive.
Hence, in this setup, no shared files system like NFS is used. We
illustrate the dsync setup in Figure 3.3. Moreover, the figure shows a
combination of partitioning and replication by dividing the users
into two groups to illustrate that this configuration can be scaled
out as well.

We note that a dsync-enabled setup actually stores mission critical
state in the logic tier and provides a replication mechanism to
synchronize between two notes. One could argue that dsync already
solves the challenges that we illustrated in Section 1.2 and makes
further research pointless. However, while dsync indeed solves the
same problem that is in focus of this chapter, the generalization
and the transferability of the underlying concepts are missing. In
essence, the major disadvantages of the underlying mechanism of
dsync are:

1. Only two replicas are allowed: dsync currently only supports
pairs of backends to synchronize state. In contrast to that, in
this thesis we investigate multi-leader replication in the logic
tier with possible arbitrary many leaders/backends.

38 on stateful logic tiers with crdts

2. Highly application dependent: There are no background in-
formation how dsync is achieving the synchronization and if
the concept can be generalized or applied to other services. In
contrast to that, in this chapter we explore the feasibility of
using CRDTs to ensure convergence of an application’s state.
CRDTs offer an extensive theoretical framework that can be
applied to other services and, as we will point out in the rest
of this section, to IMAP as well.

3. No formal convergence guarantee: While we could not find
any violations against dsync’s promise to keep the mailboxes
in sync, a formal verification of the guarantee is missing.

The mentioned disadvantages, or challenges, motivate a deeper
look into the problem of guaranteeing convergence of the shared
state among the backends. However, dsync qualifies as an excellent
candidate for a comprehensive evaluation. In Section 3.5 we present
the evaluation of our prototype and compare the response time
performance as well as the replication lag of our prototype against
dsync.

Object Storage for Mailboxes

We note that the above mentioned configurations and the illustration
in Figure 3.2 propose a shared file system like NFS to store the state.
This implies that the state is stored as folders and files on a volume
that is ideally tolerant against single-disk failure. Even though
there are highly sophisticated and high performing solutions for
optimizing the data tier, e.g. by investing in a storage area network
(SAN), it can easily become a bottleneck in the above mentioned
configurations. The most obvious way to avoid that is to apply
partitioning one more time. In this scenario the data tier is divided
into multiple partitions where each partitions stores the mailboxes
of the assigned group of users. Further applying replication on file
system level is certainly possible in the same data center, but can
lead to performance drops when applied beyond the boundaries of
one data center.

A more recent approach to achieve performance on a planetary-
scale is to use object storage. In such configurations, the backend
stores the mailboxes not as files, like the maildir format, but as ob-

3.3 a case study for imap 39

jects with a key. Modern highly available NoSQL database systems
like Cassandra [LM10] offer scalability and replication between
multiple data centers. The combination of Dovecot and enabled
object storage on a Cassandra-like system is probably the most
advanced configuration to consider. This configuration enables a
scalable IMAP service with tolerance against a variety of possible
faults and failures.

Unfortunately though, Dovecot extensions that allow mailboxes to
be stored on an object store are only available as proprietary add-on.
To the best of our knowledge, no open-source solution has yet been
published. In contrast to the goal of this thesis, the object-storage
solutions focus on solving all replication related issues in the data
tier. As the goal of this chapter is to analyze the feasibility to store
more mission-critical state in the logic tier, the mentioned object store
setups are out of scope of this thesis, even though a comprehensive
evaluation is certainly interesting. We discuss the derived research
opportunities and future work in Chapter 5.

3.3.2 State of an IMAP Server

Today’s email system is composed of a variety of interacting services
and various email-specific protocols. Before we dive deeper into our
protocol of interest, i.e. IMAP, we shortly summarize today’s mail
ecosystem and the necessary steps to send and receive emails. After
that, we explore IMAP in depth and analyze the structure of the
state that can be read and modified with IMAP commands.

The Electronic Mail Ecosystem

At the time of writing this thesis, electronic mail (or email) already
has a history of about 50 years. The very first attempts to send
messages between users of the same system goes back to 1960,
where time-shared operating systems offered the functionality to
store messages [Par08]. We note that at this time, there were no
modern networks or similar complex inter-computer communication.

Since then, many protocols and standards have been established.
The most noteworthy can be summarized as follows:

40 on stateful logic tiers with crdts

internet message format : The RFC 5322 describes a syntax
for text messages that are sent between computer users [Res08].
It is the current revision of the earlier introduced RFCs 822

and 2822. The Internet Message Format describes the fields of
an email message, including the header fields and the body.

simple mail transfer protocol (smtp): This protocol is
used for the transmission of messages. It is a simple, human-
readable protocol and is specified in RFC 821 [Pos82].

post office protocol (pop): This protocol enables interaction
with a remote mailbox that is not located on the client’s ma-
chine. The set of features include a login and the download of
new messages. The messages are typically deleted after they
have been retrieved via POP, resulting in an empty mailbox
on the server [Sie07]. The disadvantage is, that only one client
can be active at a time, resulting in difficulties to use POP
with multiple devices.

internet message access protocol (imap): This protocol
is, in contrast to POP, designed to enable interaction with
many devices. It is a text-based request/response protocol
and widely used over the Internet [Cri03]. The main purpose
of IMAP is to interact with a mailbox on a server. The IMAP
commands are specified in RFC 3501.

When a user sends an email to another user, the above mentioned
protocols perform an interplay with various services involved. We
illustrate this interplay in Figure 3.4. The figure shows the involved
services and protocols when sending and receiving an email.

A new email typically starts with a new window in the Mail
User Agend (MUA) of a client. Examples include Thunderbird or
Outlook. After the user presses the send button, the MUA initializes
an SMTP-based communication with the users Mail Transfer Agend
(MTA) and transmits the message. The sender’s MTA transmits the
message to the receiver’s MTA over SMTP. The MX-records, as part
of the Domain Name System (DNS), are used to identify the MTA
that is responsible of handling the receiver’s mailbox. After the
email has been transmitted to the receiver’s MTA, a Message Delivery
Agent (MDA) is used to place the message in the receiver’s mailbox.
Thereafter, the receiver uses POP or most likely IMAP to retrieve

3.3 a case study for imap 41

Client A
(sender)

Client B
(recipient)

Client A
MTA

Client A
MDA

Client B
MTA

Client B
MDA

Client A
MUA

Client B
MUA

Internet

SMTPSMTP

IMAP IMAP

Figure 3.4: Interplay of various email-related protocols when send-
ing a message from A to B.

the new message. Dovecot includes MDA functionality, but is mainly
responsible to organize user’s mailboxes and answers the client’s
IMAP requests, that are typically invoked by the client’s MUA.

IMAP

An IMAP service manages mailboxes of registered users. Users are
able to interact with their mailboxes by sending IMAP commands to
the server. These commands are defined in the IMAP4rev1 standard
in RFC 3501 [Cri03].

Connection
Established

Server Greeting

Not Auth-
enticated

Authenticated

Selected

Logout

Connection
Closed

Fig. 3.5: State
and Flow
diagram from
[Cri03].

In Figure 3.5 we show the State and Flow Diagram from RFC 3501,
where we see the different states of an IMAP session. Initially, one
client starts in the Not Authenticated state, where the client is able
to login or authenticate in order to switch to the Authenticated state.
In the Authenticated state, the client is able to interact with the
mailboxes, for example by creating or deleting them. The client is
able to select a particular mailbox and move to the Selected state. In
the Selected state, the content of a particular folder can be modified,
for example message flags can be altered and messages can be
deleted. From the Selected state, the client is able to switch back
to the Authenticated state or select another mailbox. In all states,
the client is able to move to the Logout state by performing the
corresponding command or in case something went wrong.

The RFC 3501 defines a total of 25 client commands in the follow-
ing allowed states:

Any state CAPABILITY, NOOP, LOGOUT

42 on stateful logic tiers with crdts

Not Authenticated STARTTLS, AUTHENTICATE, LOGIN

Authenticated SELECT, EXAMINE, CREATE, DELETE, RENAME, SUB-
SCRIBE, UNSUBSCRIBE, LIST, LSUB, STATUS, APPEND

Selected CHECK, CLOSE, EXPUNGE, SEARCH, FETCH, STORE, COPY,
UID

After a client invoked one of the above mentioned commands,
the server responds with a status response like OK, NO, BAD, PREAUTH,
or BYE.

We illustrate an example of an IMAP session in Listing 3.1. In the
beginning, the client initiates the communication preferably over
a secured and reliable channel. Once the connection is established,
the server prints the Server Greeting, as shown in line 3. The greeting
includes the escape character, that is used to determine the hierarchy
between folders, followed by the capabilities of the server. In line
5, the client invokes a LOGIN command by sending a tag, the LOGIN
command, a username, and a password. In the following line, the
server answers the request by sending the tag of the original request
and a status response, in this case OK. The rest of the exemplified
IMAP session follows the same communicational pattern. In this
example, the client selects the Inbox and permanently deletes all
messages with a deleted flag via EXPUNGE. Thereafter, the session is
closed with a LOGOUT command.For the rest of

this chapter we
use the

typewriter font
to refer to IMAP

commands, e.g.
LOGIN or CREATE.

We omit a detailed description of the IMAP commands and refer
to the RFC 3501 [Cri03]. Later in this section, however, we will put a
strong focus on the consistency critical commands and provide the
necessary intuition.

Maildir and other Mailbox Formats

IMAP servers, like Dovecot, support various formats to represent
the mailboxes of the users on hard disk. Typical formats are mbox
and Maildir. The latter is generally preferred due to its use of indi-
vidual files per mail message and thus, no locking is required when
messages are appended. The messages are given unique file system
names that include any potential standard flag.

From this structure we derive our notion of the state of an IMAP
server. The most obvious components are the user’s mailboxes. For

3.3 a case study for imap 43

the rest of this work, we write mailbox folder or simply folder when
we refer to a mailbox in the account of one user. This notation avoids
some confusion with the German parlance, because in the German
language a mailbox typically refers to the account and a folder refers
to a mailbox. The term folder is also more appealing, because most
MUAs and web interfaces visualize the mailboxes similar to a file
system where several folders, sub folders, and the items inside a
folder, i.e. the messages, are shown.

We note that the folders within one account span a tree-like
hierarchy. This is done by using an escape character inside a folder’s
name. Other than that, IMAP does not provide any more explicit
commands to interact or modify the generated hierarchy. We also
note that there is no explicit order between folders in the same
hierarchy. Folders are accessed by the foldername which serves as a
unique identifier.

The second obvious component of the state of an IMAP service
are the actual messages. The messages are typically formatted in
accordance with the Internet Message Format (RFC 5322 [Res08]),
i.e. they contain a header with important metadata and a body

Listing 3.1: Example communication with an IMAP server.

1 Trying 192.168.23.42...
2 Connected to 192.168.23.42.
3 S: Escape character is ’^]’.
4 S: * OK [CAPABILITY IMAP4REV1 STARTTLS AUTH=LOGIN]
5 C: A1 LOGIN username password
6 S: A1 OK [CAPABILITY IMAP4REV1] User username authenticated
7 C: A2 CREATE work
8 S: A2 OK CREATE completed
9 C: A3 SELECT Inbox

10 S: * 2 EXISTS
11 S: * 2 RECENT
12 S: A3 OK [READ-WRITE] SELECT completed
13 C: A4 EXPUNGE
14 S: * 8 EXPUNGE
15 S: A4 OK EXPUNGE completed
16 C: A5 LOGOUT
17 S: A5 OK LOGOUT completed

44 on stateful logic tiers with crdts

that contains the message’s content. IMAP treats a message as a
literal, which means that there are no commands that offer any
modification of the message itself. For example, one cannot edit the
content or the sender of a message inside a folder without deleting
the message and reinserting the altered message.

We note that the IMAP commands that refer to a message, such
as STORE, use a message sequence number to identify a message inside
a folder. The message sequence number is a relative number from
1 to the number of messages in a folder. If a message is removed
permanently from the folder, a message sequence number can be
reassigned during the session.

The only additional state for a message that is introduced by
IMAP are the message flags. The flags represent additional informa-
tion about the message, e.g. a message may be marked as recent or
deleted. Hence, the state contains an unordered list of flags for each
message in the system. As mentioned, in Maildir the list of flags is
part of the filename of a message.

In addition to the folders and the messages, the state contains
a few less obvious information. For example, a user can subscribe
and unsubscribe to a certain folder, resulting in an unordered list
of subscribed folders that can be read with the command LSUB. The
list of subscribed folders is typically used to define which folders
should be checked regularly in order to fetch new messages.

3.3.3 Modeling IMAP with CRDTs

In our scenario, the main challenge is to model the above identi-
fied state of an IMAP server as a payload and the commands as
operations on a CmRDT.

As mentioned in the above subsection, the application state can be
summarized as follows: one user has a set of folders which contains
a, possibly empty, set of messages. We identified a map that projects
foldernames to the content of a folder to be best suited. Therefore,
the content of a folder is a combination of metadata (tags) and
messages. We model the map as a function where N is the set of
foldernames, ID is the set of tags, and M is a set of messages. We
denote P(X) to be the power set of X:

u : N → P(ID)×P(M)

3.3 a case study for imap 45

Because a folder f contains arbitrary items, the result of u(f) is a
tuple of sets. The first set, denoted as u(f)1, is the set of tags that
represent metadata that should not be visible to a user. The second
set, denoted as u(f)2, represents the messages in the folder.

If both sets u(f)1 and u(f)2 are empty, the folder is interpreted as
non-existent. Hence, we distinguish between a non-existent folder
and an empty folder. A folder is empty, if u(f)2 is empty but u(f)1
is not empty, i.e. certain metadata is present. Initially, all folders are
non-existent. Hence, the initial state can be described as a lambda
abstraction that projects the tuple (∅,∅) to every foldername in N.

We note that this description of the initial state is chosen to
simplify the formal reasoning, which we present later in this section.
In practice, there are certain requirements that specific folders must
exist, e.g. the INBOX. Hence, a more accurate but slightly more
complicated initial state would include the mapping "INBOX ↦→
({42},∅)" where the number 42 can be seen as metadata, but the
folder is empty, i.e. u(INBOX)2 = ∅.

The flags of a message can be encoded into the message, similar
to Maildir. To model the list of subscribed folders, we identified
a simple set to be best suited, because there is no particular order
between the selected folders.

Consistency Critical Commands

Next, we analyze the IMAP commands in more detail. To reduce
the complexity of this work, we focus on the consistency critical
commands, i.e. the commands that may change the state.

From the 25 IMAP commands we listed in the above subsection,
the following commands can be considered as consistency critical:

Authenticated CREATE, DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE,
APPEND

Selected EXPUNGE, STORE, COPY

We note that the commands that were not mentioned here are
basically not consistency critical because they do not alter the state.
Those commands can be considered as read commands, that would
be designed as query operations on a CmRDT. For the rest of this

46 on stateful logic tiers with crdts

Command Description

CREATE Creates a folder with the given name n.

DELETE Permanently removes the folder with the given name n.

RENAME Changes the name of the folder from nold to nnew.

SUBSCRIBE Adds the foldername n to the list of subscribed folders.

UNSUBSCRIBE Removes the foldername n from the list of subscribed fold-
ers.

APPEND Appends the new message m to the folder n.

EXPUNGE Permanently removes all messages with a deleted flag from
a previously selected folder n.

STORE Alters the flags of a messages m in folder n based on the
flag command.

COPY Copys a message m from folder nold to nnew.

Table 3.1: The consistency critical IMAP commands with their arguments
and descriptions based on RFC 3501.

work, we focus the consistency critical commands and therefore
omit the modeling of the read commands.

In order to express the above mentioned consistency critical com-
mands as operations on a CmRDT, we fist analyze the commands
in detail based on the description in RFC 3501. We provide an
overview of the commands, the arguments, and a short description
in Table 3.1.

We note that the commands CREATE, DELETE and RENAME are rather
self-explanatory. The only noteworthy exemption is the special
handling of the INBOX folder, which cannot be deleted or renamed.
The commands SUBSCRIBE and UNSUBSCRIBE are self-explanatory as
well.

With the APPEND command, a user can add a message to a specific
folder. In fact, this is the only command that adds new messages.
In the RFC 3501 two optional arguments flag list and date/time
string are mentioned. With the first argument, a user can assign
a certain list of flags to the newly created message. The second
argument can be used to assign a different date than the current
date of the server. We note that most MUAs display the date that is
part of the message’s header to the user and the date/time string
is typically ignored.

3.3 a case study for imap 47

Specification 3 IMAP-CRDT (payload, create, and delete)

1: payload map u : N → P(ID)×P(M)

2: initial (λx.(∅,∅))

3: update create (foldername f)

4: atSource
5: let α = unique()
6: downstream (f,α)
7: u(f) ↦→ (u(f)1 ∪ {α},u(f)2)

8: update delete (foldername f)

9: atSource (f)

10: let R1 = u(f)1
11: let R2 = u(f)2
12: downstream (f,R1,R2)

13: u(f) ↦→ (u(f)1 \ R1,u(f)2 \ R2)

The STORE command provides the functionality to alter the mes-
sage flags. This command is typically used to mark a message with
a deleted flag. The sequence set can refer to a range of messages.
In this case, the flags of multiple messages can be altered with one
command. With EXPUNGE, all messages that have a deleted flag are
permanently removed.

We note that the commands EXPUNGE, STORE, and COPY can only be
executed in the Selected state. Hence, the foldername on which these
commands operate is given implicitly. This will become important
when we model those commands as operations on a CmRDT.

The IMAP CmRDT

We present the complete IMAP-CRDT in Specification 3, 4, and 5.
We adhere to the presentation style that has been introduced by
Shapiro et al. in [Sha+11b]. The definition of the payload is stated
in line 1 and 2, as outlined in the beginning of this subsection. Next,
we define the operations that represent the IMAP commands and
begin with create and delete in Specification 3.

The desired result of create is to create an empty folder f. Therefore,
a fresh and unique tag α is generated on the replica that initiates the
operation atSource. Thereafter, the tag α is inserted into u(f)1 and

48 on stateful logic tiers with crdts

Specification 4 IMAP-CRDT (append, expunge, and store)

14: update append (foldername f, message m)

15: atSource (m)

16: pre m is globally unique
17: downstream (f,m)

18: u(f) ↦→ (u(f)1,u(f)2 ∪ {m})

19: update expunge (foldername f, message m)

20: atSource (f,m)

21: pre m ∈ u(f)2
22: let α = unique()
23: downstream (f,m,α)
24: u(f) ↦→ (u(f)1 ∪ {α},u(f)2 \ {m})

25: update store (foldername f, message mold, message mnew)

26: atSource (f,mold,mnew)

27: pre mold ∈ u(f)2
28: pre mnew is globally unique
29: downstream (f,mold,mnew)

30: u(f) ↦→ (u(f)1, (u(f)2 \ {mold})∪ {mnew})

u(f)2 remains untouched. This downstream part of the operation
is executed at every replica. We denote an update of the map entry
as u(f) ↦→ (X, Y) where X and Y are the new sets that override the
existing sets. We note that the map entries for the other foldernames
remain unchanged.We use the italic

font to refer to
an operation, e.g.

create, to avoid
confusion with

the IMAP
commands (in
typewriter).

In contrast to create, the desired result of the delete operation is to
make the folder non-existent. Hence, the content of u(f) is removed
at every replica. If we would define the downstream operation to be
u(f) ↦→ (∅,∅), then create and delete would no longer be commuta-
tive. Furthermore, the IMAP specification requires any delete(f) to be
preceded by a create(f), aborting on IMAP protocol level if a client
tries to remove a non-existing folder. This eliminates consistency
issues when delete(f) and create(f) are issued concurrently. We note
that the definitions of create and delete are very similar to the add
and remove operations on the OR-Set, which has been introduced in
[Sha+11b].

The operations append, expunge and store are defined in Specifica-
tion 4. The append operation is very similar to the create operation,

3.3 a case study for imap 49

except that a message m is inserted into u(f)2, and u(f)1 remains
unchanged. Another important difference is the atSource precondi-
tion. The IMAP specification states that each message is assigned a
unique identifier called UID. We use this requirement to assure that
no two identical messages are ever appended by different replicas,
or even the same replica. We note that identical is not referring to
the message’s content. In practice, it is still possible to append two
messages with identical content, although the UIDs of the messages
are in fact different. The existence of a unique message identifier can
be assumed safely and is, in addition to the already mentioned part
of the IMAP specification, common practice in the Maildir format,
where messages can be identified by a unique filename within a
folder.

The operation store is implemented in a similar fashion. The main
purpose of store is to change the flags of a message mold. We do
not explicitly model the flags of a message. Instead, we insert the
message mold with updated flags as a new message mnew in u(f)2
after deleting mold from u(f)2.

In contrast to the previous definitions, the expunge operation is
rather counter intuitive. The deletion of a message, which has been
marked with a deleted flag, is simply done by removing the message
from u(f)2. However, we decided that an additional tag must be
inserted into u(f)1 to avoid unexpected behavior in combination
with concurrent delete operations. We illustrate this puzzle with the
following example.

Two replicas r1 and r2 initially share the following state of a
folder: u(f) = (∅, {m1}). The replica r1 initiates a delete operation,
resulting in an update of the local state at r1 to be u(f) = (∅,∅) and
f is interpreted as non-existent, i.e. the complete folder is deleted. In
the meantime, r2 independently initiates an expunge operation that
aims to delete m1, resulting in the local state to be u(f) = ({t42},∅),
i.e. an empty folder. At this point, it is unclear what result is actu-
ally desired, after the downstream operations are executed at both
replicas. We decided, that the folder should be present as an empty
folder at both replicas. Hence, according to the presented defini-
tions, the resulting state is u(f) = ({t42},∅). In fact, our definition of
the operations gives create, append, store, and expunge a precedence
over delete, i.e. when manipulations of the folder f and a delete(f)
are concurrently executed, the folder is never entirely deleted, only

50 on stateful logic tiers with crdts

Specification 5 IMAP-CRDT (copy and rename)

31: update copy (foldername fold, message m, foldername fnew)

32: atSource (fold,m, fnew)

33: pre m ∈ u(fold)2
34: pre u(fnew) ̸= (∅,∅)

35: let m ′ be a a globally unique copy of m
36: downstream (m ′, fnew)

37: u(fnew) ↦→ (u(fnew)1,u(fnew)2 ∪ {m ′})

38: update rename (foldername fold, foldername fnew)

39: atSource (fold, fnew)

40: pre u(fold) ̸= (∅,∅) and u(fnew) = (∅,∅)

41: let R1 = u(fold)1
42: let R2 = u(fold)2
43: downstream (fold, fnew,R1,R2)

44: u(fnew) ↦→ (u(fnew)1 ∪ R1,u(fnew)2 ∪ R2)

45: u(fold) ↦→ (u(fold)1 \ R1,u(fold)2 \ R2)

state visible at the initiation time of the delete operation is removed.
Hence, we decided to pursue an add-wins semantic.

The modeling of the commands RENAME and COPY seems to be
more laborious. Fortunately, both commands are rather similar to
the already modeled operations. The COPY command can easily be
modeled as a modified append operation, where the message must
refer to a currently existing message in the selected folder. Moreover,
the destination, i.e. the folder where the message should be copied
to, must exist. Hence, in contrast to append, copy has three input
parameters: a foldername that represents the folder that is currently
selected, a message, and a foldername that represents the folder
where the message should be copied to. The semantics, as shown in
Specification 5, are, except for the additional preconditions, identical
with append. We note that the COPY command does not modify the
original message and that is why the content of the selected folder
u(fold) remains unchanged.

In Specification 5 we also present our modeling of the rename
operation. In essence, rename is a combination of create and delete,
except that the content of the folder is copied to the new foldername.
As precondition we add that the source folder must exist, but it can
be empty (see line 40). Moreover, the destination folder must not

3.3 a case study for imap 51

exist. We note that both requirements are related to the specification
of RENAME in RFC 3501 and are technically not needed to achieve
convergence of replicas. The remaining part of the definition follows
the intuition of create and delete. We first store the content of the
folder fold at the source replica in R1 and R2. This content is then
used to modify the map at all downstream replicas. We note that it
is necessary to use unions and set complements to achieve conver-
gence. Particularly, it would not be commutative if u(fold) would be
set to (∅,∅) and u(fnew) would be set to (R1,R2). We discuss the
design decisions and the implications for the application behavior
in the end of this subsection.

The remaining commands SUBSCRIBE and UNSUBSCRIBE are easy
to model as and Observed-Removed Set CRDT. As outlined in
Section 3.2, the OR-Set already features common set semantics. In
this case, the payload of the OR-Set would be foldernames that
could be added or removed with the corresponding commands. In
order to reduce the complexity of this work, we omit an explicit
modeling of both commands.

Design Decisions and Discussion

The major problem of designing an IMAP-CRDT is the lack of well
defined behavior in presence of concurrent updates. The desired be-
havior of single IMAP commands is perfectly described in RFC 3501,
whereas the presence of concurrent updates can lead to unexpected
state. Certain commands, that have reasonable consequences on the
state of the local replica, may not even be allowed to be applied at
another replica, because the remote state may have changed in the
meantime. The guarantee of CRDTs, i.e. that replicas converge, only
assures that no two replicas end up with different abstract states.
With the IMAP-CRDT we present an approach that follows two de-
sign principles: (i) IMAP commands on a local replica must behave
as expected according to RFC 3501 and (ii) concurrent updates may
not result in any damage or obviously undesired state of the account.
To this end, we decided for an add-wins strategy in order to avoid
undesired loss of data.

The proposed add-wins strategy comes to the price of increased
metadata that needs to be managed. In the presented definition we
create a new tag for each deleted message of an expunge operation.

52 on stateful logic tiers with crdts

These tags are, in the current design, only removed by a delete op-
eration, which is typically not executed as long as the user holds
interest in the folder. To overcome this issue, some metadata could
be deleted after a certain stable state has been reached. For example,
Baquero et al. introduced the notion of log compaction through
causal stability information in [BAS14]. An alternative decision would
be to give delete precedence over the other operations. In this case,
less metadata would be required to process state information. How-
ever, the application behavior in the presence of concurrent updates
seems undesired. For example, in case of a concurrent append and
delete operation on the same folder, the message that was added
by the append operation would be deleted with the folder and be
lost forever. We note that our IMAP-CRDT requires causal-order
delivery and we omit this precondition in every update operation
for the sake of simplicity.

3.3.4 Mechanical Verification

After presenting the design of our IMAP-CRDT, we aim to provide
the certainty that the promised guarantees, i.e. the convergence of
replicas, actually hold under realistic assumptions. To this end, we
present an Isabelle/HOL formalization that is based on the recently
published CRDT verification framework by Gomes et al. [Gom+17a].
The formalization includes a network model which uses the basic
axioms of an asynchronous unreliable causal broadcast, which we will
introduce throughout this subsection. The proof document and
the Isabelle proof implementation2 is published in the Archive of
Formal Proofs [JOL17b].

System Model and Network Assumptions

With the verification of our IMAP-CRDT we show that convergence
is guaranteed, i.e. two replicas have equivalent abstract states if
both received the same set of operations. Hence, in order to rea-
son about the convergence, we need to introduce the notion of a
network first. We base our system model on the model that is com-
mon when working with CRDTs, which we already introduced in

2 https://www.isa-afp.org/entries/IMAP-CRDT.html (BSD License)

https://www.isa-afp.org/entries/IMAP-CRDT.html

3.3 a case study for imap 53

Section 3.2. A mechanical verification, however, requires a more
detailed description in order to be approved by a theorem prover
like Isabelle. Therefore, we reuse the relevant parts of the CRDT
verification framework [Gom+17b] that are needed to verify that
our IMAP-CRDT guarantees strong eventual consistency.

We start with a rather common definition of an asynchronous dis-
tributed system that consists of an unbounded number of processes
that communicate over channels where each process is identified
by a unique id. Asynchronous means that there are no bounds on
the relative speed of message exchange and process execution. We
can make no assumptions about the timing and messages can be
delayed for an arbitrary time. Moreover, messages can be lost or
processes can crash; therefore we consider our system unreliable.
There are no further assumptions on the network topology.

Processes communicate with each other via messages. From the
perspective of a process, there are only two types of messages:
broadcast or deliver. A broadcast message has exactly one sender and
is transmitted to all processes in the network. A deliver message
can be seen as a message that was received from the network and
delivered to the application. We note that the notion of a broadcast
message is a common model in distributed systems. In practice,
there are established ways to implement a broadcast network on top
of unicast, e.g. with an overlay network over a fully connected graph
or a gossip protocol. Each process stores a history of messages as an
ordered list. Hence, messages inside the event log of a process are
numbered and duplicates are excluded.

With the above mentioned components, Gomes et al. compose a
definition of a network and make the following assumptions on the
event log of a process:

1. For any deliver message in the event log of a process, there
exists a process that has the corresponding broadcast message
in the event log.

2. If a broadcast message is in the event log of a process, there
exists a corresponding deliver message in the event log of the
same process with a higher index.

3. Each message is globally unique.

54 on stateful logic tiers with crdts

We note that the introduced assumptions are typical for describing
and modeling asynchronous distributed systems. The first assump-
tion simply states that a message, that is delivered to somewhere,
must have had a sender and the message was not created out of
nowhere. The second assumption is also very standard. For easier
reasoning it is more convenient to have the notion that a message
is delivered locally, like it would be delivered to another process,
but without actually using the network. The third assumption is
important to distinguish messages in our system. In practice, this
is typically achieved by adding a process identifier or a UUID to
the message. Baquero et al. use the vector clocks, as a standard
mechanism to track causality of messages, as message identifier,
because a vector clock is globally unique [BAS14].

In fact, most CmRDTs require messages to be delivered in causal
order. Hence, messages in the event log of the processes must be in
harmony with the happened-before relation ≺. Together with the
notion of the broadcast and deliver messages, Gomes et al. conducted
the following rules for a message m1 that happened-before m2.
They say m1 ≺ m2 if any of the following rules hold.

1. m1 and m2 were broadcast messages by the same process,
and m1 was broadcast before m2.

2. The process that broadcast m2 had delivered m1 before it
broadcast m2.

3. There exists some message m3 such that both m1 ≺ m3 and
m3 ≺ m2.

Causal-order delivery is typically achieved by using vector clocks.
In case the vector clock of a received message indicates a missing
message that happened-before, the delivery of the received message
to the application is delayed until the missing message was received.
This implementation is rather standard in distributed systems and
we omit a detailed discussion. Later in this section we present
related work that aims to reduce the introduced overhead of using
and comparing vector clocks without loosing causality information.

Having defined a network that supports causal-order delivery;
the only missing piece is the definition of the operations in the
network. Therefore, the messages are further refined to be a pair
of an identifier and an operation with its parameters. Furthermore,

3.3 a case study for imap 55

an initial state and an interpretation function of the operation must
be defined. The interpretation function defines the semantics of a
downstream operation on an arbitrary but fixed state. Because the
IMAP-CRDT has further requirements to the operations, namely the
atSource preconditions, the model only considers broadcast messages
that are in accordance to these constrains.

Isabelle Proof

With the defined system model from the previous paragraphs we
are able to refine our ultimate goal of this subsection: the imple-
mentation of a mechanically checked proof of the convergence. We
find that having the certainty of an automatically checked proof
is worth the additional work to convince the proof system. Espe-
cially the presence of concurrent updates makes it hard to reason
about correctness properties without missing edge-cases or even
more fundamental problems. Fortunately, Gomes et al. provided a
sophisticated framework for verifying strong eventual consistency
in Isabelle [Gom+17a]. Besides that we invested some work into
developing our own system model in Isabelle3, we chose to adapt
to their framework and contribute the IMAP-CRDT verification as a
further example to the Archive of Formal Proofs.

The framework of Gomes et al. is composed out of Isabelle lo-
cales that provide encapsulated definitions and properties of the
above introduced model of a distributed system. In our proof, we
instantiate these locales and implement the IMAP-CRDT in Isabelle.
The already proven lemmas from the locales greatly simplify our
proof and allow us to focus on the properties of interest. Before we
present our proof, however, we state the main theorem that we want
to verify.

Theorem 1. Having an asynchronous unreliable causal broadcast net-
work, the abstract states of two processes that received and applied
the same set of operations are equivalent, iff:

3 We were actually half-way through when we first identified some issues with
the model. Fortunately, Peter Zeller and Mathias Weber from the Softech group
at Universität Kaiserslautern helped us debugging the theories. Coincidentally,
Gomes et al. published their framework five days prior to my Kaiserslautern visit;
right on time to be used in this thesis.

56 on stateful logic tiers with crdts

1. All concurrent operations commute.

2. Applying an operation never fails.

The used framework offers a translation of this theorem into
Isabelle and the authors show that the theorem holds in the above
mentioned system model. This contribution significantly reduces
the complexity of our proof and we are thankful that the framework
was published right before we started investigating the correctness
of our CRDT. Hence, the remaining task for us is to show that the
concurrent operations of our IMAP-CRDT commute and that an
apply operation never fails. However, proving both properties is a
laborious task. In the following paragraphs we will give an overview
over our Isabelle implementation. For further details we refer to the
source code and the documentation [JOL17b].

Implementation of the IMAP-CRDT

As the first step, we define the IMAP-CRDT in Isabelle before
proving any lemmas. Therefore, we start by defining the operations.
In order to further reduce the complexity of the proof, we omit
implementing the operations copy and rename. Since those operations
are build on the primitives of create and delete, we expect no obstacles
other than the additional implementation complexity.

datatype (’id, ’a) operation =
Create "’id" "’a" |
Delete "’id set" "’a" |
Append "’id" "’a" |
Expunge "’a" "’id" "’id" |
Store "’a" "’id" "’id"

We note that we introduced two types ’a and ’id. In this case, the
type ’a represents the type of the foldernames and ’id represents
the metadata that is created by most of the operations. This metadata
is, for example, heavily used in the definition of create to generate a
globally unique tag.

The payload is, as in the original specification in Specification 3,
defined as a map that projects foldernames to a tuple of identifier
sets. Hence, the defined payload u : N → P(ID) × P(M) is now
translated into Isabelle with the help of a type synonym.

type_synonym (’id, ’a) state = "’a ⇒ (’id set × ’id set)"

3.3 a case study for imap 57

At this point we note the first difference between the specification
and the implementation. To reduce the complexity of the imple-
mentation, we no longer distinguish between the sets ID and M.
This makes the formalization slightly easier, because less type vari-
ables are introduced. While the original payload separates between
metadata and messages, we treat messages the same way as the
identifiers. This may seem counter intuitive, but the messages, i.e.
the content of a folder, must be globally unique as well. One can
see a mail message in our Isabelle implementation as a unique ref-
erence or a pointer that refers to the message’s content stored on the
hard drive. In fact, in our later implementation we use the filename
of a message as unique identifier, but this is rather specific to the
Maildir format. However, to avoid confusion with the use of the
word message, we stick to metadata and filenames as content of a
folder.

Next, we implement the operations in Isabelle. Therefore, we first
introduce a function op_elem that is used to extract the foldername
from an operation. For example, op_elem of a create operation would
refer to the folder that is to be created. In contrast to that, op-elem
of a append operation would refer to the folder where a filename
should be inserted to.

definition op_elem :: "(’id, ’a) operation ⇒ ’a" where
"op_elem oper ≡ case oper of

Create i e ⇒ e |
Delete is e ⇒ e |
Append i e ⇒ e |
Expunge e mo i ⇒ e |
Store e mo i ⇒ e"

After that, we implement the operations more or less directly
from the Specification 3, 4, and 5 Here, Isabelle’s update of the map,
denoted as :=, translates to the ↦→ arrow in the specification. We
use a simple let-in to define all operations in one function. The only
notable difference is the implementation of the delete operation that
no longer handles two sets R1 (the set of metadata that should be
removed) and R2 (the set of filenames that should be deleted), but
only one set that is essentially a union of both sets. We will show
later that the set that represents the metadata and the filenames are
always disjoint.

definition interpret_op :: "(’id, ’a) operation
⇒ (’id, ’a) state ⇀ (’id, ’a) state" where
"interpret_op oper state ≡

58 on stateful logic tiers with crdts

let metadata = fst (state (op_elem oper));
files = snd (state (op_elem oper));
after = case oper of

Create i e ⇒ (metadata ∪ {i}, files) |
Delete is e ⇒ (metadata - is, files - is) |
Append i e ⇒ (metadata, files ∪ {i}) |
Expunge e mo i ⇒ (metadata ∪ {i}, files - {mo}) |
Store e mo i ⇒ (metadata, insert i (files - {mo}))

in Some (state ((op_elem oper) := after))"

We define the preconditions of the atSource part in a separate
function that we will later use to instantiate the system model.
These valid-behaviours translate quite well from the specification.

definition valid_behaviours :: "(’id, ’a) state ⇒
’id × (’id, ’a) operation ⇒ bool" where
"valid_behaviours state msg ≡

case msg of
(i, Create j e) ⇒ i = j |
(i, Delete is e) ⇒ is = fst (state e) ∪ snd (state e) |
(i, Append j e) ⇒ i = j |
(i, Expunge e mo j) ⇒ i = j ∧ mo ∈ snd (state e) |
(i, Store e mo j) ⇒ i = j ∧ mo ∈ snd (state e)"

At this point we note that we simply can use the fact that mes-
sages in our system are globally unique, as outlined in the list of
assumptions on the network model, to guarantee that the metadata
or messages of operations are globally unique. Therefore, we reuse
a trick that we have seen in the implementation of Gomes et al. and
simply set the globally unique message identifier as metadata or
filename. This is realized by setting the message identifier i to the
globally unique piece of metadata j. For delete, we require that the
sender sends all current references to metadata and filenames when
issuing a broadcast message. Moreover, expunge and store require
that the message that should be altered or deleted must currently
exist in the folder. We note that the specification lists more precon-
ditions to the operations, e.g. create also requires that the folder that
should be created must not already exist. We discovered, that this is
a purely IMAP specific requirement and technically not needed to
guarantee convergence of replicas. Hence, we omit these precondi-
tions in the Isabelle implementation; making the proof result even
stronger.

With the above introduced implementation we are ready to in-
stantiate the system by using the locale from the framework and
defining the initial state as a lambda function that projects every-
thing to (∅,∅).

3.3 a case study for imap 59

locale imap = network_with_constrained_ops _
interpret_op
"λx. ({},{})"
valid_behaviours

Commutativity of Concurrent Operations

Operation-based CRDTs require all concurrent operations to com-
mute in order to ensure convergence. Therefore, we begin our ver-
ification by proving the commutativity of every combination of
possible concurrent operations.

Gomes et al. base the definition of the commutativity of operation
on the Kleisli arrow composition. In essence, for two operations x

and y, the result of the composition of both operations, denoted
as ⟨x⟩▷⟨y⟩, is an operation that first applies x on some state, and
then applies y on the result. The composed function fails if one of
the operations x or y fails or is not defined. The Isabelle translation
uses the monadic bind operator to express this composition:

definition kleisli ::
"(’b ⇒ ’b option) ⇒ (’b ⇒ ’b option) ⇒ (’b ⇒ ’b option)" where
"f ▷ g ≡ λx. (f x >>= (λy. g y))"

With the Kleisli arrow, we have a nice way to express the commu-
tativity of operations, as we exemplify with two create operations in
the following Isabelle code:

lemma (in imap) create_create_commute:
shows "⟨Create i1 e1⟩ ▷ ⟨Create i2 e2⟩

= ⟨Create i2 e2⟩ ▷ ⟨Create i1 e1⟩"

Initially, we used nitpick, Isabelle’s counterexample generator, to
identify corner cases in our implementation. We found out that most
of the combinations are truly commutative, like the above showed
create operations. This is, in fact, a stronger property than we actu-
ally need, because we only require concurrent updates to commute.
Unfortunately, as we will point out in the following paragraphs, not
all operations commute without adding extra assumptions.

lemma (in imap) create_delete_commute:
assumes "i /∈ is"
shows "⟨Create i e1⟩ ▷ ⟨Delete is e2⟩

= ⟨Delete is e2⟩ ▷ ⟨Create i e1⟩"

60 on stateful logic tiers with crdts

Here, the create and delete operations only commute, if we re-
quire that the metadata that is inserted by create is not part of the
remove-set of a delete operation, hence i /∈ is. The necessity of this
assumption implies that we need to put more effort into showing
that this assumption holds in case both operations are concurrent. In
fact, the remaining proof is mainly about showing that in this case,
the create operation must have happened before delete, because oth-
erwise we would invalidate the previously defined valid-behaviours
and the atSource precondition of create. Before we continue to prove
this happened-before relation, we show the remaining puzzles that
we identified for all operations.

Alongside with the previous illustration of the assumption that
i /∈ is, which is actually needed for all combinations of operations
with delete, we identified two more interesting corner-cases:

lemma (in imap) append_store_commute:
assumes "i1 ̸= mo"
shows "(⟨Append i1 e1⟩ ▷ ⟨Store e2 mo i2⟩)

= (⟨Store e2 mo i2⟩ ▷ ⟨Append i1 e1⟩)"

lemma (in imap) store_store_commute:
assumes "i1 ̸= mo2" and "i2 ̸= mo1"
shows "(⟨Store e1 mo1 i1⟩ ▷ ⟨Store e2 mo2 i2⟩)

= (⟨Store e2 mo2 i2⟩ ▷ ⟨Store e1 mo1 i1⟩)"

Both of the above shown Isabelle listings show an additional
assumption that is introduced by combinations of expunge and store.
In this case, an operation must not create a filename for a message
that is referred to by a possibly concurrent store operation. More
concrete, a message that is put into a folder with append cannot be
the same message that is concurrently modified by store.

We can summarize the identified additional assumptions as critical
conditions that need to be satisfied by all operations that follow the
predefined valid-behaviour.

• The metadata of a create and expunge operation, or the file-
names of an append and store operation, are never in the
removed-set of a concurrent delete operation.

• The filename of an append operation is never the filename that
is deleted by a concurrent store or expunge operation.

• The filename inserted by a store operation is never the filename
that is deleted by a concurrent store or expunge operation.

3.3 a case study for imap 61

The identified conditions obviously hold in our system, because
an item that has been inserted by one operation cannot be deleted
by a concurrent operation. It simply cannot be present at the time
of the initiation of the concurrent operation.

With the above presented assumptions we were able to show that
all combinations of operations, which condense to 15 individual
cases, are in fact commutative. In all cases, the definitions of the
interpretation function and the Kleisli arrow composition were
sufficient to prove the lemmas.

Critical Conditions hold for Concurrent Operations

The remaining task is to prove that the identified critical conditions
hold. For combinations with delete, the proof is similar to what
Gomes et al. used to prove the correctness of the OR-Set. Hence,
in order to show that i /∈ is and i1 ̸= mo hold, we define a list of
metadata, called added_ids, that represents a list of all metadata that
was ever inserted by the delivered create and expunge operations
in the event log of a process. Similar to that we define a list of
filenames that are created by append and store.

definition (in imap) added_ids :: "(’id × (’id, ’b) operation) event list
⇒ ’b ⇒ ’id list" where

"added_ids es p ≡ List.map_filter (λx. case x of
Deliver (i, Create j e) ⇒ if e = p then Some j else None |
Deliver (i, Expunge e mo j) ⇒ if e = p then Some j else None |
_ ⇒ None) es"

definition (in imap) added_files :: "(’id × (’id, ’b) operation) event
list ⇒ ’b ⇒ ’id list" where

"added_files es p ≡ List.map_filter (λx. case x of
Deliver (i, Append j e) ⇒ if e = p then Some j else None |
Deliver (i, Store e mo j) ⇒ if e = p then Some j else None |
_ ⇒ None) es"

We can show that the event log of a process contains only a subset
of the metadata and filenames of added_ids or added_files. This
information is used to show that metadata and filenames that are
referenced by one operation must be created by a preceding opera-
tion that happened-before. We exemplify this step with the following
lemma for append and store. Here, hb translates to happened-before.

62 on stateful logic tiers with crdts

lemma (in imap) concurrent_append_store_independent_technical:
assumes "i = mo"

and "(i, Append i e) ∈ set (node_deliver_messages xs)"
and "(r, Store e mo r) ∈ set (node_deliver_messages xs)"

shows "hb (i, Append i e) (r, Store e mo r)"

In this lemma we show that if a store and append operation are
in the event log of a process and store references to the filename of
append, hence i = mo, then append must have happened before store.
Moreover, we show that if there is such a reference, both operations
work on the same folder:

lemma (in imap) append_store_ids_imply_messages_same:
assumes "i = mo"

and "(i, Append i e1) ∈ set (node_deliver_messages xs)"
and "(r, Store e2 mo r) ∈ set (node_deliver_messages xs)"

shows "e1 = e2"

Both of the above shown lemmas imply that the used assump-
tion i ̸= mo is safe to be made for concurrent operations, which
represents the remaining corollary that needs to be shown for this
case:

corollary (in imap) concurrent_append_store_independent:
assumes "¬ hb (i, Append i e1) (r, Store e2 mo r)"

and "¬ hb (r, Store e2 mo r) (i, Append i e1)"
and "(i, Append i e1) ∈ set (node_deliver_messages xs)"
and "(r, Store e2 mo r) ∈ set (node_deliver_messages xs)"

shows "i ̸= mo"

We note that this is just one example of the previously introduced
critical conditions that must hold in order to show convergence. In
fact, in addition to the presented lemmas for append and store, there
are 7 more cases that were considered in our proof.

Convergence and Strong Eventual Consistency

At this point we are able to connect the remaining pieces in order to
show the final theorem. As mentioned in the abstract description
of Theorem 1, we must not only show the commutativity of con-
current operations, but also that applying an operation never fails.
Fortunately, the latter is rather easy to show, since our IMAP-CRDT
implementation in interpret_op never returns None. Hence, we can
easily show the following lemma:

3.4 pluto : the planetary-scale imap server 63

lemma (in imap) apply_operations_never_fails:
assumes "xs prefix of i"
shows "apply_operations xs ̸= None"

In the above and following code, i and j are two event logs, i.e.
lists of operations of a process, that are fixed by the final locale that
we instantiated. With “xs prefix of i” we show that the remaining
properties hold for all prefixes of the event log. This will be partic-
ularly important when proving strong eventual consistency. Here,
equivalent abstract states are guaranteed, if two processes have seen
the same set of operations, which must also hold for every subset
(or prefix).

The remaining task to show convergence is to conduct a lemma
that proves concurrent operations to commute. With the above
introduced lemmas, namely the commutativity of operations and the
certainty that the identified critical conditions always hold, this lemma
is relatively easy to show, even though all of the 15 combinations of
operations must be considered separately.

lemma (in imap) concurrent_operations_commute:
assumes "xs prefix of i"
shows "hb.concurrent_ops_commute (node_deliver_messages xs)"

Ultimately, we show the convergence theorem. At this point, the
used framework already offers the necessary steps to combine both
of the above mentioned lemmas. In fact, the final proof of the
theorems, i.e. the convergence, has not been modified by us and
fully relies on the earlier introduced lemmas.

theorem (in imap) convergence:
assumes "set (node_deliver_messages xs)

= set (node_deliver_messages ys)"
and "xs prefix of i"
and "ys prefix of j"

shows "apply_operations xs = apply_operations ys"

3.4 pluto : the planetary-scale imap server

In this section we present our prototype of a distributed IMAP
server pluto that implements the IMAP-CRDT. We will put particular
focus on the design decisions and the implied consequences for our
approach. We omit concrete implementation details, because the
source code, as well as additional documentation and installation

I would like pay
tribute for the design
and implementation
of pluto to Lennart
Oldenburg, who
contributed
phenomenal insights
to this chapter.

64 on stateful logic tiers with crdts

instructions, is available in the project repository and licensed under
GPLv3 or later4.

3.4.1 Selected Features and Limitations

We begin the presentation of our prototype by defining the features
of interest and its limitations. In contrast to software products that
are designed to be used in the industry, our prototype mainly
is a proof of concept that the conceptual benefits, i.e. using and
replicating more application state in the logic tier, can be realized
and pay off in practice. From this aspiration, we derive the necessary
features that we need to evaluate our prototype against Dovecot, the
de facto standard IMAP server software.

The very first decision includes the choice of the IMAP commands
that our prototype must provide. Since we are mainly interested
to analyze the opportunities and disadvantages of storing more
state in the logic tier, we again focus on the consistency-critical
commands, i.e. the write commands. That is why we omit the
implementation of the read commands like SEARCH or FETCH, similar
to the earlier presented choice were we omitted those commands
when designing the IMAP-CRDT. Hence, our prototype currently
supports the following IMAP commands:

• CREATE, DELETE, APPEND, EXPUNGE, STORE

In order to implement the aforementioned commands in a mean-
ingful way, certain other commands are necessary as well. For
example, STORE can only be executed if a folder has been selected
by SELECT. For this reason, the following commands are also imple-
mented in the prototype:

• CAPABILITY, STARTTLS, SELECT, LIST, LOGOUT

We note that these commands do not alter the folders or the mes-
sages and are therefore considered as read commands. We judge
the aforementioned commands as sufficient to show that we are
able to transfer our approach from theory to practice. Therefore, we
omit implementing the remaining consistency-critical commands,

4 https://github.com/go-pluto/pluto licensed under GPLv3 or later.

https://github.com/go-pluto/pluto

3.4 pluto : the planetary-scale imap server 65

i.e. COPY and RENAME, as well as the remaining read commands from
RFC 3501.

While the aforementioned commands determine the set of fea-
tures from client’s perspective, we also identified the following
important features from an operators point of view:

3-tier Architecture: The prototype must be composed of dif-
ferent individual components that can be arranged in a tradi-
tional 3-tier architecture.

Security and Encryption: Since we later conduct an evalua-
tion based on public cloud infrastructure, all communication
channels must be encrypted.

User Authentication: User information must be provided in
the common ways, i.e. over a username/password file or a
database like PostgreSQL.

Fault Tolerance: Connections to failed components that are
not mission critical must be rerouted to working components;
similar to a failover.

Configurability: The addresses of the replicas, as well as the
partitions and the routing of users requests, must be config-
ured with a simple configuration file.

We note that the above mentioned features are neither a precise
nor a complete list of requirements. They rather provide an overview
of what desired features must be considered in order to deliver a
prototype that can withstand a fair evaluation. In addition to the
mentioned features, the requirements for using our IMAP-CRDT
must be considered as well. Hence, our prototype must be able to
form a distributed system with arbitrary many replicas, in contrast
to Dovecot-dsync, which only allows a maximum of two replicas.

As the only system specific requirement that is implied by using
CmRDTs, our prototype must enforce a causal order of the messages
and therefore offer a causal-order broadcast. We will address this
challenge when we explain the design of our prototype in the
following subsection.

In summary, we aim to provide a working prototype that offers
reduced IMAP functionality but with a sophisticated architecture

66 on stateful logic tiers with crdts

that enables configurable deployments and security, as we would
expect it from a system of a certain scale.

3.4.2 Architecture and Design

The main point of our prototype is to demonstrate that it is feasible
to store and replicate more state in the logic tier using our IMAP-
CRDT. From this purpose, we derive a tailored architecture.

In Figure 3.6 we show the interplay of pluto’s components in a 3-
tier architecture. In the presentation tier, we implement a distributor
similar to a proxy. The workers in the logic tier are, in contrast to
a traditional system that follows the service statelessness principle,
stateful. That means, that mailbox accounts of a particular range of
users are stored in this tier. In addition to that, the storage component
of pluto can be seen as a replica of the state that is already stored on
the worker.

Distributor
stateless

Worker
stateful

Storage
stateful

IMAP

CRDT Operations

Fig. 3.6: The
pluto

architecture.

Next, we describe the particular tasks of these three components
in depth:

distributor : In any pluto deployment, an IMAP request enters
the service at a stateless distributor node. Any request initiated
via an unencrypted connection will get dropped, ensuring that
authentication credentials transmitted as part of an ordinary
IMAP session are only ever sent over a TLS connection. The
distributor node handles a session as far as the authentication
procedure was successful. For any further request, the worker
node responsible for the particular partition of users is de-
termined, and all traffic is proxied to this node. Should the
determined worker node be unavailable, for whatever reasons,
a failover to the storage node is performed, which accepts the
proxied IMAP traffic in place of the worker node.

worker : As soon as requests of a regular IMAP session reach a
worker node, the response is computed based on the state
stored on the worker and immediately sent back to the client.
In case the IMAP request changes the application’s state, for
example with a CREATE command, the atSource preconditions
are checked and additional information are computed. There-
after, the downstream operation is sent to all connected repli-
cas and the storage. The fact that there may be more than

3.4 pluto : the planetary-scale imap server 67

one worker that answers IMAP requests for a particular user
and the presence of the storage makes pluto a multi-leader
replication system.

storage : All mailbox accounts are securely stored in pluto’s stor-
age component. Idealy, the storage runs on reliable and tai-
lored hardware where the integrity of the data is the most
important priority. The storage accepts downstream updates
from the worker nodes and applies them on the local state.
Only in case that all other worker nodes for a particular range
of users are unavailable, the storage can accept incoming
IMAP requests; acting as the last working copy of the state.

The separation into the three components, and especially the de-
cision to make the worker component stateful, enables interesting
options to configure the pluto system. Some of these configurations
and the promising opportunities are already discussed in the pre-
liminaries is Chapter 2, without the concrete impact on an IMAP
service. However, with our prototype we can explore these options
and see whether the opportunities are worth considering.

The easiest configuration to consider is to use these three com-
ponents without any further replication or partitioning on three
different machines. In this setup, which is also represented in Fig-
ure 3.6, the system would benefit from improved response times for
write requests, because the response can be immediately computed
based on the state that is stored in the worker without passing the
request to the storage. Moreover, this configuration also provides
increased fault tolerance in contrast to a traditional Dovecot deploy-
ment, because a temporary connection loss to the storage can be
tolerated.

The most advanced configuration to consider is when the workers
form a distributed system and the users are partitioned (or sharded)
into different ranges. We illustrate this configuration in Figure 3.7,
where we show a pluto system where the mailbox accounts are di-
vided into two groups, which are then replicated over three replicas.
In this setup, every replica of the worker can continue to operate in-
dependently in case of a network disruption or partitioned replicas.
The verified guarantees of the IMAP-CRDT imply, that all replicas
eventually reach the same state when partitions have healed and
messages can be exchanged. We note that the storage in the mid-

68 on stateful logic tiers with crdts

Di
st

rib
ut

or Worker
Users A-M

Storage

Worker
Users N-Z

Worker
Users N-Z

Worker
Users A-M

Worker
Users N-Z

Worker
Users A-M

Distributor
Distributor

Figure 3.7: A more advanced pluto configuration with partitioning
and replication.

dle of Figure 3.7 ideally has no impact on the performance and
only represents a safe location where the data is persisted on more
trustworthy hardware.

We will discuss the benefits of the enabled multi-leader replication
in the logic tier in the end of this chapter, after we evaluated our
prototype in different configurations.

3.4.3 Implementation Decisions

As the major difference to other IMAP server software, we im-
plemented the two required components, the IMAP-CRDT and
a reliable causal-order broadcast of update messages, as parts of
pluto. The implementation of the IMAP-CRDT is slightly adjusted
in order to achieve a better performance. In our implementation
of the IMAP-CRDT, we assign each user an OR-Set, called struc-
ture, that represents the user’s abstract mailbox state. The main
difference to our theoretical model in Specification 3 is, that the
map u(f) for a mailbox folder f is modeled as a set of value-tag
pairs for which the value element is always set to f. As an example,
we consider a mailbox folder uni, on which an append operation
was executed. Assume, that the state according to Specification 3

looks like u(uni) ↦→ ({α}, {m}). We can infer that the create oper-
ation for uni created tag α in u(uni)1 and the append operation
put m into u(uni)2. In our structure OR-Set, this is represented as

3.4 pluto : the planetary-scale imap server 69

{(uni,α), (uni,m)}. Thus, in pluto we do not distinguish between
metadata and message tags, similar to the choice we have made in
the Isabelle verification. Any update to structure is followed by a file
system sync operation on an associated log file on stable storage.
This ensures that nodes can precisely reconstruct the internal repre-
sentation of the user’s mailboxes in case they have crashed or were
restarted.

An update on a source replica triggers a message to all down-
stream replicas in order to reproduce it on their state. In pluto,
worker and storage nodes are grouped into subnets that exchange
updates for a particular partition of users. Considering a planetary-
scale deployment with workers in Europe, the US, Asia, and the
storage in Australia, the subnet for a worker eu1 in Europe might
contain us1, asia1, and storage. Each downstream message from
eu1 is sent to all other nodes in its subnet.

As the IMAP-CRDT is based on the operation-based OR-Set, we
require these messages to be part of a reliable causal-order broadcast,
ensuring that they are delivered to the application exactly once and
with no causally-preceding ones missing. To this end, we maintain
vector clocks [Mat88; Fid88] for each subnet. Send queue, receive
queue, and vector clock are again sync’ed into associated files on
any update. To reduce replication lag, we do not send messages
individually but transfer the current send log as a whole in a defined
interval.

The use and the implementation of vector clocks may leaves room
for improvement, as it is surely costly to compute and compare
a vector of n clocks for each operation on n replicas. While the
concepts of vector clocks is relatively simple and commonly applied
in distributed systems, there are certain optimizations to achieve
a better performing causal communication. We discuss alternative
approaches in the related work part of this chapter.

For the internal communication between the components, we
use the Google’s open-source implementation for remote procedure
calls gRPC [gRP18]. Hence, we gain a sophisticated communication
layer that enables fast and reliable interaction of the components.

70 on stateful logic tiers with crdts

3.5 evaluation

In the previous sections we introduced our IMAP-CRDT, verified
its convergence guarantees, and presented our prototypical imple-
mentation of a distributed and CRDT-driven IMAP server pluto.
The remaining open question is, whether our prototype can play
of the conceptual benefits compared to the existing approaches or
not. To this end, we conduct several experiments that compare our
prototype pluto against the de facto standard IMAP server Dovecot.

As we pointed out in Section 2.2.2, enabling multi-leader repli-
cation in the logic tier mainly serves two purposes: to increase the
performance and to increase the fault tolerance. For now, we leave
the analyzation of the fault tolerance out of scope of this evaluation.
A detailed discussion of what faults and failures can be tolerated
and the implied design decisions is presented later in this chap-
ter. The impact of the multi-leader replication on the performance,
however, will be analyzed in depth in this section.

We find that the impact on the performance can be best analyzed
in scenarios where there is high latency between the replicas. The
best practical example for these scenarios are geo-replicated systems,
i.e. systems that serve clients from different continents. In such
systems, replication is used to reduce the response times for requests
by placing a replica at a location near the client.

In this section we aim to evaluate our prototype against Dove-
cot in a geo-replicated setting. Therefore, we try different setups
and identify the pitfalls of geo-replication, i.e. we show how naive
applied replication mechanisms fail magnificently. Thereafter, we
introduce our IMAP-Benchmark that generates write-intensive work-
loads. Moreover, we present the test bed that is based on the most
advanced infrastructure at the time of developing the prototype. Ul-
timately, we conduct multiple IMAP experiments at planetary-scale
and present our results.

3.5.1 The Pitfalls of Geo-Replication

Before we begin the evaluation of our prototype, we need to identify
the best setup of the reference system, i.e. Dovecot, to create a fair
comparison. As mentioned, we focus on geo-replicated systems.

3.5 evaluation 71

Proxy
(stateless)

Backend
(stateless)

GlusterFS
(stateful)

Proxy
(stateless)

Backend
(stateless)

GlusterFS
(stateful)

us-east1-b europe-west1-b

Figure 3.8: The naive approach to geo-replicate Dovecot.

Hence, it is our task to find the best setup for a Dovecot-powered
IMAP service that aims to serve clients from rather distant locations.

In Section 3.3.1 we introduced different configurations for Dovecot,
as well as the extension dsync, that enables a 2-way replication. For
now, we focus on the traditional Dovecot configurations. However,
we evaluate dsync in depth later in this section.

The most standard configuration of Dovecot, that does not involve
any advanced replication, is composed of a proxy that redirects
the clients’ requests to a Dovecot backend which stores the mailbox
accounts in a shared file system like GlusterFS. Such system, which
we already introduced in a previous section, is generally not de-
signed to achieve low response-times for users with a huge distance
to the service, e.g. from another continent. However, the advantage
of this configuration is, that the system is easy to maintain, since all
components are most likely in the same data center. Client requests
from different continents would be routed through the Internet and
may suffer from comparable high latencies. We note that this setup
is actually not the worst to consider. Later in this section we will
use this system as our baseline for the other experiments.

From this simple setup we can derive ostensible optimizations
to improve the response-time performance. Now, the most obvious
answer is to replicate components of the system and place them
near the clients. One obvious solution would be to replicate the
entire setup. We illustrate this setup in Figure 3.8.

72 on stateful logic tiers with crdts

In the figure we see that the stateless components, i.e. the proxy
and the backend, are deployed in two different regions. This is is
easy to achieve, because no mission critical state is held in these
tiers. The critical part of the application state is, in fact, held in the
data tier, i.e. the GlusterFS. One could easily configure GlusterFS in
a way that the file system is synchronized between both regions.

While the aforementioned configuration seems to make sense, our
tests reveal that this is actually the worst configuration to consider.
The reason is, that GlusterFS, as well as any other shared file system
that is not particularly designed for this purpose, uses locking to
prevent write conflicts. The locking in combination with high latency
between the replicas results in unacceptable response times.

In order to illustrate this pitfall, we conducted an easy experiment
where we increase the distance (and therefore the latency) between
the backends and GlusterFS and see how much the response time
increases. We note that the conducted experiment, which we will
describe in the following paragraphs, does not accurately reflect the
setup presented in Figure 3.8. In the later experiments, however, we
will deploy a system as shown in the figure and confirm the results
of this easy experiment.

Experiment Infrastructure

To confirm the above introduced pitfall, we deployed a Dovecot in the
suggested 3-tier architecture on Amazon’s EC2. The installation runs
on three t2.micro instances with a proxy, a backend, and a GlusterFS
volume that is mounted on the backend node. All connections
between the instances are secured via TLS by default; allowing to
deploy such setup over multiple clouds and off-site locations.

Furthermore, one t2.micro instance was configured to provide
a PostgreSQL database holding the user table, and one t2.micro
instance was set up to act as the client machine; executing all tests
against the deployment. With this deployment we conducted three
experimental setups:

• Dovecot Ire: All instances are deployed on machines in the
Ireland region of AWS.

• Dovecot Ire/Lon: The GlusterFS instance operates in AWS Lon-
don. All other instances are deployed in AWS Ireland.

3.5 evaluation 73

• GMail: The large-scale IMAP service run by Google. Reachable
at imap.gmail.com.

The Dovecot Ire setup is what we would call the comfort zone of
Dovecot, since there is almost no transmission delay between the
instances. In the Ire/Lon setup, we have a small but noticeable trans-
mission delay of about 12 ms R/T to the data tier. This setup is
generally interesting, because physically separated data and logic
tiers make a deployment less prone to outages of a single infrastruc-
ture provider. In these scenarios, a complete outage of the worker
nodes, like in major AWS outages in 2011 and 2017 [Ser17], can be
parried by allocating instances on a different cloud provider. We
use the Gmail service as a real-world reference for a production
email service, even though we have no insights into GMail’s internal
infrastructure.

Experiment and Results

We conducted a very simple set of experiments where we injected
1000 consecutive IMAP commands of the same IMAP user in each
experimental setup. For each command we measured the round-
trip response time. We present average response time, standard
deviation, and median for each setup in Table 3.2.

We observe that Dovecot delivered a very solid performance in
its comfort zone setup (Dovecot Ire) with respect to its low standard
deviation; as shown in Table 3.2. For the Ire/Lon setup, we observe
the expected increase of the response times of Dovecot. We note that
due to the structure of our experiment, Dovecot is unable to show its
optimizations such as index files, to improve performance of IMAP
read commands like EXAMINE, SEARCH, and FETCH. We expect Dovecot
to perform well in case read commands were ever evaluated in
terms of response time.

The response time of Google’s GMail service is generally not
comparable to the other setups, since GMail is a production service
that is offered to millions of users. However, the numbers present
what a realistic response time performance we can expect from an
IMAP service that runs in production.

74 on stateful logic tiers with crdts

Table 3.2: Response time per IMAP command in milliseconds.

IMAP
Dovecot

Ire
Dovecot
Ire/Lon

GMail

APPEND
Average 34.66 445.96 553.99

Std. Dev. 10.07 70.84 56.58

Median 31.84 439.29 541.52

CREATE
Average 19.46 592.22 349.98

Std. Dev. 2.37 30.01 72.72

Median 18.83 601.62 337.15

DELETE
Average 106.49 1990.20 361.81

Std. Dev. 18.86 93.65 56.34

Median 107.06 1977.10 352.99

STORE
Average 19.43 267.63 126.62

Std. Dev. 10.77 53.95 10.88

Median 15.36 259.49 125.04

Discussion

The results reveal that the used standard 3-tier architecture setup of
Dovecot is very sensitive to increased latency between the backend
and the storage. In Table 3.2 we see that the introduced round-trip
transmission delay of 12ms between the Ireland and London data
center leads to an increase of the response time of more than one
order of magnitude. For example, the average response time for a
CREATE command increased from 19ms to 592ms.

The reason for this unexpected high increase is that one IMAP
command that is processed in the backend may leads to multiple
operations on the file system. Hence, in contrast to one client’s IMAP
request that may suffers from high latency, we actually multiplied
the number of requests that all suffer from high latency, which
ultimately sum up to unacceptable response times.

From this experiment we can derive two lessons we have learned.
The first lesson is that one should carefully choose the layer where
state is stored and replication is applied. The second lesson is that
the replication mechanism must be carefully chosen. The distributed
locking, which is used by most of the distributed file systems, and
the implied strong consistency guarantee may work for replication

3.5 evaluation 75

within a data center where transmission delays are negligible, but is
dangerous when applied across data centers.

In the rest of this chapter we will evaluate our alternative ap-
proach where more state is stored in the logic tier. Therefore, we
evaluate our prototype against dsync—two systems that imply a
more relaxed consistency model and replication without distributed
locking or consensus.

3.5.2 Benchmark

In order to evaluate pluto and Dovecot, we need a way to apply a
large amount of state-changing IMAP commands to our deploy-
ments. We are interested in the state-changing (“write”) commands
of RFC 3501, because only these manipulate mailbox state and trig-
ger downstream messages that need to be applied at other replicas.
“Read” commands, in turn, are answered authoritatively on the
replica where they were received on; without inter-replica com-
munication. Only state-changing commands potentially unearth
consistency issues by generating edge cases. Thus, we require an
IMAP benchmark that is able to generate large write-intensive work-
loads; involving the write commands that are implemented in both
services: CREATE, DELETE, APPEND, EXPUNGE, and STORE.

At the time of conducting the experiments, and to the best of
our knowledge, there is no such tool or data set available, and thus
we implemented an IMAP benchmark ourselves5 that generates
arbitrary amounts of random data, hence write-intensive workloads.
Each workload is composed of small and randomly generated se-
quences of IMAP commands, called sessions. One session always
contains well-matched IMAP commands, e.g. a mailbox folder is
created before a message is appended to it. The messages that are
appended to a folder, and possibly deleted within the same session,
contain random strings and different mail headers. The length of a
message varies from 10 to 512 lines, resulting in message sizes from
approximately 1 to 32 kilobyte. The session generation mechanism
is deterministic and can be reproduced by configuring a benchmark
with the same seed.

Before a session is executed, a user is chosen randomly from a
provided file and logged in. Next, the session commands are applied

5 https://github.com/go-pluto/benchmark licensed under GPLv3 or later.

https://github.com/go-pluto/benchmark

76 on stateful logic tiers with crdts

one after another; a successive one as soon as the previous one has
finished and the time between sending and receiving a complete
answer, i.e. the command’s response time, has been stored. The work-
load’s degree of parallelism, that is the number of concurrent active
users, can be configured as well. All results are written to disk and
optionally uploaded to a Google Cloud Storage (GCS) bucket.

With our IMAP benchmark we provide a tool that is able to
measure the performance of an IMAP server with respect to the
response time. We designed the benchmark in a way, that it complies
with RFC 3501. Hence, the benchmark can be used to evaluate
almost any IMAP server, including GMail or MS Exchange.

Design Details

As mentioned, a session is composed of randomly chosen IMAP
commands that are well-matched. Because the size of the session, i.e.
the minimal and maximal number of commands, can be configured
by the user and contains a certain randomness, it is difficult to
characterize the workload in terms of the distribution of commands.

The session generation, however, follows a certain pattern. For
example, the very first command of a session must be a CREATE
command in order to enable further commands like DELETE, APPEND,
or SELECT. Similarly, a STORE command can only be executed if there
exists a message to operate on. Hence, an APPEND command must be
executed before STORE. With SELECT, a previously created folder can
be selected to execute the commands STORE or EXPUNGE.

In the implementation we translated those dependencies between
the commands into program code and assigned weights to each
enabled command. The weights of the commands are used to create
more meaningful session. For example, after a folder has been
selected, the probability to select another folder is only 10%. This
avoids sessions that mainly create some folders and switch between
them without executing any commands that alter the folder’s state.
The assigned weights are currently not customizable, but may be in
future versions.

We note that a session does not clean up, i.e. folders and messages
that were created during a session are not deleted before the ses-
sion is finished. Within a session, however, it is still possible that
folders or messages are deleted. Hence, if several session are exe-

3.5 evaluation 77

cuted consecutively, the mailbox state, i.e. the mailbox size, grows
monotonically, whereas within a single session the state will grow
and shrink. This fact will become important when we compare the
growth of the mailboxes of different replicas.

The session generation is deterministic, meaning that if the ran-
dom number generator is initialized with the same seed, it will
produce the same sessions. This feature is particularly important,
because we only achieve a fair comparison between the evaluated
systems if the used workload is identical.

We discovered that sessions that are executed concurrently on the
account of one user may lead to race conditions which threat the
comparability of the evaluated systems. Therefore, we decided to
implement the session generation in a way that concurrent sessions
on one replica never work on the same folders. This is achieved
by adding a session specific identifier to the foldernames, in this
case the id of the Goroutine that is responsible for this session.
Concurrent session that are executed on different replicas, however,
may work on the same folders and possibly on the same messages.
This is, in fact, very unlikely in case the random number generator
is initialized with differed seeds. In contrast to that, conflicts that
are based on concurrent access to the mailbox can be purposely
created by using the same seed at the same time on two or more
different replicas.

Maildir Tools

The credit for the
maildir tools and the
used cloud
infrastructure is due
to Matthias Loibl,
who contributed the
amount of
experience that
enabled our
evaluation.

While the IMAP benchmark provides response time measurements,
replication lag data is at least as important because it tells us how
well a service is able to disseminate and apply updates among its
replicas. It complements the user-centric response time metrics by
making the asynchronous replication part visible. Due to different
replication mechanisms in the evaluated systems, we had to fall
back on observing the Maildir file system in order to see when
updates were applied.

We implemented a small utility6 that periodically performs a disk
usage calculation of a configured subset of the Maildirs present on a
node (by running ’du -s’). The Unix standard program du estimates
the file space usage of a selected folder by recursively scanning all

6 https://github.com/go-pluto/maildir_tools licensed under GPLv3 or later.

https://github.com/go-pluto/maildir_tools

78 on stateful logic tiers with crdts

files and sub folders. The results are logged to disk and uploaded to
a GCS bucket at the end of the tool’s run. For continuous monitoring,
a duration histogram is exposed to Prometheus, a standard cloud
monitoring tool [Pro18].

With our Maildir Tools we are able to monitor the increase of
the size of the mailbox account while benchmarking the server. In
addition to the current size of the mailbox, the current system time
is logged. With these timestamps we are able to compare the growth
of the account on different replicas. Here, the difference between the
measured size of the mailbox for two identical timestamps on two
different replicas represents the replication lag in seconds. We will
explain this further later in this section when we use the computed
difference to characterize and visualize the replication lag of the
evaluated systems.

We note that the calculated differences have to be taken as es-
timations rather than precise values, as we rely on synchronized
clocks for timestamp elicitation. We will see later that the clock drift
between different replicas, even if the replicas are distributed over
huge distances, are negligible, because the lag that is introduced by
the synchronization exceeds the noticeable clock drifts by multiple
orders of magnitude.

3.5.3 Infrastructure

We now introduce the infrastructure setup used in our experi-
ments later on. As guiding principle, we have chosen a Cloud Native
[Fou18a] approach, featuring the most advanced cloud technologies
available at the time of developing our prototype. Our infrastructure
is mainly based on two products: Kubernetes [Kub18], an orches-
tration platform for containerized applications, and Prometheus
[Pro18], a powerful monitoring tool.

We provisioned two identical Kubernetes clusters in the us-east1-
b and europe-west1-b regions of the Google Cloud Platform. Each
cluster consisted of six n1-standard nodes (1 vCPU, 3.75GB mem-
ory). We combined both clusters into a Kubernetes cloud federation,
enabling cross-cluster service discovery and resource synchroniza-
tion. For persisting data, we always allocated 100GB SSD volumes.
In the following we will write us or europe to reference the respec-
tive regions. The measured round-trip transmission delay between

3.5 evaluation 79

both clusters was approximately 140ms. This value is surprisingly
small, thanks to the good network infrastructure between the two
Google data centers.

We decided to publish our configurations in our infrastructure
repository7, so that our setup can easily be recreated and reused for
further experiments. Hence, all resources, including the container
images of all evaluated systems, are publicly available.

Confirmation of the Pitfalls

In order to test our infrastructure, we decided to confirm our find-
ings from Section 3.5.1, i.e. the pitfalls of geo-replication. Therefore,
we installed Dovecot in both regions of our Kubernetes cluster and
configured GlusterFS to replicate a shared volume between europe
and us. In Figure 3.8 we show a visualization of this deployment.
We note that all components, except the GlusterFS, are stateless and
therefore easy to place in both regions.

We used our benchmark to generate a write-intensive workload.
Since we already saw that 12ms of latency between the backend
and GlusterFS increases the response time by an order of magnitude,
we configured our benchmark with comparable low settings. More
concrete, we decided to send 10 sessions and each session contains
15 to 40 IMAP commands. Moreover, we decided not to evaluate
concurrent access to the service, that is why our benchmark only
operates on a single mailbox account at a time.

We deployed our benchmark in europe and configured it to send
the commands to the proxy in europe, as we would expect it from a
geo-replicated setup.

To our surprise, the results were even worse than expected. The
experiment took around 38 minutes from the first to the last injected
command. This results in a throughput of 0.1 commands per second
with an average of over 9 seconds response time per command.
Thus, we see this as a confirmation of the introduced pitfall.

7 https://github.com/go-pluto/infrastructure licensed under GPLv3 or later.

https://github.com/go-pluto/infrastructure

80 on stateful logic tiers with crdts

3.5.4 Single-Cluster Benchmark

To evaluate our approach in realistic scenarios, we conducted a set of
experiments with our benchmark on our experimental infrastructure.
We started by defining our baseline, i.e. a reference experiment where
we used a standard configuration of Dovecot without any replication.
Thereafter, we conducted two experiments where we compared
pluto against Dovecot with enabled replication. We will discuss the
results of these experiments in the end of this section.

Baseline Experiment

As introduced in Section 3.3.1, we used a Dovecot in a traditional
3-tier architecture as reference setup. For the data tier, we deployed
a GlusterFS with a replicated volume on two n1-standard nodes
with 100GB SSDs in the europe region. The remaining Dovecot com-
ponents, i.e. a proxy and three backends, were installed on our
Kubernetes cluster in the same region as GlusterFS. We used three
backend nodes to illustrate the possibility of partitioning. In this
and all later experiments we maintained a total number of 120

active users in three static user partitions and the proxy was config-
ured to redirect users to the backend that was responsible for their
partition. In this setup, no replication was introduced besides the
synchronized volume in the GlusterFS cluster.

We configured our IMAP benchmark to execute 5000 IMAP ses-
sions with a session length between 15 and 40 commands. The
degree of parallelism, i.e. the number of users that are concurrently
executing sessions, was set to 20. We identified these 20 concurrent
users to be best suited for our experiments, because the reference
setup reached the best resource utilization at reasonable response
times.

We executed our benchmark on our Kubernetes cluster in the us
region to simulate a write-intensive load from a distant location. In
other words, we used a workload that required geo-replication on a
system that was not replicated. Thus, high response times but no
replication lag were expected.

We call this experiment our baseline, because all geo-replicated
setups must be able to outperform it. Otherwise, the effort of geo-
replication and the introduction of a replication lag is pointless.

3.5 evaluation 81

Table 3.3: The results of the single-cluster benchmark, showing the re-
sponse time performance in milliseconds and the throughput
in IMAP commands per second. The average and median repli-
cation lag is stated in kilobytes and the replication lag area is
stated in megabyte*second.

baseline dsync pluto

R
es

po
ns

e
Ti

m
e

Pe
rf

or
m

an
ce CREATE

Average 251.36 16.24 47.77

Median 224.50 12.52 28.25

DELETE
Average 602.05 30.81 48.85

Median 539.38 27.84 28.30

APPEND
Average 437.26 43.02 91.96

Median 400.87 38.37 57.15

EXPUNGE
Average 112.91 13.87 42.74

Median 97.05 6.18 25.61

STORE
Average 184.16 15.72 52.04

Median 166.66 11.93 31.80

Throughput 47.17 480.67 256.039

Replication
Lag

Average 734.61 39.10

Median 729.10 34.44

Area 279.89 17.13

We show the measured response times in the baseline column of
Table 3.3. The average and median response times in milliseconds
are grouped by IMAP command. We judge the measured values as
realistic for this setup.

Single-Cluster dsync versus pluto

In the remaining experiments we focused on the systems that offer
multi-leader replication, namely dsync and pluto. We deployed a
setup of one proxy (or director) and three backends (or workers)
in the europe and us Kubernetes clusters. Both setups were con-
nected over a Kubernetes federation and communicated over public
IP addresses and TLS-encrypted channels. In the first experiment
we replayed the settings from our baseline experiment, except that

82 on stateful logic tiers with crdts

0 100 200 300 400
Experiment time (seconds)

0

1000

2000

3000

4000

M
ai

ld
ir

siz
e

(k
ilo

by
te

s)

Dovecot dsync (5000 sessions, 20 concurrent users)
us-east1-b (src)
europe-west1-b

0 100 200 300 400
Experiment time (seconds)

0

1000

2000

3000

4000

M
ai

ld
ir

siz
e

(k
ilo

by
te

s)

pluto (5000 sessions, 20 concurrent users)
us-east1-b (src)
europe-west1-b

Figure 3.9: Replication lag diagram for Dovecot dsync (left) and our
prototype pluto (right) for requests from us to europe.

the traffic from the us region was now directed to the respective
proxy in the same region. In this scenario, the expected behavior
is that both systems replicate the updated state from us to europe
asynchronously. During the run we collected the response times and
additionally tracked the size of the mailboxes for six selected sample
users in both regions with our Maildir Tools. The tracking interval
was set to one second, which we found to be the best trade-off
between additional overhead by the du commands and unavoidable
loss of precision. With the chosen interval a possible micro clock drift
between europe and us has no significant influence to our results.
Based on the collected values we identified the replication lag for
both systems. We compare the results for dsync and pluto in the
following two paragraphs.

The measured response times are given in the dsync column of
Table 3.3. We judge the response times and the resulting throughput,
i.e. the processed IMAP commands per second, as optimal for this
setup. Dovecot is—not for nothing—the state of the art IMAP server
software.

For analysis of the replication lag we compare the growth of the
mailboxes in both regions for the selected sample users. In the left
side of Figure 3.9 we illustrate the average growth for the selected
sample users in what we call a replication lag diagram. On the x-axis
we see the relative time of the experiment in seconds. The y-axis
represents the size of the users’ mailboxes in kilobytes. The red line
represents the growth of the mailboxes in us, i.e. the region where
the traffic was injected. The green line represents the growth of

3.5 evaluation 83

the replicated mailboxes in europe. In this replication lag diagram,
a distance between both curves parallel to the x-axis represents
the replication lag in seconds, i.e. the time until the europe replica
catches up. A distance between both curves parallel to the y-axis
represents the replication lag in kilobytes8. In order to quantify the
replication lag, we think that it is feasible to compute the size of the
red area between both curves. The computed area in megabyte*second,
alongside with the average and median replication lag in kilobytes,
is presented in the last 3 rows of Table 3.3.

In the pluto setup we additionally deployed the storage node (see
Section 3.4) in a third region (europe-west2-b). Because we cannot
directly compare the storage node to any Dovecot component, we
used a more powerful node (n1-standard-4, 4vCPU, 15GB Memory)
and set the resolution of our Maildir Tools for this node to 3 seconds
to avoid any negative impact. The remaining parts of the pluto setup
is almost identical to dsync, i.e. we have one director and three
worker nodes with 100GB SSDs in each region.

The measured response times are stated in the pluto column of
Table 3.3. We note that the response times are significantly higher
than Dovecot’s, which we discuss in the end of this chapter.

The replication lag diagram for pluto is shown in the right part of
Figure 3.9. We see that the difference between the curves is almost
invisible, which indicates a very small replication lag. The quantified
replication lag is shown in Table 3.3.

3.5.5 Double-Cluster Benchmark

For our final experiment we split the workload from the previous
experiments and used our benchmark from both regions us and
europe, i.e. we executed 2500 sessions from each region to simulate
a workload that, in fact, requires geo-replication. The measured
response times are stated in the dsync2 and pluto2 columns of Ta-
ble 3.4.

In order to measure the replication lag, we also split the sample
users and configured our benchmark in a way that the mailboxes

8 We note that these diagrams require a monotone growth of the mailboxes to be
meaningful. Our benchmark generates mostly monotone growth, because CREATE
and APPEND commands are more likely than DELETE. With the chosen resolution of
our Maildir Tools, a declining mailbox size is almost invisible.

84 on stateful logic tiers with crdts

0 50 100 150 200 250 300 350
Experiment time (seconds)

0

500

1000

1500

2000

2500

M
ai

ld
ir

siz
e

(k
ilo

by
te

s)

Dovecot dsync (2500 sessions, 20 concurrent users)
europe-west1-b (src)
us-east1-b
us-east1-b (src)
europe-west1-b

0 50 100 150 200 250 300 350
Experiment time (seconds)

0

500

1000

1500

2000

2500

3000

M
ai

ld
ir

siz
e

(k
ilo

by
te

s)

pluto (2500 sessions, 20 concurrent users)
europe-west1-b (src)
us-east1-b
us-east1-b (src)
europe-west1-b

Figure 3.10: Replication lag for dsync (left) and pluto (right). The red
areas represent the replication from europe to us, while the
blue areas represent the opposite direction.

of the first half of the users are only accessed by the us benchmark,
and the second half by the europe benchmark. The mailboxes of
the remaining 114 users received commands from both regions. We
present the replication lag diagram for both systems in Figure 3.10.
The red areas represent the replication lag for synchronizing state
from europe to us, and the blue areas represent the replication lag
in the opposite direction.

3.6 discussion

Evaluation Results

The baseline experiment revealed that the absence of geo-replication
can be costly with respect to response time and throughput, when
the application is faced with traffic from distant regions. As we have
seen with both compared systems, using multi-leader replication
for traffic from different continents is convincing and necessary. The
price for the introduced replication is the relaxation of consistency
guarantees and the presence of a replication lag.

By comparing the response times and the achieved throughput of
both systems, we clearly see that our prototype cannot keep up with
Dovecot and that further optimizations are necessary. We acknowl-
edge that throughput often is a performance metric that is placed
emphasis on in large-scale services and pluto needs to improve in
that direction. However, because pluto is a research prototype with

3.6 discussion 85

Table 3.4: The results of the double-cluster benchmark, showing the re-
sponse time performance in milliseconds and the throughput
in IMAP commands per second. The average and median repli-
cation lag is stated in kilobytes and the replication lag area is
stated in megabyte*second.

dsync2 pluto2

us eu us eu

R
es

po
ns

e
Ti

m
e

Pe
rf

or
m

an
ce CREATE

Average 18.47 23.24 47.56 75.20

Median 14.17 20.33 28.94 29.83

DELETE
Average 32.46 37.03 47.12 74.61

Median 29.46 34.31 29.16 29.89

APPEND
Average 46.39 55.36 87.23 131.79

Median 42.08 50.34 55.72 58.66

EXPUNGE
Average 15.59 21.16 40.94 62.72

Median 9.44 18.91 22.56 23.19

STORE
Average 17.48 21.79 46.09 72.84

Median 13.83 19.64 29.73 31.53

Throughput 447.87 367.94 256.26 171.49

Replication
Lag

Average 592.87 657.76 18.61 44.98

Median 217.83 322.10 6.1 34.33

Area 97.92 209.83 5.83 14.32

86 on stateful logic tiers with crdts

much less development time compared to the standard IMAP server
Dovecot, we nevertheless are satisfied with its response time perfor-
mance. We think that optimizations of the used index structures
and file management can lead to improved response times and
throughput.

With respect to the replication lag, however, our prototype clearly
outperforms dsync and we judge our approach as successful. The
replication based on the used op-based CRDT is cheap compared
to the costly replication of dsync. An operation from one replica
can almost instantly be delivered and applied on the other replicas
without complex tracking of state information. The fact that our ap-
proach can be applied with an arbitrary number of replicas makes it
even more interesting than dsync, where only a pair-wise replication
is possible.

We note that our experiments only focus on write-intensive work-
loads and we purposely omitted the evaluation of read commands.
Building an IMAP server that is able to compete with Dovecot in all
facets is a challenging task and is, at least for now, not our primary
focus. In our opinion, the improvement of our IMAP-CRDT and
exploration of further standard IT services that can be modeled with
CRDTs is a promising direction for future work.

Opportunities and the Price of Replication in the Logic Tier

While our evaluation mainly analyzes the response time and the
replication lag, there are other benefits that arise when we add multi-
leader replication in the logic tier. In addition to the possibility to
reach planetary-scale across different continents, the increased fault
tolerance can be utilized in systems that run within an single data
center as well.

In contrast to traditional 3-tier configurations, e.g. our baseline
setup, our prototype tolerates temporary connection losses to the
data tier. If the connection to the storage is lost, a worker node
can continue to operate without noticeable service disruption or
a limitation of the application’s features. After the connection is
reestablished, the operations are transmitted to the storage and, due
to the inherent guarantees of CRDTs, the worker and the storage
eventually converge. The possibility to tolerate temporary discon-
nects between the worker and the storage enables a better maintain-

3.6 discussion 87

ability, because components in one layer can be maintained while
the remaining components can continue to serve clients’ requests.

Moreover, the latency between the logic and the data tier has neg-
ligible influence on the performance of the prototype. The double-
cluster benchmark revealed that we are able to achieve comparable
good response times, even though we additionally maintained a
storage node in contrast to our opponent Dovecot-dsync. Traditional
configurations, however, are very sensitive to increased latency be-
tween the logic and the data tier, as we have demonstrated when
we analyzed the pitfalls of geo-replication (see Section 3.5.1). This
particular property of our prototype enables setups where the data
tier can be placed on local infrastructure, e.g. a datacenter in the
facilities a company, and the logic tier can in turn be placed on
machines that run on a public cloud to achieve a good availability,
similar to hybrid-cloud setups. In case of an outage of the machines
of the cloud provider, requests can be rerouted through the stateless
components, i.e. the director, and served by the storage on local in-
frastructure. In this scenario, full functionality is preserved. Clients
requests, however, may suffer from a slightly increased response
time and from a temporary loss of the updates that have not been
transmitted to the storage. In any case, the possibility to tolerate
outages of a cloud provider9 is something that cannot be achieved
in systems that are not designed to support this kind of replication.

The costs of our approach are the increased amount of metadata
that needs to be processed and the overhead of the enforced causal
communication. Both issues have been addressed in the recent
literature, which we present in the next section as related work. It
is, however, difficult to state whether the small throughput of pluto
compared to dsync is a result of both aforementioned issues, or the
lack of fine tuning and optimizations of our prototype. The fact that
pluto and the underlying IMAP-CRDT is not limited to two replicas
must be considered as well when comparing both systems.

9 Most cloud services like Amazon’s AWS offer sophisticated solutions to tolerate
outages of single data centers, for example changes on the an Elastic Block
Storage (EBS) volume are automatically synced to three availability zones within
milliseconds. Those specialized solutions, however, cannot be used outside AWS
or in an hybrid/multi-cloud setup, resulting in unavailability of the service if one
provider is unavailable.

88 on stateful logic tiers with crdts

Transferability to other IT Services

We would like to point out that we chose IMAP as the protocol for
modeling with a custom CRDT not because it is better suited for
this purpose than other protocols. We chose IMAP because of its
widespread use and fundamental importance in everyday life—and
because its relative simplicity. We judge the fact that the state of an
IMAP server is based on relatively simple structures, namely its tree-
like mailbox structure, as particularly advantageous for modeling
the commands with operations on a CRDT. Hence, as long as the
structural complexity of an application’s state is manageable, our
approach is promising.

The requirements for CmRDTs, i.e. the commutativity of concur-
rent operations, or the required properties of the merge function of
CvRDTs, limit the type of the state that can be modeled. Fortunately,
research on CRDTs has led to several useful data types that can
be used in more complex applications. In addition to the counter,
OR-Set, and the IMAP-CRDT that has been presented in the pre-
vious sections, there exist CRDTs for registers, lists, and for JSON
objects. We expect that with the recently introduced JSON CRDT,
the modeling of more IT services with CRDTs will become even
easier [KB17]. We will summarize the recent achievements of the
research around CRDTs in the following related work section.

While our approach of designing a CRDT for a specific applica-
tion was successful, it is certainly questionable whether this way of
realizing multi-leader replication in the logic tier is the most desir-
able one. Generally, we are convinced that our strategy to analyze
the functionality, design the fitting payload and update operations,
verify the necessary properties, and implement the service is a so-
phisticated and promising way of engineering. The development of
further replicated IT-Services following this engineering requires
domain knowledge and expertise in CRDT design.

In order to make this approach more accessible, we see the fol-
lowing two opportunities. First, an intuitive abstraction could help
to convince developers to use CRDTs in their application. The JSON
CRDT contributes in this direction, since the general structure of a
JSON is well understood and widely used as de facto standard data
exchange format of the web. Second, programming libraries that
encapsulate the CRDT implementation and only offer a small but

3.7 related work 89

usable set of operations would reduce the barrier of adopting our
approach to a minimum. Both directions are currently part of the
ongoing research initiatives and industry programs, which we see
as a confirmation that a transfer of our approach to other IT-services
can be achieved.

3.7 related work

Large-scale distributed systems replicating state in an available and
partition-tolerant way have received academic attention since the ad-
vent of the Internet. Bayou [Ter+95] was one of the first distributed
storage systems that enabled users to always submit updates and
ensured eventual consistency when the network connection was
available again. Inspired by the fundamental concepts captured in
Amazon’s Dynamo paper [DHJ+07], a new class of distributed data
stores was proposed and developed, such as Cassandra [LM10]
and Riak [Bas18]. Many of these new developments were based
on the ideas of Google’s Bigtable concept [Cha+08], which Google
itself turned into Spanner [CDE+12], its planetary-scale, strongly
consistent, and partition-tolerant distributed database. Their solu-
tion towards the CAP dilemma is to run Spanner on an expensive
and highly sophisticated private network which ensures almost no
downtimes [Bre17].

Regarding automatic resolution of conflicting writes in any dis-
tributed system, the choice is between discarding all but one update
or merging all updates into one. The most common technique for the
first approach is known as last write wins (LWW), where the update
with the biggest timestamp is picked as winner and all others are
lost. For example, DeCandia et al. [DHJ+07] describe an anomaly
at Amazon where items in a shopping card ceeps reappearing due
to poor conflict resolution. One well known merge-based resolu-
tion strategy is Operational Transformation [EG89], though mostly
used for collaborative text editing and of decreasing performance
with increasing number of operations [AN+11; DI16; JB17]. Conflict-
free Replicated Data Types take a different approach as they avoid
conflicts altogether due to their construction properties.

90 on stateful logic tiers with crdts

Related Work on CRDTs

CRDTs have been introduced as a theoretical framework by Shapiro
et al. to achieve SEC in a distributed network of replicas [Sha+11b].
As mentioned in Section 3.2, there are two variants of CRDTs:
operation-based and state-based. Operation-based CRDTs (also known
as CmRDTs or op-based CRDTs) achieve convergence by requiring
causal-order communication and commutativity of concurrent up-
dates. In contrast to that, state-based CRDTs (or CvRDTs) require
a merge function over a join-semilattice, which computes the least
upper bound to reflect the combined state of diverged replicas.
Since the introduction of CRDTs in 2011, researchers created a wide
portfolio of data types for various purposes. The authors of the cor-
responding technical report introduced state- and op-based types
for counters, registers, and other basic data types [Sha+11a]. Fur-
ther achievements in the design of CRDTs include maps [BAL16],
sets [Bie+12], lists (e.g. RGA [Roh+11], Treedoc [LPS09], WOOT
[Ost+06a], Logoot [WUM10], LSEQ [Néd+13]), XML [MUW10], and
the already mentioned JSON-CRDT [KB17]. With our IMAP-CRDT
we contribute a verified op-based CRDT for a standard IT-service to
this list.

The price of using CRDTs is the increased amount of metadata
that needs to be processed in order to achieve convergence. For
example, the add operation in an OR-set includes a unique tag α

that is stored and eventually sent over the network. To address
this issue, Baquero et al. introduced the notion of pure op-based
CRDTs [BAS14]. The authors propose a CRDT design that uses
a tagged causal-order broadcast that provides the functionality of
the tag metadata on the communication layer. In essence, they
propose to reuse the vector clocks as tags, which results in less
metadata. Furthermore, the authors introduce the notion of causal
stability which allows to further reduce the amount of handled
tags after a certain stable state is reached. In our prototype pluto
we also implemented the idea of using the vector clocks as tags
for the operations on folder level. We think that transforming the
IMAP-CRDT to a pure op-based version is certainly a promising
improvement, but out of scope of this thesis.

State-based CRDTs are designed to send a current snapshot of
the state from one replica to another in order to apply the merge

3.7 related work 91

function. This obviously results in disadvantages when the state
grows to a certain size. To this end, Almeida et al. proposed a
solution to only send the relevant parts of the state to the other
replicas, namely delta-CRDTs [ASB18; ASB15].

Causal Communication and Causal Consistency

In addition to the commutativity of concurrent updates, CmRDTs
require operations to be applied in . To this end, vector clocks
are widely used in distributed systems to capture causality [Fid88;
Mat88]. It is an inherent problem of vector clocks that the number
of entries in the clock grows linear with the number of replicas,
which makes the use of vector clocks for every replica prone to per-
formance drops in geo-replicated systems [Bai+12]. To address this
issue, researchers proposed messaging middlewares with message
sequencers within the datacenters in order to reduce the overhead
to a constant factor [BSS91; ALaR13; And+09; Lad+92; Ter+94]. The
disadvantage of those sequencers is that the communication within
one datacenter must be routed to the central sequencer unit, which
results in limited parallelism while avoiding metadata explosion.
In contrast to that, systems that track the causality explicitly by
using vector clocks [Bai+13; Du+13; Llo+11; Llo+13] suffer from the
aforementioned scalability problem.

The most advanced systems we have seen in the latest litera-
ture are GentleRain [Du+14], Cure [Akk+16], and Saturn [BRVR17].
The first two mentioned systems rely on a periodical background
task called global stabilization that balances metadata overhead and
delayed visibility of updates. The authors of Saturn introduce a
tree-based dissemination of the metadata, which guarantees causal-
ity per architectual design. With their approach the authors were
able to demonstrate that their system is able to achieve causal com-
munication at planetary-scale with only 2% overhead compared
to an eventually consistent system that sacrifices causality, i.e. ac-
cepts updates in any order. To further optimize the intra-datacenter
communication, the authors suggest a second system called Eu-
nomia [GBR17], which leverages Hybrid Clocks, a combination of
logical and physical time [Kul+14]. We think that our prototype
pluto would certainly benefit from a more advanced messaging
middleware that guarantees causality without using the currently

92 on stateful logic tiers with crdts

implemented causal communication based on vector-clocks for ev-
ery replica. However, for the purpose of demonstrating that our
approach can be transferred to a working prototype, we think that
it is justified to omit further implementation optimizations of the
messaging middleware.

Formal Verification of CRDTs

Many designers of CRDTs have elaborated on the correctness of their
CRDTs with respect to the required properties to guarantee conver-
gence. Alongside with the initial introduction [Sha+11b; Sha+11a],
Shapiro et al. provided the very first formalization of the neces-
sary properties and an abstract proof. Furthermore, the correctness
of more complex types, e.g. the RGA CRDT for ordered lists, has
been convincingly demonstrated in handwritten proofs [Att+16;
Roh+11]. Although there is no reason to doubt the correctness of
those proofs10, machine-checked proofs deliver more convincing
results. To this end, interactive theorem provers like Isabelle/HOL
[NWP02] provide the certainty that the proof steps are reasonable.
It is, however, dangerous to assume that machine-checked proofs
are always correct. False or contradicting assumptions, as well as
wrongly implemented definitions, can lead to faulty clues and in-
correct proofs.

The only two approaches to mechanically verify the correctness of
CRDTs are from Zeller et al. [ZBPH14] and Gomes et al. [Gom+17b].
The authors of both work introduce Isabelle frameworks for verify-
ing the convergence of a CRDT in an abstract model of a distributed
system. Here, Zeller et al. focus on state-based CRDTs and show the
correctness of state-based counters, registers, and sets. In contrast to
that, Gomes et al. introduce a framework for op-based CRDTs and
propose a proof for a counter, the OR-Set, and the RGA. With our
proof of the IMAP-CRDT we contributed an additional example for
the framework of Gomes et al. to Isabelle’s Archive of Formal Proofs
and provided the certainty that our CRDT ensures convergence
in an abstract but realistic model of an asynchronous distributed
system [JOL17b].

10 In the next chapter we will see that there were, in fact, issues with published and
well accepted results in the OT-research community. For CRDTs we could not
find any reported violation of claimed properties.

3.7 related work 93

Formal reasoning about the properties of distributed systems
using mechanical verification tools is an active area of research. The
first contributions in the area include the work of Charron-Bost et
al. [CBDM11] on verifying a fault tolerant consensus mechanism
with Isabelle. Coincidentally, our previous work together with the
colleagues from the chair for Models and Theory of Distributed Sys-
tems on verifying the impossibility of crash-tolerant asynchronous
consensus from Fisher, Lynch, and Patterson [FLP85; Bis+16] fits in
this list of related work, even though it is not a contribution of this
thesis.

One interesting byproduct of our Isabelle implementation of the
IMAP-CRDT is that we are able to extract working source code
from the Isabelle code [HN10]. Gomes et al. reported that they
successfully extracted the implementation of an op-based counter
as a distributed program that runs on n nodes with communication
over TCP channels [Gom+17b].

Abstractions, Accessibility, and Applications

As outlined in the previous discussion, the development of intuitive
abstractions and programming libraries are part of ongoing research
initiatives. With Lasp [MVR15], Meiklejohn et al. proposed a pro-
gramming model that is entirely build with always converging data
types. Hence, from the developers perspective it is easy to build
scaling application, because the used primitives and components are
converging by design. The authors show that they were able to scale
their prototype application to 1024 EC2 nodes without generating
unmanageable overhead [Mei+17]. Lasp is, however, currently not
as expressive as common languages like Python or Go and therefore
unsuitable to implement multi-leader replication on the logic tier.

In the beginning of this section we already referred to databases
that support multi-leader replication, like Apache Cassandra [LM10]
or Amazon’s Dynamo [DHJ+07]. These NoSQL databases leverage
last write wins as strategy to solve conflicts. The applications that
run on top of those databases are generally stateless and do not add
additional replication to the logic tier.

Apart from LWW, we have seen Basho’s Riak KV database [Bas18]
which provides Riak-specific data types based on CRDTs. Applica-
tions that are build on top of Riak benefit from the scalability of

94 on stateful logic tiers with crdts

CRDTs and a more fine-tuned conflict avoidance strategy compared
to the LWW approach. Unfortunately, Basho discontinued the work
on Riak, but it remains available as an open-source project.

A more research-driven alternative to Riak is AntidoteDB [AB16].
The authors implement a transactional model around CRDTs and
are, to our knowledge, the first who combine transactions and
converging data types. Their approach towards a more desirable
consistency model is called just-right consistency, and allows the ap-
plication to decide whether to prefer performance and low latency
or strong consistency on the fly [Sha+18]. AntidoteDB is written in
Erlang and includes Cure [Akk+16] to provide causal-order commu-
nication.

We note that both Riak and AntidoteDB provide programming
abstractions for CRDTs and promise to achieve planetary-scale. They
hide all implementation details of the replication, e.g. the causal-
communication layer, so that developers can benefit from the high
scalability without explicitly dealing with the concurrency. To this
end, both databases require a sophisticated setup to achieve the
claimed promises. For example, they cluster the nodes within one
data center in a ring topology where the partitions are aligned.

We think that both Riak and AntidoteDB are certainly promising
tools to develop geo-replicated applications. However, there is a
subtle difference to the approach we took in this chapter. In our
approach, we promote the idea to achieve a more independent logic
tier that can not only be used in geo-replicated setups, but also
within one data center to tolerate temporary communication inter-
ruption to the data tier. Neither AntidoteDB or Riak are designed to
be used in this configuration. It would, however, be interesting to
see how an IMAP server based on those databases would compare
against our prototype in a geo-replicated setting.

3.8 chapter summary

In this chapter we presented one approach to explicitly handle more
state in the logic tier and thus achieving a more distributed and
less centralized setup compared to today’s standard cloud-based
services. To this end, we conducted an extensive case study for the
Internet Message Access Protocol where we analyzed the feasibility
of our approach in depth.

3.8 chapter summary 95

In order to realize convergence in a replicated system of backends
with multiple leaders, we utilized Conflict-free Replicated Data
Types and introduced our own IMAP-CRDT which maps all consis-
tency critical IMAP commands to operations on an op-based CRDT.
The required properties, i.e. the commutativity of concurrent opera-
tions and the termination of operations, were proven successfully
with the interactive theorem prover Isabelle/HOL. At this point, we
provided the certainty that an IMAP service can be designed to run
in a setup with multi-leader replication and that all ever occurring
conflicts can be automatically solved.

In order to transfer our theoretical approach into practice, we devel-
oped a prototype, namely pluto, which implements the IMAP-CRDT
and a messaging middleware for causal communication. For our
evaluation we deployed our prototype on a state-of-the-art cloud
environment in a kubernetes federation spanning over multiple
regions. Furthermore, we designed a reusable IMAP Benchmark
which generates synthetic but reproducible write-intensive IMAP
workloads.

In our experiments we focused on geo-replicated scenarios, where
we assumed clients from distant locations; possibly from different
continents. We first illustrated the pitfalls of geo replication, i.e. the
things that could go wrong when replication is naively applied in
the data tier. Thereafter, we conducted single- and double-cluster
benchmarks of our prototype against Dovecot-dsync, the de facto
standard IMAP server software.

As result, we were able to show that the replication lag can be
significantly reduced with our approach. The response times were
significantly better compared to a non-replicated system (baseline).
However, Dovecot still delivered the highest throughput, which
indicates that our prototype still needs improvements in order to
compete with industry-grade software.

In our discussion we illustrated the opportunities (fault tolerance,
hybrid-cloud deployments, geo-replication) as well as the disadvan-
tages (causal communication overhead, metadata, expressiveness)
of our approach. Ultimately, we discussed the transferability of our
approach and how other IT-services could benefit from enabled
multi-leader replication in the logic tier. To this end, we presented
an extensive list of related work that address the outlined issues.

96 on stateful logic tiers with crdts

We judge that our approach, where we began with the system de-
sign and verification followed by the implementation and evaluation,
turned out to be successful in this regard. The resulting prototype
combines theory and practice by leveraging CRDTs in a standard
IT service and is able to play off its conceptual advantages. We
encourage fellow system designers to follow in this path to consider
CRDTs for modeling state and update operations. Furthermore, we
are happy to see that the contributions of this chapter were accepted
in the research community [JO17; JOL17a; JOL17b] and hopefully
create a lasting impact for the upcoming challenges.

4O N S TAT E F U L P R E S E N TAT I O N T I E R S W I T H O T

4.1 chapter overview

Parts of this chapter
have been published
in [JH15; JH16;
JCR17; JB17] and in
a previous thesis
[Jun14]. I will
highlight the
contributions of the
co-authors
accordingly
alongside the
sections.

In the previous chapter we explored the feasibility to store and
process more state in the logic tier. Consequently, this exploration
is followed by the corresponding analysis for the presentation tier,
which will be the focus of this chapter. Hence, we again follow our
idea of an unconventional architecture that purposely breaks the
widely applied service statelessness principle.

As mentioned in Section 2.1.2, the presentation tier typically runs
the code that includes all interface-related functionality and the
invocation of requests to the other layers. In order to reduce the
complexity of this chapter, we focus on web-based applications. This
restriction allows us to make more assumptions on the character-
istics of the presentation tier, mainly because the interface-related
code is executed in a web browser. Hence, in contrast to our explo-
ration of a stateful logic tier in the previous chapter, the application
state is now stored, processed, and replicated at the client’s site;
possibly on mobile devices with unreliable Internet connection.

We note that there already is a class of services that apply our ap-
proach, i.e. a stateful presentation tier with multi-leader replication,
namely online collaboration services. These services include success-
ful collaboration applications like Google Docs [DR18] or Etherpad
[Fou18b]. We note that both mentioned tools utilize Operational
Transformation (OT) as multi-leader replication mechanism. While
the feasibility of a stateful presentation tier has already been proven
successful for this class of services, the exploration in this chapter
aims to make this approach more accessible for other services beside
online collaboration applications.

In order to transfer the technological approach of online collab-
oration services to a broader range of web services, an extension
of the underlying OT mechanism is necessary, i.e. the possibility
to replicate mutable JSON objects with OT. Since JSON is the de
facto standard data interchange format of the web, the need of this

97

98 on stateful presentation tiers with ot

extension for our purpose is inevitable. Therefore, we contribute the
needed extension, verify the convergence guarantees, provide a pro-
totype of a patient documentation system to show the applicability
of our extension, and introduce a library to provide the necessary
transferability to other applications.

4.2 operational transformation

An alternative approach to CRDTs (see Section 3.2) is Operational
Transformation (OT), which was first introduced by Ellis and Gibbs
in 1989 in the context of collaborative groupware systems [EG89].
In such a groupware system, multiple collaborators share a docu-
ment and independently update the content. In turns out that such
systems implement a multi-leader replication mechanism, because
each collaborator holds a replica of the shared document on a local
computer and write-operations can be executed without waiting
for the other replicas to approve. These collaboration systems re-
cently received a lot of attention, for example Google Docs [DR18]
or Etherpad [Fou18b] utilize OT to synchronizes changes to a shared
document.

The intuition behind OT can be best explained with the following
example. Two users u1 and u2 maintain their own replica of the
character sequence abc. Both users simultaneously invoke edit oper-
ations on their local replica. The user u1 inserts an X at position 0,
resulting in Xabc. The user u2 deletes the character b at position 1,
resulting in ac. A naive interchange of the invoked edit operations
would result in diverging replicas: u1 results in Xbc, whereas u2

results in Xac. With OT, remote operations are transformed based on
previously executed local operations. Hence, u1 needs to transform
the position of the remote delete operation to respect the effect of
the local insert operation, i.e. u2’s delete operation on position 1
needs to be transformed to a delete operation on position 2 to ensure
convergence.

In order to achieve the above mentioned transformation, an OT
system is composed of two components: a transformation function and
a control algorithm [Sun02]. In essence, the transformation function
defines how to transform one operation against another operation.
The control algorithm, however, defines when and in which order
two operations are transformed against each other. As visualized

4.2 operational transformation 99

in Figure 4.1, there is a joining element between the transformation
function and the control algorithm, i.e. the transformation properties.
These properties can be seen as requirements to the transforma-
tion function in order to be compatible with the control algorithm.
All of the aforementioned components will be explained in detail
throughout the rest of this section.

Control
Algorithm

Transformation
Properties

Transformation
Function

Fig. 4.1: The OT
Architecture
[Sun02].

Operations and Transformation Functions

In order to precisely define the mechanics of a transformation func-
tion, we reuse the above introduced example of a collaborative
editing session. In the example we used two operations, namely
insert and delete, on a sequence of characters, i.e. a list. That is why
we use list operations to present the concepts of a transformation
function. Hence, both operations require a precise definition in order
to further elaborate the transformations.

For the rest of this chapter we use the notation of list operations as
presented in Table 4.1. The notation is inspired by the programming
language Python and covers the essential primitives to access and
reason about lists. With the introduced notation we are able to
precisely define the two operations in Definition 6 and 7. We write
insertL and deleteL to reference the operations on lists.

Definition 6 (insertL). The operation insertL has three parameters:
an item i, a position k and a list L with k ⩽ |L|. As result, the item i

is inserted into the list L at position k:

insertL(i, k,L) ≜ L[< k] + [i] + L[⩾ k]

Definition 7 (deleteL). The operation deleteL has two parameters:
a position k and a list L with k < |L|. As result, the item at position
k is deleted from L:

deleteL(k,L) ≜ L[< k] + L[> k]

We note that the presented definitions for operations on lists are
rather standard. The remaining piece to fully describe the aforemen-
tioned scenario is, in fact, the transformation function. Therefore,
we present a generic definition of a transformation function in
Definition 8.

100 on stateful presentation tiers with ot

Table 4.1: Notation for lists based on the programming language Python.

Notation Description

[] Empty List and Delimiters We use [and] as delimiters for a list. Hence the
list [x,y, z] contains the items x, y and z. We denote the empty list as [].

|L| Length of a List We define the length of a list L as the number of items in the
list, denoted as |L|.

L[n] List Access Let L be an arbitrary list. We denote the access to the nth element
as L[n]. We note that L[n] is only defined if n < |L|. We access the first element
with L[0].

L[x,y] Intervals Let L be an arbitrary list. We write L[x,y] for a new list that contains
all elements from L[x] to L[y]. We note that L[x,y] can be the empty list if x > y,
or if x and y referencing to non existing elements. If only y is referencing to a
non existing element, L[x,y] contains all elements from L[x] to the last element
of L.

L1 + L2 List Concatenation Let L1 and L2 be two arbitrary lists. We define the concate-
nation of L1 and L2, denoted as L1 + L2, as a new list that starts with L1 and
ends with L2.

L1 ⊆ L2
L1 ⊂ L2

Sublists and Strict Sublists Let L1 and L2 be two arbitrary lists. We call L1 a
sublist of L2, denoted as L1 ⊆ L2, if L2 starts with L1. If L1 ⊆ L2 and |L1| < |L2|,
we call L1 a strict sublist of L2, denoted as L1 ⊂ L2.

L[⩽ x]

L[< x]

Head and Tail Let L be an arbitrary list. We write L[⩽ x] for a new (sub)list
that contains all elements from the first element to L[x]. We use the abbreviation
L[< x] for L[⩽ x− 1]. The lists L[⩾ x] and L[> x] are defined analogously.

Definition 8 (Transformation Function). A Transformation Function
has a pair of operations (O1,O2) as input and returns a pair of trans-
formed operations (O ′

1,O ′
2) where O ′

1 is the transformed version of
O1 with and O ′

2 is the transformed version of O2.

For a transformation function called XFORM, we sometimes write
XFORM1 or XFORM2 to reference the first or the second trans-
formed operation, hence:

XFORM1(O1,O2) = O ′
1 and XFORM2(O1,O2) = O ′

2

The presented definition of the transformation function is based
on the introduction of the Jupiter OT system [Nic+95]. The input of
a transformation function can be seen as two independent update
operations at two replicas. The operations are applied at the two
replicas, which may result in an inconsistent state. In order to regain
a consistent state of the replicas, the transformed versions of the
operations are exchanged and applied at both replicas.

In Listing 4.1 we present one transformation function for list
operations XFORML, which was initially introduced by Ellis and

4.2 operational transformation 101

User 1 User 2
abc

Xabc ac

abc
insertL(X,0)

deleteL(1)

Xac Xac

deleteL(2)
insertL(X,0)

Figure 4.2: A transformation example.

Gibbs [EG89] and slightly improved by Ressel et al. [RNRG96]. In
the listing we omit the last parameter of each operation since the
list, also called context, of all operations is defined implicitly.

The transformation of the "abc" example, which we also visualize
in Figure 4.2, would be processed in the lines 7 and 13 of Listing 4.1.
Here, the insertL(X, 0) operation from u1 would be transformed
against the deleteL(1) operation from u2. We note that the position
parameter of the insertL operation is smaller than the deleteL oper-
ation, hence k1 < k2. According to the transformation function, the
position parameter of the deleteL operation must be increased by
one in order to include the effect of the concurrent insertL operation.
The insertL operation does not need to be changed, since the effect
is not influenced by deleteL. Ultimately, both replicas converge to
the same state Xac.

The rest of the transformation function in Listing 4.1 covers the
remaining cases for concurrent insertL and deleteL operations. Ac-
cording to line 4 we need to use application dependent priorities to
transform two insertL operations with identical position parameters.
This case is typically called an insert-insert tie, because both replicas
independently insert an item at the same position. One typical exam-
ple to solve this tie is by defining a total order among the replicas in
order to prioritize operations. For deleteL operations with identical
position parameters (see line 19), both replicas independently delete
the same element from the list which result in a consistent state.
Hence, both operations are transformed to no-op.

102 on stateful presentation tiers with ot

Listing 4.1: Pseudo code of the transformation function XFORML.

1 function XFORML(insertL(i1, k1), insertL(i2, k2)):
2 if k1 < k2: return(insertL(i1, k1), insertL(i2, k2 + 1))
3 if k1 > k2: return(insertL(i1, k1 + 1), insertL(i2, k2))
4 if k1 == k2: # use application dependent priorities
5
6 function XFORML(insertL(i, k1), deleteL(k2)):
7 if k1 < k2: return(insertL(i, k1), deleteL(k2 + 1))
8 if k1 > k2: return(insertL(i, k1 - 1), deleteL(k2))
9 if k1 == k2: return(insertL(i, k1), deleteL(k2 + 1))

10
11 function XFORML(deleteL(k1), insertL(i, k2)):
12 if k1 < k2: return(deleteL(k1), insertL(i, k2 - 1))
13 if k1 > k2: return(deleteL(k1 + 1), insertL(i, k2))
14 if k1 == k2: return(deleteL(k1 + 1), insertL(i, k2))
15
16 function XFORML(deleteL(k1), deleteL(k2)):
17 if k1 < k2: return(deleteL(k1), deleteL(k2 - 1))
18 if k1 > k2: return(deleteL(k1 - 1), deleteL(k2))
19 if k1 == k2: return(no-op, no-op)

Transformation Properties

O1

O ′
2

O2

O ′
1

Fig. 4.3: An
illustration of

TP1.

Ressel et al. discovered two requirements for the transformation
function in order to fulfill the promise that all cases lead to converg-
ing replicas, namely TP1 and TP2 [RNRG96]. The Transformation
Property 1 (TP1) describes the already illustrated case where there
are two concurrent operations that are transformed against each
other. We illustrate this property in Figure 4.3, where we see two
operations O1 and O2 and the corresponding transformed versions
O ′

1 and O ′
2. Assuming that both replicas start in the same state, the

consecutive execution of O1 and O ′
2 must lead to the same state as

O2 and O ′
1; hence the illustrated diamond in Figure 4.3.

We present a more formal definitioWen of TP1 in Definition 9

where we reuse the already introduced Kleisli arrow composition from
Section 3.3.4.

Definition 9 (Transformation Property 1). Let O1 and O2 be two
operations. A transformation function XFORM satisfies the Transfor-
mation Property 1 (TP1), if the following holds for XFORM(O1,O2) =

(O ′
1,O ′

2):

O1 ▷ O ′
2 = O2 ▷ O ′

1

4.2 operational transformation 103

XFORM1(O3,O1)

O 3

O ′
1

O ′
2

O2

O1

XFORM1 (O3,O2)

O

O = XFORM1(XFORM1(O3 ,O1),O′
2)

O = XFORM1(XFORM1(O3 ,O2),O′
1)

Figure 4.4: Illustration of TP2 [RNRG96].

In fact, the presented transformation function XFORML in List-
ing 4.1 satisfies TP1. This has been proven by Imine et al. in [Imi+03]
and has been confirmed in [Liu+14] and [SXA14]. However, design-
ing a transformation function that satisfies TP1 is not trivial. Imine
et al. found a counterexample in the first transformation function
of Ellis and Gibbs [EG89], which has been corrected by Ressel et al.
[RNRG96].

While TP1 suffices for two concurrent operations, Ressel et al.
discovered that if there are three concurrent operations, a stronger
property, namely TP2, is needed. We visualize this Transformation
Property 2 in Figure 4.4. In the figure we see the three concurrent
operations O1, O2, and O3 spanning a 3-dimensional object. In
essence, TP2 describes that there are two options to reach the red
point from the black point, and that is by first transforming O1

against O3, or O2 against O3. According to TP2, the result, i.e. the
final state at the red point, must be identical. We present an adapted
version based on the Kleisli arrow composition in Definition 10.

Definition 10 (Transformation Property 2). Let O1, O2 and O3

be arbitrary operations. A transformation function XFORM satis-
fies the Transformation Property 2 (TP2), if the following holds for
XFORM(O1,O2) = (O ′

1,O ′
2):

O1 ▷ O ′
2 ▷ XFORM1(XFORM1(O3,O1),O ′

2)

= O2 ▷ O ′
1 ▷ XFORM1(XFORM1(O3,O2),O ′

1)

It turned out that almost all proposed transformation functions
for lists fail to satisfy TP2. In fact, the presented transformation

104 on stateful presentation tiers with ot

function XFORML by Ressel et al. also breaks TP2, which has been
shown with the help of a model-checker by Imine et al. [Imi+03]. We
will discuss this further in Section 4.7, where we present the related
work of our JSON extension. We note that the fact that TP2 is not
satisfied by most of the transformation functions predetermines the
set of control algorithms. That is why we focus on one particular
control algorithm, namely Wave [DWL10], for the rest of this chapter.

Control Algorithms

The OT control algorithms can be categorized into two groups: ei-
ther they require the transformation function to fulfill TP2 (dOPT
[EG89], adOPTed [RNRG96], GOTO [SE98], SOCT2 [SCF97; SCF98]),
or TP1 is sufficient (Jupiter [Nic+95], Wave [DWL10]). Those control
algorithms that require TP2 can be seen as peer-to-peer algorithms,
since there is no additional coordination required to achieve con-
vergence. In contrast to that, the more popular control algorithms
Jupiter and Wave use a central server that sequences the operations.
Thus, one replica only needs to transform operations against the
server’s operation sequence and therefore TP1 is sufficient.

It seems that the need of a central server to sequence all operations
is a major disadvantage compared to the peer-to-peer based OT
systems. In web-based collaboration tools, however, the central
server is generally not an issue because updates between clients
must be sent over a server anyway, due to the absence of browser-to-
browser communication1. As a consequence, the need of the central
server is currently limiting the scalability of OT, which we will
confirm in our evaluation in Section 4.6. In the following we briefly
sketch the mechanics of Wave, because we will use this algorithm in
our prototypes and for the later evaluation.

The mechanics of Wave can be best illustrated with an example
where one replica and the server diverge by two operations each.
This is visualized in left side of Figure 4.5, where we see the diverged
states of the replica at the position [2, 0] (visualized as red dot) and
the server at [0, 2] (visualized as blue dot). In Wave, the operations
from the client that have not been sent to the server are divided

1 More recently, WebRTC is addressing this issue. Unfortunately, not all browser
vendors currently support WebRTC. Nevertheless, we expect to see a shift in that
regard, which we also discuss in Section 5.2.

4.2 operational transformation 105

O1

in fli
ght

buffe
rO2

O3

O4

[2,0]

[1,0] [0,1]

[0,2]

Replic
a Server

O4

[0,2]

O1

in fli
ght

buffe
rO2

O3

[2,0]

[1,0] [0,1]
Replic

a Server

[1,2]

O1’

O4’

[2,0]

O4

[0,2]

O1

O2

O3

[1,0] [0,1]
Replic

a Server

[1,2]

O1’O3’

[2,1]

[2,2]

Figure 4.5: Three steps of transforming two operations of a diverged
replica against the server’s operations.

into an in flight operation, which represents the the first diverging
operation, and the remaining operations, called buffer. Together,
those operations form a bridge, which represents the sequence of
operations that have not been sent to the server.

Because the transformation function cannot be directly applied to
merge the two states at [2, 0] and [0, 2], the client first sends the in
flight operation to the server. Based on the revision number of the
in flight operation, the server computes the concurrent operations
O3 and O4 and sends both back to the client, followed by an ac-
knowledgment. At this point the server applies the transformation
function on the in flight operation against the concurrent opera-
tions O3 and O4 in order to include the effects of those operations
before the in flight operation is added to the server’s history. We
note that the server is now at a state where O1 is included in the
server’s history. The replica, however, consecutively transforms the
two operations O3 and O4 against the bridge.

We illustrate these two steps in the middle and right side of
Figure 4.5, where we see how the bridge evolves into the direction
of the server. Again, we use the red and the blue dot to illustrate
the current state of the replica and the server.

In the right side of Figure 4.5 we see that the replica is now
only one operation ahead of the server, and that the transformed
version of O2 is now the in flight operation. Since there are no
further concurrent operations in the server’s history, which can be
identified by the revision number, the in flight operation can be
transmitted to the server and applied immediately without further
transformation. Ultimately, the server sends an acknowledgment
to the client and broadcasts the operation to the other replicas. We

106 on stateful presentation tiers with ot

note that the replica and the server reached the same state and are
converged.

The stated control algorithm guarantees causal consistency, and
therefore eventual consistency, because the partial order of oper-
ations that is sequenced by the server is in accordance with the
happened-before relation from Definition 1. In order to provide a
more precise description of the control algorithm, we present the
pseudo code in the appendix of this thesis in Section A.1.

4.3 from tree transformations to json operations

This section extends
a transformation

function which has
been partly

introduced in a
previous thesis

[Jun14]. The
contributions of this

thesis, however,
include the

transformation of
replaceT operations

and the JSON
mapping.

As a main contribution of this chapter we present our extension
of OT to support simultaneous editing of JSON objects. More con-
cretely, we introduce a TP1-valid transformation function for or-
dered n-ary trees and present a mapping to the JSON components.
Hence, in this section we precisely define our data model, the trans-
formation, and our translation of operations on JSON objects to
operations on n-ary trees.

4.3.1 Tree Operations

We consider ordered n-ary trees with the simplest set of operations
insertT , deleteT , and replaceT . An n-ary tree is recursively defined
as a pair of a value and a list of trees. A leaf is defined as a pair of
a value and an empty list. Thus, a tree cannot be empty and the
smallest tree is a single leaf. As shown in Figure 4.6, we use a list of
natural numbers (called access path) to access the tree at a specific
position. For a tree T and an access path pos we write TJposK to
access the subtree at position pos. We define the operations insertT ,
deleteT , and replaceT in Definition 11, 12, and 13.

Definition 11 (insertT). The operation insertT has three input pa-
rameters: a tree t, a non empty access path pos and a tree T = (v,L).
As result, the tree t will be inserted into T at position pos. We define
the operation recursively:

4.3 from tree transformations to json operations 107

A

CB

D E F

[]

[0] [1]

[0, 0] [0, 1] [1, 0]

Figure 4.6: Tree representation and node access by access paths.

insertT (t, [x], (v,L)) ≜ (v, insertL(t,x,L))

insertT (t, [x] +xs, (v,L))

≜ (v, insertL(insertT (t,xs,L[x]),x, deleteL(x,L)))

Definition 12 (deleteT). The operation deleteT has two input pa-
rameters: a non empty access path pos and a tree T = (v,L). As
result, the subtree at position pos will be deleted from T . We define
the operation recursively:

deleteT (t, [x], (v,L)) ≜ (v, deleteL(x,L))

deleteT (t, [x] +xs, (v,L))

≜ (v, insertL(deleteT (xs,L[x]),x, deleteL(x,L)))

Definition 13 (replaceT). The operation replaceT has three input
parameters: a value v ′, an access path pos and a tree T = (v,L). As
result, the value at position pos in T is replaced by v ′. We define the
operation recursively:

replaceT (v
′, [] , (v,L)) ≜ (v ′,L)

replaceT (v
′,xs, (v,L))

≜ (v, insertL(replaceT (v
′,xs[> 0],L[xs[0]]),xs[0], deleteL(xs[0],L)))

We note that the presented definitions of the tree operations are
rather standard. In essence, the all operations replace the subtree be-
low the root node with a modified version, where either a subtree is
inserted, deleted, or a value is replaced. The only notable difference
is that the replaceT operation is also defined on an empty access
path. In this case, the value of the root node is altered.

108 on stateful presentation tiers with ot

According to our definition of trees, the second last element of an
access path determines the node where a subtree should be inserted
into or where a subtree should be deleted from. The last element of
an access path determines the position inside the list of subtrees of
the node at the second last element. We simply use the operation
insertL to insert a tree into the list of subtrees and we use deleteL
to delete a tree from the list of subtrees.

We notice that the definitions of insertT , deleteT , and replaceT
are insufficient if the access path directs to a non-existing node.
Therefore, and for the rest of this chapter, we assume that we have
a valid access path for the operations, i.e. the access path directs
to a position where we can apply insertT , deleteT , or replaceT .
This assumption can safely be made, because this validity can be
checked when initiating the operation on a replica. With TP1, the
transformation function assures that further transformations of the
access path do not lead to undefined or inconsistent states. We
define the validity of tree operations more precisely in Definition 14.

Definition 14 (Valid Tree Operations). Let O be a tree operation
on the tree T . We call O a valid tree operation if:

• case 1: O = insertT (t,pos, T), then:

Up to the second last element, the position parameter pos

directs to an existing subtree (v,L) in T and the last element
of pos is a valid position parameter less or equal than |L|.

• case 2: O = deleteT (pos, T), then:

The position parameter pos directs to an existing subtree in T .

• case 3: O = replaceT (v
′,pos, T), then:

The position parameter pos directs to an existing node in T .

4.3.2 A Transformation Function for n-ary Trees

In order to develop a transformation function for n-ary tree op-
erations, we introduce the definition of the transformation point
and construct a transformation function that satisfies TP1. We main-
tain a very high level of detail, because the transformation of tree

4.3 from tree transformations to json operations 109

operations requires a precise definition of the transformed access
paths.

Definition 15 (Transformation Point). Given two non empty lists l1
and l2 of natural numbers. The Transformation Point (TPt) is the index
of the first difference of l1 and l2. If l1 ⊆ l2, the Transformation
Point is the index of the last element of l1, or vice versa.

If we consider two tree operations, the transformation point marks
the point where a transformation may be necessary. We give two
short examples of the transformation point:

TPt ([1, 2, 3] , [1, 2, 4]) = 2 TPt ([1, 0] , [1, 0, 3, 2]) = 1

With the definition of the transformation point we are able to
determine whether two operations are effect dependent or effect in-
dependent, i.e. if a transformation is necessary or not. We provide a
definition for the effect independent tree operations in Definition 16.

Definition 16 (Effect Independence of Tree Operations). Let pos1
and pos2 be the access paths of the operations O1 and O2 and tp

be the transformation point of pos1 and pos2. The operations O1

and O2 are effect independent tree operations, denoted by O1 ∥ O2, iff:

1. (|pos1| > (tp+ 1))∧ (|pos2| > (tp+ 1))

2. (pos1[tp] > pos2[tp])∧ (|pos1| < |pos2|)

3. (pos1[tp] < pos2[tp])∧ (|pos1| > |pos2|)

The three cases of Definition 16 are visualized for two insertT
operations in Figure 4.7. The trees t1 and t2 are the subtrees which
are inserted by the two insertT operations O1 and O2. The effect of
the operation O1, that is the insertion of t1, is visualized as a blue
circle. The effect of the operation O2 is visualized as a red circle. We
note that the transformation point in all examples is 0. In the left
tree we demonstrate the first case of Definition 16. Both trees t1 and
t2 are inserted in nodes which are beyond the transformation point.
The trees in the middle and in the right of Figure 4.7 represent the
second and third case of Definition 16. In these cases one tree is
inserted below a node left to the position where the other tree is

110 on stateful presentation tiers with ot

A

CB

t1 t2

A

CB t1

t2

A

CB t2

t1

Figure 4.7: Demonstration of the cases of effect independent tree
operations from Definition 16.

inserted. We note that the order of two effect independent operations
does not matter2.

In the transformation function for operation on lists in Listing 4.1
we have seen that the position parameters of the operations, i.e. the
point where an item is inserted or deleted, are either increased or
decreased by one, based on the effect of the concurrent operation.
For tree operations the transformation of position parameters is
slightly more difficult, because the position parameter is, in fact,
a sequence of positions that needs to be transformed at a certain
point, i.e. the transformation point. To achieve this we further define
two operations, namely update+ and update− in Definition 17 and
18, that modify the access path at a particular position.

Definition 17 (update+). The function update+ has two input pa-
rameters: an access path pos and a number n. The result is a modi-
fied access path, where the nth element of pos is increased by 1.

Definition 18 (update−). The function update− has two input pa-
rameters: an access path pos and a number n. The result is a modi-
fied access path, where the nth element of pos is decreased by 1.

With the provided update operations we are able to define the
transformation functions for all combinations of insertT , deleteT ,
and replaceT . In order to reduce the complexity of this thesis, we
exemplify the transformation for all combinations that include
replaceT . The remaining transformation functions for combinations
of insertT and deleteT are stated in the appendix of this thesis in

2 We refer to our technical report where we prove this claim for all combinations of
operations [JH15].

4.3 from tree transformations to json operations 111

Listing 4.2: Pseudo code of the transformation of replaceT against
insertT .

1 function XFORMT(replaceT(v, pos1), insertT(t, pos2)):
2 TP = TPt(pos1, pos2)
3

4 if effectIndependent(pos1, pos2) or pos1 == []:
5 return(replaceT(v, pos1), insertT(t, pos2))
6

7 if pos1[TP] > pos2[TP]:
8 return(replaceT(v, update+(pos1, TP)), insertT(t, pos2))
9

10 if pos1[TP] < pos2[TP]:
11 return(replaceT(v, pos1), insertT(t, pos2))
12

13 if pos1[TP] == pos2[TP]:
14 if len(pos1) < len(pos2):
15 return(replaceT(v, pos1), insertT(t, pos2))
16 else:
17 return(replaceT(v, update+(pos1, TP)), insertT(t, pos2))

Section A.2, and were subject of our work in [JH15] and my previous
thesis [Jun14]. The transformation functions for those combination
have been successfully proven to satisfy TP1.

In the following we introduce the transformation functions and
provide the necessary intuition to understand the mechanics. We
start with the transformation of replaceT against insertT in List-
ing 4.2. In line 2, the transformation point for both operations is
computed. We note that the transformation point according to Defi-
nition 15 is only defined, if the access paths are not empty. In order
to address this issue, we catch this case alongside with combination
that are in any case effect independent in line 4 and 5. In both cases,
no further transformation necessary.

The more interesting case is a conflict which we illustrate in
Figure 4.8. In the figure we see the desired effect of an insertT
operation to insert a subtree t at the left most position below the
root node; visualized with with blue circle. The concurrent replaceT
operation, however, aims to replace the value below the most right
node; visualized as a bold red value. In this case, a transformation is
necessary because after the insertT operation is executed, the access
path of the replaceT operation no longer directs to the desired node.
This case is captured in line 7 and 8 of Listing 4.2. We use the

112 on stateful presentation tiers with ot

update+ function to perform the necessary increase of the position
at the transformation point.

A

t B

X

Fig. 4.8: A
conflict between
an insertT and

replaceT
operation.

A

t

BX

Fig. 4.9: Two
independent
insertT and

replaceT
operations.

A

B C

X

Fig. 4.10: Two
conflicting

deleteT and
replaceT

operations.

The same puzzle occurs if the situation mirrored, as visualized
in Figure 4.9. Here, the replaceT operation modifies the value at
position [0], whereas the insertT operation aims to insert a new sub-
tree t at position [1, 0]. It turns out that both operations are not in
conflict and the order of execution is irrelevant. Hence, we capture
this case in line 10 and 11 where no transformation is performed. In
the remaining lines of Listing 4.2, the already shown case reoccurs
in a more specialized form, where we additionally need to track the
length of the access path in order to identify whether a transforma-
tion is necessary. With the introduced mechanics we show that the
stated transformation function satisfies TP1.

Lemma 1. The transformation function for the transformation of
replaceT against insertT satisfies the Transformation Property 1 (TP1).

Proof Sketch for Lemma 1. In order to verify that TP1 holds, we
analyze the cases in Listing 4.2 separately. If the two operations are
effect independent TP1 obviously holds, because no transformation
is applied. The only conflicts that need to be solved occur if the
insertT operation inserts a subtree somewhere to the left along the
access path of the replaceT operation. In these cases we need to
show the following equation:

insertT (t,pos2, replaceT (v
′,pos1, T))

= replaceT (v
′, update+(pos1, tp), insertT (t,pos2, T))

Fortunately, this case can be easily shown by unfolding the defini-
tions of replaceT and insertT , together with the fact that an insertT
operation on the tree T with the access path pos is equivalent to an
insertT operation on a trimmed version of pos and T . We show this
equation by induction over the length of the trimmed access path.
The detailed proof is provided in [JH15].

In the next case we consider the transformation of replaceT
against deleteT . Fortunately, the mechanics are very similar to the al-
ready introduced transformation of replaceT against insertT , so we
can slightly reduce the level of detail. We show the transformation
function of interest in Listing 4.3.

Similar to the transformation of replaceT against insertT , we check
whether the two operations are effect independent or if the access

4.3 from tree transformations to json operations 113

Listing 4.3: Pseudo code of the transformation of replaceT against
deleteT .

1 function XFORMT(replaceT(v, pos1), deleteT(pos2)):
2 TP = TPt(pos1, pos2)
3

4 if effectIndependent(pos1, pos2) or pos1 == []:
5 return(replaceT(v, pos1), deleteT(pos2))
6

7 if pos1[TP] > pos2[TP]:
8 return(replaceT(v, update-(pos1, TP)), deleteT(pos2))
9

10 if pos1[TP] < pos2[TP]:
11 return(replaceT(v, pos1), deleteT(pos2))
12

13 if pos1[TP] == pos2[TP]:
14 if len(pos1) < len(pos2): # replace above a deleted node
15 return(replaceT(v, pos1), deleteT(pos2))
16 else: # replace a deleted node
17 return(noop, deleteT(pos2))

path is empty. As a consequence, no transformation is performed,
as described in line 4 and 5.

A

B C

X

Fig. 4.11: A
hierarchy conflict
between a
deleteT and
replaceT
operation.

The next two cases in Listing 4.3 are closely related to the outlined
conflicts in the previous case. Here, both operations are in conflict
if a deleteT operation removes a subtree somewhere to the left
alongside the access path of the replaceT operation. We illustrate
this case in Figure 4.10, where we use a dashed node to visualize the
target of the deleteT operation. We note that in the illustrated case a
different order of execution leads to diverged states. Consequently,
we use update− to perform the necessary shift of the access path of
the replaceT operation in line 8.

We identified a more interesting case where the replaceT opera-
tion aims to modify the value of a node that has been removed by a
concurrent deleteT operation, as visualized in Figure 4.11. In this
case, the deletion of the parent node makes the replaceT operation
unnecessary. This is reflected in our transformation function by a
transformation of replaceT to no-op in line 17.

Lemma 2. The transformation function for the transformation of
replaceT against deleteT satisfies the Transformation Property 1 (TP1).

114 on stateful presentation tiers with ot

Listing 4.4: Pseudo code of the transformation of replaceT against
replaceT .

1 function XFORMT(replaceT(v1, pos1), replaceT(v2, pos2)):
2

3 if pos1 == pos2:
4 # use application specific priorities
5 else:
6 return(replaceT(v1, pos1), replaceT(v2, pos2))

Proof Sketch for Lemma 2. The proof is equivalent to the proof of
Lemma 1, only that we use update− to correspond with concurrent
deleteT operations. All existing cases can be proven by unfolding
the definitions of replaceT and deleteT , together with the fact that a
deleteT operation on the tree T with the access path pos is equivalent
to a deleteT operation on a trimmed version of pos and T . A detailed
version of the used lemmas is, again, shown in [JH15].

The remaining combination is the transformation of replaceT
against replaceT , which we introduce in Listing 4.4. Fortunately,
this transformation function is rather easy because there exists only
one case where a conflict occurs, namely when the access paths
of both operations are identical. We note that in this replace-replace
tie there is no solution that includes the effects of both operations.
Hence, one operation must win against the other one. To this end,
we simply propose application based decisions in line 4. Two typi-
cally applied solutions are the already mentioned last write wins, or
a total ordering among the replicas, where one replica gets priority
over another. The last write wins strategy can be easily implemented
alongside with the Wave control algorithm, because the server se-
quences the operations and can easily determine which one was the
last by comparing the revision numbers3.

Lemma 3. The transformation function for the transformation of
replaceT against replaceT satisfies the Transformation Property 1 (TP1).

3 We note that this is slightly different than the typically applied last write wins,
which usually refers to a time stamp and relies on synchronized clocks.

4.3 from tree transformations to json operations 115

Proof Sketch for Lemma 3. The transformation function obviously
satisfies TP1, because at no point a transformation is applied.

With the stated transformation functions in Listing 4.2, 4.3, and
4.4, together with the remaining transformation functions in the
appendix in Section A.2, we are able to present the final theorem:

Theorem 2. The transformation function XFORMT satisfies the
Transformation Property 1 (TP1).

Proof. The claim follows directly from Lemma 1, 2, 3, and the proofs
for the remaining combinations that are presented in [JH15].

We note that our transformation function XFORMT enables si-
multaneous editing of ordered n-ary trees with support for insert,
delete, and replace operations. We utilize those features when we
present our mapping of JSON components to n-ary trees, in order
to achieve these capabilities for JSON objects as well.

4.3.3 Simultaneous Editing of JSON Objects

The JavaScript Object Notation (JSON) is the de facto standard
data interchange format of the web. While JSON has its origin
as serialization format for JavaScript, many other programming
languages provide serialization and deserialization mechanisms
for JSON as well. Since 2014, the Internet Engineering Task Force
defines the structure of the notation in RFC 7159 [Bra14].

As visualized in Figure 4.12, the data within JSON is structured
in three components: an object (1), an array (2), and a value (3). An
object (1) is a unordered set of key/value pairs. An array (2) is an
ordered list of values and a value (3) is either an array, an object,
or a simple type like a string or a number. We see that JSON has
both hierarchical structure and ordered elements. For example, a
hierarchy is created by nesting objects. One obvious example for
ordered elements are the values within an array.

We note that our presented transformation function for ordered
n-ary trees is capable of handling both hierarchy and the order of
elements. Hence, we handle both challenges in one step. To do so,
we map the JSON structure to the tree structure in order to achieve
an OT synchronization of JSON objects.

116 on stateful presentation tiers with ot

string value:
,

object
{ {

value
,

array
[[

string

value

object
array

Figure 4.12: Simplified structure of a JSON object [Bra14].

In our mapping we introduce the following four node types with
the corresponding rules:

• An object node, denoted as {}, is the parent of arbitrary many
key nodes. Moreover, the root of the tree is an object node.

• A key node has exactly one value node as child.

• A value node either is a simple type, an object node, or an
array node.

• An array node, denoted as [], is the parent of arbitrary many
value nodes.

We visualize one example mapping in Figure 4.13, where we
show one JSON object on the left side and the corresponding tree
representation, that follows the above stated rules, on the right side
of the figure. We note that this translation from a JSON object to an
ordered n-ary tree is straightforward and rather simple. However,
this mapping is unfortunately ambiguous, because a different order
of key1, key2, and key3 would lead to a different order inside the tree,
even though this order is irrelevant for a JSON object. To address
this issue, we additionally add the following rule:

• All key nodes below an object node must be ordered by their
lexicographic order.

4.3 from tree transformations to json operations 117

{}

"key1" "key2" "key3"

[] "string" {}

42 true "key4" "key5"

null []

1 {
2 "key1": [42, true],
3 "key2": "string",
4 "key3": {
5 "key4": null,
6 "key5": []
7 }
8 }

Figure 4.13: Tree representation of a JSON object.

We note that with the above stated rule the corresponding tree to
a JSON object is unambiguous.

JSON Access Path

Next, we map operations on a JSON object to the already presented
tree operations. Here, the challenge is to project our notion of
an access path, which we used to navigate inside the tree, to a
reasonable navigation inside a JSON object. Fortunately, there exists
a similar mechanism to address this issue, called a JSON Pointer
[Bry13]. Within such a pointer, a combination of keys and positions
inside an array is used to navigate through the object. Hence, we
propose a direct translation of a JSON Pointer to our access path.
For example, the position parameter of an operation on the JSON
object in Figure 4.13 that aims to insert an item at position 0 of the
array with the key "key5" would be translated in the following way:

["key3", "key5", 0] → [2,0,1,0,0]

We note that this translation works flawlessly only if the keys
inside an object are ordered. With the presented translation we
are able to use the introduced tree operations insertT , deleteT , and
replaceT to modify the JSON object. Furthermore, we are able to
allow simultaneous editing with OT, because our transformation
function for those operations satisfies TP1.

118 on stateful presentation tiers with ot

Design Details and Discussion

While the above introduced mapping from the components of a
JSON object to a tree, together with the translation of a JSON Pointer
to an access path, seems straightforward, there are some important
details and design decisions to consider. For example, the presence
of concurrent operations may lead to ambiguous tree mappings
when two replicas independently insert the same key below an
object node. According to the JSON specification, the keys below an
object node SHOULD (and not MUST) be unique [Bra14]. Hence, at this
point we assume a more strict definition of JSON by requiring these
keys to be unique. Fortunately, the specification allows implementa-
tion specific behavior in these cases, so with our assumption we are
still in conformity with RFC 7159.

The above illustrated example can be seen as another insert-insert
tie, where two operations concurrently try to insert an item at the
same position. One example to enforce the uniqueness of keys is that
one of the insertT operations is transformed to a replaceT operation,
and the other to no-op. In this case, one operation has a priority
and the other operation will be rolled-back. We note that the same
tie can be observed with two replaceT operations or combinations
of replaceT and insertT .

Another important design decision of our mapping is that we
enforce an order of keys within an object, even though the order is
irrelevant for the object itself. We see room for improvement here,
because we currently maintain additional and unnecessary struc-
ture. An ideal transformation function would be based on the JSON
structure entirely; including customized operations and precise def-
initions of operation validity. However, the fact that we can map
JSON operations to our tree operations demonstrates that our trans-
formation function XFORMT is actually more expressive, which can
be important when using other models than JSON. We judge the
resulting overhead as justified, because, we gain the certainty that
the transformation is correct with respect to TP1.

4.4 open-source collaborative patient documentation 119

4.4 open-source collaborative patient documenta-
tion

I would like to
highlight the
contributions of
Juan Cabello, who
designed and
implemented the
prototype.

In the previous section we introduced an OT-based mechanism to
enable simultaneous editing of replicated JSON objects. Here, the
replicas can independently update the state of an object and the
update operations are sent asynchronously (over a server) to the
other replicas. Hence, we enabled a multi-leader replication archi-
tecture for mutable JSON objects. With our verified transformation
function, we provided the certainty that the replicas will eventually
converge to the same state. In order to show the applicability of our
approach, we present a case study where we use our OT extension
to handle more state in the presentation tier of a standard hospital
IT service: a patient documentation system.

4.4.1 Paper-based Solutions

Hospitals and clinics typically use complex enterprise software, like
hospital information systems (HIS), to run their business opera-
tions. This software covers a broad variety of tasks, from treatment
documentation to billing and resource planning. We observe many
different software systems that are closely interconnected. These sys-
tems often lack a seamless integration, which results in frustration
on the side of the medical and administrative staff.

During our observations at the Charité, the largest university hos-
pital in Europe, we were able to confirm the mentioned lack of seam-
less integration, as we have seen many paper based workarounds for
existing enterprise solutions. One example, which we found most
interesting, was the use of a shared Word document for patient doc-
umentation. Here, the medical staff of a department with around
40 beds used printed copies of the shared document to organize
treatment documentation as well as the daily schedule.

The used document is structured in a tabular layout where one
row represents one currently admitted patient. The information per
patient included the room & bed number, name, birth date, a short
anamnesis, notes about the treatment, and a collection of the future
tasks. These documents are typically printed out for each clinician
in that department at the beginning of a shift. Throughout the day,
each clinician independently annotates the printed document. At the

120 on stateful presentation tiers with ot

end of the shift the annotations are used to update the shared Word
document, which is, once finished, separately stored to capture the
history. When a patient is discharged from the clinic, the information
in the history are used for a report that is processed in the HIS. We
note that these paper based solutions are still quite common in
many hospitals, even though such workarounds create major issues,
e.g. information loss or inconsistent data.

According to our interviews at the Charité, the main reason
why the paper based solution is preferred over the documentation
solution by the HIS is, that annotations on the paper are significantly
faster and easier to make than using a desktop client. Hence, from
a systems point of view, the paper solution has better availability.
Moreover, the product that was used at the time did not offer
any interaction mechanism for mobile devices. We find that our
approach of handling the application state in the presentation tier,
i.e. very close to the client, is promising in this case and might to be
able to compete with the paper based solutions, because we expect
similar availability and more convenience by tailoring our approach
to mobile devices, such as smartphones or tablets. To this end, we
identify the most important requirements to realize our approach
in a working prototype.

4.4.2 Requirements

The development of a suitable patient documentation for the de-
scribed purpose goes along with strict requirements of usability and
compatibility with law. We identify4 the most important require-
ments to be the following:

1. Always Available: Even in unstable network environments,
the clinicians must be able to read, modify, and add informa-
tion.

2. Privacy Protection: Sensitive information must not be dis-
closed to unauthorized parties.

3. Cross-platform: The system must support various platforms,
especially mobile devices, such as tablets.

4 We note that the list of requirements is by no means complete. In this subsection
we focus on the relevant requirements that relate to distributed systems challenges.

4.4 open-source collaborative patient documentation 121

We note that the first requirement raises the already mentioned
challenge of the CAP dilemma. We simply cannot guarantee a
consistent view of the data alongside with partitioned networks and
the availability requirement. Hence, we cannot avoid that doctors
see different information on their mobile devices if network failures
are present. This seems to be very critical in a hospital environment.
However, with the traditional paper-based solutions, where every
doctor annotates a personal copy of the patient’s file, inconsistencies
are inevitable and widely accepted. To automatically solve possible
inconsistencies and to provide a high responsiveness if a working
network connection is present, we use or JSON extension of OT.

The second requirement leads to strong encryption of the stored
data and the communication. Depending on the regulations of the
country, no external service provider like Google Docs can be used,
since sensitive data must remain inside the hospital’s network.

The third requirement ensures that existing devices, such as PCs,
smartphones, and tablets, can be used without the need for a specific
hardware.

4.4.3 Application Design

From the stated requirements we derive an application design based
on the latest available open-source technologies. We note that the
third requirement favors the development of a web-based applica-
tion. In contrast to a native mobile application, a web-based applica-
tion runs on various operating systems without further adaptation.
Together with the first requirement, a single-page application is
required. The single-page application runs, once loaded, completely
autonomous in the browser. This suggestion is in accordance with
the second requirement, since no external software service is re-
quired.

If one doctor updates a patient’s record, the update is immedi-
ately present on the doctor’s device and the information will be
propagated to the other devices as soon as possible. If the network
connection is unavailable, the updates will be queued. In order to
regain a consistent state after a patient’s record has been updated,
we apply the previously introduced JSON extension for OT.

We note that the fact that every doctor has a replica of the data
which can be accessed and modified directly on the mobile device

122 on stateful presentation tiers with ot

is, in fact, a multi-leader replication scenario. Moreover, in this
case it is necessary to hold the application state alongside with the
single-page application at the doctor’s device, which can be seen as
a stateful presentation tier.

4.4.4 Prototype

Based on the stated application design, we implemented a proto-
type, called HotPi, that aims to be an alternative to the paper based
solutions, which are still used in many hospitals. In our implemen-
tation we decided to follow the latest trends in web development at
the time of writing this thesis in order to demonstrate that we do
not rely on outdated libraries. Therefore, we use MERN [Has18] as
technology stack for our single-page application.

The MERN stack is a software bundle that is based on the pro-
gramming language JavaScript and comprises four building blocks
from which the name derives: (1) MongoDB for the database, (2)
Express.js for the server application, (3) React.js with Redux for
the client application and (4) Node.js for the server platform. The
main difference of a MERN application, compared to a traditional
web application, is, that the user interface, together with the user
interface related functionality, runs autonomously in the browser.
This enables more responsive user interfaces, because updates of
the interface, for example as a result of a click on a menu item, can
be rendered without requesting additional style information from a
server.

To implement our approach as a MERN application, we use the
architecture that is visualized in Figure 4.14. Here, the client part of
the Wave control algorithm is implemented as a React.js component
that runs autonomously in the client’s browser. We note that the
application and the state is stored in the browser’s local storage,
which enables availability even in case no network connection is
present. As long as the application is loaded in the local storage,
updates on the state can be made, which will be exchanged when
the network connection is reestablished.

The server part of the Wave algorithm is, consequently, imple-
mented as Express.js application that runs on a dedicated backend
in the logic tier. Fortunately, both server and client parts are written
in the same language, namely JavaScript, which allowed us to reuse

4.4 open-source collaborative patient documentation 123

React.js

Local Storage
stateful

Application

Wave Client

Browser

Express.js

Application

Wave Server

Backend

Node.js

MongoDB
stateful

Presentation Tier Logic Tier Data Tier

Figure 4.14: MERN-based architecture of our HotPi prototype with
a stateful presentation tier.

parts of the code. All state information that are processed in the
logic tier are persistently stored in MongoDB, which represents a
stateful data tier. Hence, the used application design features are,
as intended, a stateful presentation tier, a stateless logic tier, and a
stateful data tier.

In our data model we use one JSON document per patient, where
we store the essential information that are currently used in the
paper-based solution. We utilize the insert and delete operations
from our transformation function XFORMT to add and remove char-
acters to the description fields. This way we achieve the possibility
to collaboratively edit patient information, similar to Google Docs
[DR18].

As shown in Figure 4.15 and 4.16, our prototype features a com-
fortable way to annotate the patient’s information with different
notes. We structured the layout based on the paper document struc-
ture we have found at the hospital. Hence, doctors can add, delete,
and modify notes for the anamnesis, the treatment documentation
(or history), and the upcoming tasks. Particular information in the
notes can be highlighted with different colors as well as different
priorities can be chosen.

Since the underlying technology of our prototype is OT, the pro-
totype supports both real-time collaboration and an offline mode.
Hence, as long a network connection is available, multiple doctors
can edit the notes simultaneously. If no network connection is avail-
able, the application remains fully functional and the information is
updated when the device is online again.

124 on stateful presentation tiers with ot

Figure 4.15: Patient selection view of the prototype.

Figure 4.16: Active notes of a patient treatment.

4.5 formic : a library for collaborative applications 125

We note that the prototype follows the information structure that
we have seen at the Charité. Other hospitals are likely to use a
different structure to process the patient information. Therefore, we
have chosen an open-source license that allows an easy adaptation
of the prototype5.

4.4.5 Discussion

With our prototype, we demonstrate that our JSON extension of
OT can be transferred from theory to practice, and that we are able
to build applications that benefit from the integrated multi-leader
replication. We strongly believe that the underlying technology,
i.e. Operational Transformation and our JSON extension, is highly
suitable to solve the problems that we observed with the paper-
based solution in the clinical environment. The fact that we were
able to combine modern web development based on MERN with
OT demonstrates that there are no technology related restrictions
for our approach.

However, we admit that transferring our prototype into a us-
able product requires a significant amount of work. Especially the
compliance with the regulation in medical environments raises ad-
ditional challenges that need to be addressed. For example, since
the application state, and therefore sensitive patient information,
is held on a mobile device, the access must be restricted and se-
cured against unauthorized parties. These challenges require careful
thought, which we omitted in the presentation of our prototype.
However, we are convinced that these challenges can be solved and
that our contribution, i.e. the extension of OT, can be actually used
in future products.

4.5 formic : a library for collaborative applications

The design,
implementation, and
evaluation of formic
has been carried out
by Ronny Bräunlich,
for which I am
indefinitely thankful.

Based upon the insights that we have gained from our patient doc-
umentation prototype, we aim to generalize our used architecture
and provide the necessary accessibility to develop new applications
with our approach. To this end, we present formic, a programming
library to build collaborative applications. Hence, we aim to provide

5 URL: https://github.com/hotpi licensed under GPLv3 or later.

https://github.com/hotpi

126 on stateful presentation tiers with ot

the necessary tool to use and process more state in the presentation
tier, without the need to explicitly handle the replication mechanism
and the convergence of replicas. Since our library is designed to
include our JSON extension to OT, we are able to use our library to
evaluate the performance of our approach at high scale, which we
present in Section 4.6. The source code of the library, as well as the
documentation and detailed instructions, is available in the project
repository6.

4.5.1 Selected Features and Challenges

We begin with the features that should be included in the program-
ming library. The major challenge in the library design, compared
to the earlier presented prototype for a specific application, is, that
the library must be able to handle arbitrary many clients that simul-
taneously edit arbitrary many objects. Hence, handling the degree
of parallelism, as well as the necessary user convenience, is in the
focus of the later derived library design. We summarize the selected
features and the key design aspects in the following list:

3-tier Architecture: Applications that are build with our li-
brary can be designed to follow a 3-tier architecture, with
the additional feature that the presentation tier is stateful and
highly responsive.

Transparent Replication: The library provides the underlying
OT replication mechanism and handles the communication
between the components transparently. From the user perspec-
tive, the propagation of updates of the state in the presentation
tier is transparent.

Expressiveness: Even complex application state must be ex-
pressible and accessible with our library. To this end, the
library must offer list, tree, and JSON data structures and the
corresponding operations as programming interface.

Partition-Capability: The data in the presentation tier must
remain accessible even in case the network is disrupted and
no communication to the logic and data tier is possible. After

6 URL: https://github.com/rbraeunlich/formic under Apache License 2.0.

https://github.com/rbraeunlich/formic

4.5 formic : a library for collaborative applications 127

the network partition has healed, the buffered updates are
exchanged and the replicas regain a consistent state.

Configurability: The library must provide mechanisms to con-
figure basic properties without modifying the source code. The
modifiable properties include connection details (addresses,
ports), the buffer size, the number of threads, and database
credentials.

We note that according to the definition of the presentation layer
in Section 2.1.2, the typical functionality is interface-related. To
reduce complexity, we further refine the scope of the applications
that benefit from our library to web applications. Hence, the interface-
related code is executed in the browser, similar to what we used in
our HotPi prototype. We think that this restriction of the scope is
justified and that we do not lose any generality. Consequently, the
above stated list of selected features can be supplemented by:

Client-Server Architecture: The library offers a client part
that runs autonomously in the browser, and a corresponding
server part that implements the Wave OT control algorithm.

We note that this restriction to web-based applications implies a
restriction of the usable technologies, for example the client part
of the library must somehow be based on JavaScript in order to
achieve an autonomous interface. As a consequence, the above
stated Partition-Capability could be restated to Offline-Capability, be-
cause a partitioned web-based interface is essentially an offline web
application.

With the above stated list of selected features and architectural
properties, we presented an outline of the capabilities of our library.
From that outline we derive a tailored architecture, which we present
in the following subsection.

4.5.2 Library Design and Architecture

As mentioned in the previous subsection, the client and the server
part of the library follow different purposes. For example, the server
part must be designed to handle a high degree of parallelism,
whereas the client part focuses on the convenience for the user,

128 on stateful presentation tiers with ot

Application
Code

Connection

Queues

Data Structure
Instance 1

Data Structure
Instance n

...

Thread
Pool

Dispatcher

Internet

Figure 4.17: Client architecture of our formic prototype (from
[Brä17]).

which includes the provided mechanisms to access and modify
the shared data structures. Therefore, we derive a tailored architec-
ture for the client and the server part, which fulfills the outlined
demands.

We begin with the design of the client architecture, where we note
a one-to-many relationship between the server and the used data
structures. In this case, there is only one communication channel that
needs to be maintained, i.e. the channel between the server and the
client. In contrast, there can be arbitrary many data structures that
are used by the client and where consistency needs to be maintained.
To this end, we derive an architecture where we have one component
that is responsible for the communication and one component for
each maintained data structure instance. We visualize the client
architecture in Figure 4.17, where we also show the interaction
between the selected components. In the figure we visualize the
incoming operations with regular arrows, the outgoing operations
with dashed arrows, and synchronous calls with left right arrows.
We note that the communication component consists of two message
queues, one for incoming and one for outgoing messages. These
queues are used to maintain the necessary Offline-Capability, so that
the client can continue to work even if there is no connection to the
server. In this case, the messages are buffered in the queue and sent
out once the connection is reestablished. Similarly, we use message
queues for each remote operation on a data structure instance so that
we can utilize a thread pool to avoid the overhead of maintaining a
single thread for each data structure instance and the bottleneck of
using a single thread for the whole client. We visualize the thread

4.5 formic : a library for collaborative applications 129

Client Proxy 1 Data Structure
Instance 1

Data Structure
Instance m

...

Thread
Pool

Publisher

Internet
Client Proxy n

Figure 4.18: Server architecture of our formic prototype (from
[Brä17]).

provisioning of the autonomous components with a thin red line to
the thread pool.

In addition to the connection and data structure handling, the
client architecture features a dispatcher component that distributes
incoming messages to the corresponding queue of the data structure
instance. Here, the incoming messages are dispatched and mapped
to operations on the corresponding data structure instances.

An application interacts with the data structure instances by
using the provided API, which exposes the operations on the data
structures, e.g. insert, delete, and replace in case of the JSON data
structure. In this case, the operations are immediately applied on
the data structure instance and placed in the outgoing queue of
the connection component, which asynchronously transmits the
operations to the server. Since the local operation is immediately
applied, we design and visualize the communication between the
application and the data structure instance as a synchronous call. In
case a data structure instance is modified by a remote operation,
the application can be notified over a registered callback function,
which we visualize with green arrows. With this mechanism, the
application can be informed about changes in the background and
can, for example, trigger an update of the user interface.

The corresponding server part of the library, which we visualize
in Figure 4.18, follows a similar architectural pattern. The major
difference is that the server needs to maintain connections to mul-
tiple clients with arbitrary many data structure instances. Hence,

130 on stateful presentation tiers with ot

there exists an n to m relation between the connections and the
accessed data objects. As shown in the figure, there is one Client
Proxy component for each connected client. Here, the incoming and
outgoing messages are buffered and asynchronously transmitted
to the clients over separate connections. In contrast to the client
architecture, we introduce an additional component to the server,
namely the publisher. In this component, the server tracks the sub-
scriptions of the clients to the data structure instances. Based on
the stored subscriptions, the server assigns incoming and outgoing
operations to the corresponding message queues. We note that the
server architecture does not include any functionality to initiate an
operation to a data structure instance. Consequently, there is no API
compared to the client architecture.

The major challenge that needs to be addressed by the imple-
mentation of the server is that there is a potentially high degree of
parallelism. That is why we again include a thread pool to achieve
a better utilization of the server’s resources.

4.5.3 Library Prototype

With formic, we present a prototypical implementation of the afore-
mentioned architecture. Consequently, the library is divided into
a server- and a client implementation, which slightly differ with
respect to the used technologies. The main reason for this distinction
is that both parts have a different purpose and therefore different
needs.

For the communication between the server and the clients we
decided to use WebSocket connections. WebSockets, in general, offer
a two-way communication protocol which is especially useful in
our case, because the clients can get notified by the server in case
there are new remote operations [Fet11]. All messages between the
server and the client are then serialized to JSON, which is common
practice in modern web development. We note that WebSockets
together with JSON formatted messages enables the possibility to
easily replace one component, i.e. the server or the client part. Both
technologies are rather standard and easy to use with other web
frameworks.

For the server part, we decided to use the Akka Framework
together with the Scala programming language to achieve high

4.6 evaluation 131

performance in the presence of high concurrency. The abstraction of
Akka actors essentially allows the implementation of independent
units, which can communicate to other units (or actors) via mes-
sages only. Hence, there is no complex method invocation possible,
which allows to hide complex low-level details such as waiting
or locking. This is particularly advantageous when we instantiate
several data structures and client connections. The persistence of
the data structures instances, i.e. the state, is realized with the Akka
Persistence extension, which allows to recreate the state of an actor
in case something crashed or needed to be restarted. The key idea is
that all operations on a data structure are stored persistently—most
likely in the data tier—and that the operations can be replayed upon
reinstantiation of a actor, also known as event-sourcing.

For the client part, however, we use essentially the same technol-
ogy stack, i.e. Akka and Scala, with the particular difference that we
use ScalaJS to compile our implementation to JavaScript. This way,
we achieve that the client part of formic can autonomously run in
the browser.

Both the client and the server part implement the corresponding
Wave OT control algorithm without exposing any transformation to
the user. With that in mind, the underlying replication mechanism
is completely hidden and an application designer can focus on
the relevant business logic. We note that we allow a user-defined
configuration of formic’s essential parameters, e.g. the buffer sizes,
the thread pool size, the IP address & port of the server, and the
credentials for the database in the data tier.

Ultimately, we would like to emphasize that with our library
formic, we enabled a more comfortable way to develop applica-
tions that process and handle more state in the presentation tier. In
conjunction with our JSON extension of OT, formic provides the nec-
essary expressiveness and convenience to implement our approach
in web-based applications.

4.6 evaluation

As a remaining step we evaluate our library in terms of performance
in order to identify the boundaries for applications that store more
state in the presentation tier. Therefore, we split our evaluation
in two parts: (1) a comparison to a document editing scenario in

132 on stateful presentation tiers with ot

Google Docs, and (2) a comparison to the ShareDB library, which
offers similar features.

4.6.1 Large Scale Document Editing

For this first part of the evaluation we reuse an experiment of
Dang and Ignat [DI16], which was initially used to explore the
performance of Google Docs at large scale. In their experiment,
real users have been simulated with Selenium, a widely accepted
web-based testing tool [HK06]. The simulated users are divided
into one Writer, one Reader, and up to 50 DummyWriters. The
DummyWriters write random strings to a shared document. The
Writer writes a specific string to the document and the Reader waits
until the specific string is present and reports the delay. Dang and
Ignat measured the delay with different numbers of DummyWriters
and various type speeds (1-10 keystrokes per second).

For our evaluation of formic, we recreated Dang and Ignat’s setup
by installing the formic server and the Selenium users on several
virtualized machines on a local OpenStack cluster (16 servers with 2

x Intel Xeon X5355 (2x4 cores), 32GB memory). Every used instance
(2vCPU, 2GB Memory) ran up to five DummyWriters; each instanti-
ating the Chrome browser and behaving like a human client. The
Writer and the Reader were, as in the original experiment, always
placed on the same instance to guarantee a consistent clock. The
formic server was placed on a virtual instance with 4 vCPUs and
8GB memory.

We note that the original experiment design assumes operations
that insert single characters to a document where no further format-
ting is used. Hence, we decided utilize formic’s list operations and
the corresponding transformation function XFORML to achieve the
required functionality of the experiment. The list operations can be
seen as operations on a sequence of characters, which ultimately
forms a document. A detailed evaluation of our JSON extension,
however, will be in focus in the next subsection.

In Figure 4.19 we show the results of an experiment run where
each user injects one character per second. On the x-axis we see the
number of active users, i.e. DummyWriters, that insert characters.
Along the y-axis we see the delay in seconds until the particular
Reader has observed a special character from the Writer.

4.6 evaluation 133

60

50

40

30

20

10

0

60

50

40

30

20

10

0

De
la

y
in

 s
ec

on
ds

De
la

y
in

 s
ec

on
ds

00 10 20 30 40 50 00 10 20 30 40 50
Concurrent users Concurrent users

Google Docs (by Dang & Ignat) formic

Figure 4.19: Collaborative editing with a type speed of one character
per second on Google Docs (from [DI16]) compared to formic.

We note that the observed delays are relatively stable and below
five seconds for less than 30 active users. Above that, the delays
increase very fast, especially at a scale of 45 or 50 simultaneous
users. The observation that can be made is, that our library formic
struggles with simultaneous editing sessions at large scale. Fortu-
nately, this behavior is not unique to formic and can also be observed
for other OT-based collaboration systems. In the original experiment
from Dang and Ignat, the authors reported a similar performance
decrease in Google Docs at large scale, which we visualize in Fig-
ure 4.19.

In direct comparison of the results of Dang and Ignat to our
measurements, our library is able to compete with Google Docs
and even outperforms it at high scale. We find this surprising,
since Google Docs can be seen as the de facto standard online
collaboration tool. However, we admit that there is a certain bias in
this comparison, because the features that are provided by Google
Docs significantly exceed the capabilities that were offered by formic
in this experiment. We note that the reason for the observable
decrease of the performance is a consequence of the high degree of
parallelism inside the server. This is, in fact, a bottleneck and our
measurements can be interpreted as a confirmation of Dang and
Ignat’s result that OT systems, that rely on a server to sequence
operations, are limited in performance at high scale. We further
discuss the consequences in our discussion in Section 4.6.3, where
we also motivate the scenarios in which high-scaling collaborative
application are needed.

134 on stateful presentation tiers with ot

In the original experiment design, the authors also evaluated the
performance for up to 10 keystrokes per second. In essence, all runs
showed a similar growth of the delays with respect to the number
of users. That is why we omit the presentation and comparison of
the results of our measurement of formic in this section and refer
to the appendix in Section A.3, where show our findings for the
remaining type speeds.

4.6.2 JSON operations and ShareDB

In contrast to Google Docs, formic offers the OT mechanism in a
way that web developers can enable simultaneous and collaborative
editing of arbitrary objects, as long as the objects can be serialized
into JSON. In order to evaluate the transformation of operations
on JSON objects properly, we decided to compare the performance
of formic to ShareDB [SG15] in an collaborative JSON editing sce-
nario. ShareDB is a JavaScript project that offers similar features as
formic. Both tools implement the Wave Control algorithm and offer
a client and a server part to exchange operations on a replicated
data structure.

For this run we modified Dang and Ignat’s experiment design so
that the DummyWriters are now invoking operations to a shared
JSON object over a test website. To ensure comparability, we im-
plemented an identical test website with formic and ShareDB and
installed both systems on the same local cluster.

In Figure 4.20, we show our measurements of ShareDB and formic
in a collaborative JSON editing scenario where we inject one modifi-
cation per second from each DummyWriter. In general, we see that
our library is not able to keep up with ShareDB. There are, however,
two interesting observations to be made. First, we note that the per-
formance of both libraries indicates a fast linear growth of the delay
with respect to the number of concurrent users, which confirms the
boundaries of such OT based systems at large scale. Second, the ob-
served delays are still rather small compared to the measurements of
Google Docs in Figure 4.19. Moreover, we find it interesting that the
difference between formic’s delays in document and JSON editing,
i.e. the difference between the right side of Figure 4.19 and the right
side of Figure 4.20, is rather small, which indicates that our imple-
mentation has way more impact than the type of the data structure

4.6 evaluation 135

l
lllllllll
l
lllllllll
l
lllllllll
l
lllllllll

l
llllllll
l
l

lll
llllll

l

lllll
llll
l
llll
lllll

l

l
l
ll

ll
l
l

l

l
l
lllllll

l

ll
lll
ll
ll

l

ll
lllll
l
l

l

lllll
ll
l

l

lll
ll
ll

l

l

l
ll
l
ll
l
ll

l

l

l

l

lll
l
ll

l

l

l

l
l
l

l
l

l

l
l

l
lll
l
l

l

l
l
ll

ll
l

l

l
llll
lll
l

l

l
lll
l

l

l

l

l
lll
l
l
l

l

llll
l
ll

l

l
l
l

l

ll

lll

l

l
lll

l
l
ll

l

l

l

l
ll

l

l
l
ll

l

lll

ll
l
l

l
l

l

l
l
ll
l
l
lll

l

l

l
ll

l
l

l

l
l

ll
l

l
l

l

ll

llll

l

l

l
l
l

l
lll
l

l

l
l
l
ll

l

l

l

l
l
l

l

l

l

ll

ll
l
l
l

l

l

l
l

l
l

l
l

l

lll
l

ll

l

l
l

l
l

ll

l
l

l

llll

l

lll

l

l
l
ll

l
l
l
l

l

l

l

l

l

lll

l

l
l

l

l

l

ll
l
l

l

l

l
l

lllll

ll

l
l
ll

l

l

l
l
ll

ll

l

ll

l
l
l

l

lll
ll

l

l
l

ll

ll
ll

l

ll
l

l

l
l

l

l
ll
l
llll

l

l

l

l

l

l

l

ll
l
lll

l

ll
l
lllll

l

l
l
ll
l

l

l

l

ll

l

l

l

l

l

l

ll
l

l

ll

l
l

ll

l

l

l

l
l
l
l

l

l
l
l
ll
l

l

l

l

ll

l
l
ll

l

l

llllll

l

lll
l
ll
l

l

ll

l

l
l

l

ll

l

l
l

l

l

l
l
l

l

ll
l
l

l

l
l

l

l

l
l
l
ll
l
l

l

l
l
l
l
l

ll

l

lll

l

l
l

l

l
l

l

ll
ll

l

l

l

l
l
ll
ll

l

l
lll
l
l
l

l

l

ll

l

l
l
l
l

l

l

l

l
ll
l
l

l

ll

l

l

l

ll

l

l
l

l

lllll
l
l

l

l

ll
l

ll

l
l

l

l

l

l
l

ll

l

l

llll
l

l

ll

l

lll

l

l
l

l
l

l

l

l
ll

l

l

l

lll
ll

l

l
l
lllll

l

l

lll

l

ll
l

l

l

l
l

l
l

l
l

ll
l
l

l

l

l

l

l

ll

l
l
ll
l
l
l

l

l

l
l

l
l
l
l

l

l

l

l
ll

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l
l
l
l
l

l

l

l

ll

l

l
ll
l

l

lll
ll
l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

ll
l

l
l

l

ll

l

l
l

l

ll
lll

l

l

l
l

l

l

l

l

l
lll
l

l

l

l
l

l

ll

l
l

ll

l
ll

l
l

l

l

l

l
ll
ll

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l

l

l
l

ll
l

l

l

l

l
l

l

l

l

l
l
l

l

ll
l
l

l
l

l

l

ll

l

l

l l

l

l

l

l

ll

l

ll

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

0 10 20 30 40 50

0

5

10

15

20

Number of user

D
el

ay
 in

 s
ec

on
ds

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

l
lllllllll
l
lllllllll
llllllllll
l
lll
l
lllll

l
l
l
llll
lll
l

l
llllll
ll
l

lllll

l

l
ll

l

llll
l
ll
l

l
l
l
l
l

l
l
lll

l

lll
l
l
l
l

l
l

l

l
l

l

ll
l
l

l
l

l

l

l

lll
llll

l

ll

l
l

l
ll
ll

l

l
ll
l
l
l

ll

l

l

l
l
ll
l

l

l

l

l

ll
l
llllll

l

l
ll

ll

l
l

l

l
l

ll
ll

l
l

l

l

l
l
ll

l
l
l
l

l

ll
l

l

l

l
ll

l

l

l
lll
l
ll

l

l

l

l

l

l

ll

l

l
l

ll
l

l

l

l

l

ll

l
l

l

l

l

l

l

l

lll
l
ll

l

l

ll
l

l

l

l
ll

l

ll

lll

l

l

ll
lll
ll

l

l

l

l

l

l

l
l

l

l

l

ll

l

l
l
l

l
l

l

l

lll

l

l
lll

l

l
l
l
l
l

l

ll

l

ll
l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

ll
l

l

ll
lll
l
l

l

ll

l

l
l
l
l

l

l

ll

l

l
l

l

l
ll

ll
l

l

l

l

l
l

l

l

l
l

l
l

l

l
ll
l

l

l

lll
l

l

l
l

l
l
l
l

l
l
l

l

ll

l

l

ll
l

l

l

l

l

l

ll

l
l

l

l

l
l
l

l

l

l

lll
l
l
l

l

l
l
l

l
l

ll

l

lll
l

l

l

l

l
l

ll
l

l
l

l

l
ll

ll

l
l

l

l

l

l

ll

l
l

l

l

l

l

l

l
ll

l

l

l

l
l

l

l

l

l
l

ll
l

l

l

l
l

l

l

l
ll

l
l

l

l

l

l
l

l
ll

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l
l
l
ll

l

l

ll

l

l

l
l

l

ll
l

l

l

l

l

l

ll
l
l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l
l
l

l

l

l

l

ll

l

l

l
l

l
l

l
l

l

ll

l

l
l

l

l

l

l
l
l
l

l

l

l

l

l

l

l

l

l

l
lll

l
l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l
l

l

l
l
l

l

ll

ll

l

l

l

ll

l

l

l

l
l

l

l

l
l

l

l

l
l
l

ll

l

l

l

l

l

l

l

l

l
lll

l

l

l
l

ll

l

l

l

l
l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

ll

l
l

ll

l
ll

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l
l

l

l
l

l

l

l

l

lll

l

l

l

l

l

l

l

llllll

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

ll

l

ll

l

l

l
l

l
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l
l
l
l

l
l

l

l
l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

0 10 20 30 40 50

0

5

10

15

20

Number of user

D
el

ay
 in

 s
ec

on
ds

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Figure 4.20: JSON editing with one modification per second for
ShareDB (left) and formic (right).

and the corresponding transformation function. Surprisingly, the
delays in the document editing scenario are a little higher than in
the JSON editing scenario, which we expected to be the other way
around. The only reasonable explanation that we could find is, that
handling smaller objects in a hierarchy, as in the JSON experiment,
is computationally less expensive than handling one big object, i.e.
the document, in the preceding experiment.

We admit that our prototype leaves room for improvement when
comparing it with ShareDB. Therefore, we discuss the superiority of
ShareDB and the resulting opportunities to improve our prototype
in the next subsection.

4.6.3 Discussion

With respect to text editing scenarios, we can confirm the finding
of Dang and Ignat that the performance of OT in collaborative web
applications is limited at large scale. However, the performance of
formic is comparable with Google Docs. We note that the used local
cluster for the evaluation of formic is relatively old. Hence, we would
expect even better results with modern hardware. Unfortunately,
Google provides no insight into the used infrastructure and the
underlying OT implementation and it is therefore difficult to reason
about the performance results of Google Docs.

136 on stateful presentation tiers with ot

In the JSON editing scenario, our library performs worse than the
competitor ShareDB. We explain the difference in the performance
by the used optimizations in ShareDB which are not implemented
in formic yet. For example, multiple operations on the local replica
can be combined before they are sent to the server. This reduces the
amount of necessary communication and leads to faster response
times. However, since we again compare a research prototype to an
established tool7, we are quite satisfied with formic’s performance
and judge our our transformation-based approach to edit JSON
objects as successful.

One major bottleneck in formic is the mapping of a JSON object to
an ordered n-ary tree. The mapping enforces a total order in every
layer of the tree, which is technically not necessary for every JSON
component. For example, key/value pairs inside a JSON object do
not require ordering, whereas elements inside an array must be
ordered. This issue can be solved by introducing a more complex
data model that is directly tailored to JSON. The most interesting
solution would use a combination of different consistency control
systems to best suit the JSON definition, e.g. a combination of the
OR-Set CRDT [Sha+11b] and OT.

One particular strength of our library is that we base our transfor-
mation of JSON operations on a verified transformation function,
namely XFORMT . In contrast, ShareDB offers no proof that the un-
derlying transformation works flawlessly for every edge case, even
though we did not find any violation in our experiments. However,
we find it curious that ShareDB’s delete and replace operation on
the JSON data type require to include the item that is deleted or
replaced as a parameter [Gen11]. In formic, and ultimately in our
transformation of tree operations, we only transform the access
path and avoid transforming the state of an object itself. The au-
thors of ShareDB also identified this to be an issue and proposed
an updated version of their API, which, unfortunately, was never
implemented in ShareDB [Gen12]. We have no insights why this
idea was abandoned, but we think that our transformation function
and our approach to translate JSON operations to tree operations
actually solves this issue, because formic’s API is essentially identical
to the idea that was proposed by the ShareDB authors. At this point,

7 ShareDB together with its predecessor ShareJS have over 6000 stars on GitHub,
which indicates a significant interest of the open-source community in both tools.

4.6 evaluation 137

we leave further investigation as future work, but we think that an
integration of our transformation function in ShareDB is promising
to solve the outlined issues.

Applicability, Feasibility, and Limitations

With our conducted experiments we confirmed both: the feasibil-
ity to store, process, and replicate more application state in the
presentation tier, and the limitations of OT based system at large
scale. The explored limitation, i.e. the growth of the replication lag
with the number of concurrent users, raises the question whether
a system similar to formic is applicable in general and what kind
of applications must be excluded. We think, that the answer to this
question depends on the intensity of concurrent access to the same
object. The typical use-case for such systems include collaboration
systems like, in fact, Google Docs, which works absolutely fine for
most of the users, even though there are the outlined scalability
drawbacks. However, even in such use-cases the limitations can be
reached quite easily. For example, in 2013 a Massive Open Online
Course asked all 40000 participants to register for the course by
editing a Google Docs document. As a consequence of the lack of
scalability, the course had to be canceled8 [Jas13].

While this anecdote illustrates the limitations and where our ap-
proach should not be used, we think that the set of applications
that can benefit from it is bigger than expected. One significant
requirement to apply our approach in applications is that the used
data is small enough to be processed in the presentation tier, i.e. on
the client’s device. Once that requirement is fulfilled, a variety of
applications that enable modifications of a manageable number of
users to a shared object can benefit from our approach. In addition
to the already mentioned real-time collaboration tools, we think that
mobile online games could benefit from our approach as well. In or- The source code

of the battleship
game is freely
available in the
formic GitHub
repository.

der to illustrate the opportunities, we implemented a browser-based
battleship game that utilizes formic to allow immediate updates of
the interface upon new interactions, while the operations on the
battlefield are asynchronously sent to the server. Overall, with the
experiment results and the outlined areas of applications we judge

8 Ironically, it was a course on The Fundamentals of Online Education.

138 on stateful presentation tiers with ot

our approach to process and store more state in the presentation
tier as successful.

We note that the required server that sequences the operations can
be seen as a drawback, even though most of the communication in
the web is still client-server based. As outlined in Section 4.2, a peer-
to-peer based OT architecture requires a transformation function
that satisfies TP2. Unfortunately, designing a TP2-valid transforma-
tion function is an error prone task, which we illustrate in the next
section where we present the related work.

4.7 related work

The initial idea of storing more state in the presentation tier emerged
from early groupware and collaboration systems. In those systems,
the collaborators expect high responsiveness of the shared docu-
ments, i.e. edit operations must be executed as fast as editing a
document on the local hard drive. The only way to achieve this,
especially in unreliable networks like the Internet, is if every col-
laborator maintains an own replica of the document that allows
updates without waiting for confirmation from the other replicas
[SS05]. Hence, collaborative systems require multi-leader replication
(see Section 2.2.2) and face the consequences of the CAP dilemma
[Bre00; GL02; Kle15]. That is why those challenges were addressed
by several research groups in the distributed systems community.

Operational Transformation

OT has been introduced by Ellis and Gibbs in 1989 [EG89], followed
by multiple decades of research around the mechanism and very
valuable contributions from various groups; mostly in the Computer
Supported Cooperative Work community. Prominent example appli-
cations that utilize OT are Google’s document editing suite Google
Docs [DR18] and the free competitor Etherpad [Fou18b].

The key idea of OT, as outlined in Section 4.2, is that local op-
erations can be immediately applied on the state of a replica, and
remote operations are transformed against the operations that were
applied concurrently in order to include the effects of those. Ul-
timately, all replicas converge to the same state even though the
operations were applied in different orders.

4.7 related work 139

In order to achieve this, OT systems consist of control algo-
rithms and transformation functions, which have been introduced
by various researchers over the past 29 years. The different con-
trol algorithms include dOPT [EG89], Selective-undo [PK94], Jupiter
[Nic+95], adOPTed [RNRG96], GOT [Sun+98], GOTO [SE98], SOCT2

[SCF97; SCF98], SOCT3/4 [Vid+00], SDT [LL04; LL08], COT [SS06;
SS09], and Wave [DWL10]. Those algorithms can be categorized
into two groups: either they require a central server that sequences
the operations, or they work on a peer-to-peer basis. We note that
the majority of web-based collaboration tools that utilize OT are
based on those control algorithms that introduce a central server,
e.g. Jupiter or Wave.

We followed this observation by tailoring our transformation
function XFORMT , and the corresponding mapping of JSON objects
to n-ary trees, for web application. Therefore, we utilized Wave in
formic and in our prototype of a collaborative patient documentation
system. As we have illustrated in Section 4.2, the choice of the
control algorithms predetermines the set of properties that must
hold for the transformation function.

Transformation Functions for Complex Data Structures

The transformation functions that were introduced alongside the
early groupware applications focused on collaborative text editing
and were based on list operations [EG89; RNRG96; SE98; SCF97;
LL04; Imi+03]. As a consequence, building more complex appli-
cations that exceed the capabilities of lists requires a new set of
transformation functions that support arbitrary nested objects.

Davis et al. [DSL02] were, to our knowledge, the first that applied
the OT approach on treelike structures. They extended operational
transformation to support synchronous collaborative editing of doc-
uments written in dialects of SGML (Standard General Markup
Language) such as XML and HTML. The authors introduced a set
of structural operations with their associated transformation func-
tions tailored for SGML’s abstract data model grove. Their approach
is followed by [Sun+06]; showing improvements in XML editing
and implementations in collaborative business software. Ignat and
Norrie introduced a similar approach by, namely treeOPT, where

140 on stateful presentation tiers with ot

they apply the OT mechanism recursively on different document
levels [IN03].

Oster et al. [Ost+06b] proposed a framework for supporting collab-
orative editing of XML documents. Their framework works similar
to the Copy-Modify-Merge paradigm widely used in version control
systems such as CVS. The synchronization of the replicated XML
documents is based on Operational Transformation. They make also
use of a positional addressing scheme of the XML elements; similar
to our translation of JSON Pointers to access paths.

In contrast the aforementioned related work, we provide an al-
ternative, more generic transformation function that is not shaped
specifically for XML. Hence, with our transformation function we
enable more general use-cases of hierarchical OT. From this, we were
able to derive a transformation of operations on JSON objects. In ad-
dition, we presented our transformation functions in a programming
language near notation, so that they can be easier implemented. We
are, to the best of our knowledge, the first that introduced a verified
transformation function that enables simultaneous editing of JSON
objects.

Formal Verification

Ressel et al. identified two important properties of a transformation
function that must be satisfied to achieve convergence in conjunc-
tion with certain control algorithms [RNRG96]. These properties
are TP1 (Definition 9) and TP2 (Definition 10). It turned out, that
server-based control algorithms work sufficiently if the transforma-
tion function satisfies TP1, without requiring TP2 [KK10]. Those
systems are able to go without TP2, because the server sequences
the operations and a transformation is only applied between two
parties, i.e. the server and the client. Peer-to-peer control algorithms,
however, require TP2 in addition to TP1.

Unfortunately, designing a TP2 valid transformation function is
a challenging task which is prone to errors. In fact, most of the
introduced transformation functions falsely claimed to satisfy TP2,
even though they undertook a peer preview process. Imine et al.
used the theorem prover SPIKE [BKR92] to identify counterexamples
for the transformation functions that were introduced with dOPT,
AdOPTED, SOCT2, and SDT [Imi+03]. In the same work, the authors

4.7 related work 141

introduced an own transformation function alongside with a SPIKE-
based “proof” that TP2 is satisfied. Oster et al. later showed that the
proof implementation of this transformation function was invalid
because of incorrect assumptions [Ost+05].

As a consequence of the failed attempts to present a TP2 valid
transformation function for collaborative editing, Randolph et al.
further investigated the introduced OT systems and concluded that
it is impossible to achieve TP2 in a meaningful transformation
function [Ran+15]. Despite this impossibility result, the TTF OT
system by Oster et al. provides, to the best of our knowledge, the
only transformation function that claims TP2 validity for which no
counterexample is known [Ost+06c]. The authors circumvent the
conclusion of Randolph et al. by introducing a different notion of
the transformation.

In contrast to the efforts of designing a TP2 valid transformation
function, the work in this chapter focused on web systems which
are mostly client-server based. Hence, we judge the requirement of
a server to show the feasibility to store and process more data in the
presentation tier as justified. Fortunately, proving the required TP1

validity is significantly easier. Even though the introduced transfor-
mation function by Ellis and Gibbs [EG89] had a tiny flaw [Sun+98;
SCF98; RNRG96; Imi+03], all later introduced transformation func-
tions that were mentioned in the previous paragraphs turned out to
be TP1-valid. In addition to the machine-checked proofs by Imine et
al., we confirmed this result in an Isabelle/HOL implementation for
the transformation function that we presented in Listing 4.1 [JH15].

As a main contribution of this chapter, we introduced a TP1 valid
transformation function for operations on n-ary trees. In the corre-
sponding technical report, we provide a hybrid proof that is mostly
hand-written but also relies on an Isabelle/HOL implementation of
XFORML [JH15]. Oster et al. also presented a verification of their
XML-based transformation function [Ost+06b]. They claim with
respect to proving the correctness: “It is nearly impossible to do
this by hand” and refer to an automated tool named VOTE to fulfill
the challenge [Imi+06]. Compared to their work, we define the un-
derlying model precisely for our purpose—the synchronization of
changes on generic hierarchical objects. Moreover, we took the chal-
lenge of Oster et al. and managed to prove the correctness by hand.
Our approach of verifying a tree-based transformation function is

142 on stateful presentation tiers with ot

followed by Sinchuk et al., where the authors use Coq to verify that
TP1 is satisfied [SCS16].

Libraries and Performance at Large Scale

In addition to the academic attention that OT received, we have
seen various open-source projects that address the challenge to
make OT more accessible, especially for web applications. The most
interesting representative for us is ShareDB; an OT library based
on JavaScript that allows an easy integration of live concurrent
editing in web applications [SG15]. The library additionally sup-
ports concurrent editing of hierarchical JSON objects. As opposed to
our generic approach, ShareDB only offers support for JSON-based
hierarchical structures. Further exists, to our knowledge, no veri-
fication of the used transformation functions and no publication
or abstracted documentation so that a reimplementation is rather
difficult.

Another interesting open-source library is JOT (JSON Operational
Transformation), which also supports simultaneous editing of JSON
objects [Tau13]. Again, the authors omit an analysis of the necessary
properties in order to guarantee convergence. With our library
formic, we contributed an alternative to both mentioned libraries.
Our library is based on verified transformation functions and is,
moreover, capable of handling more generic tree structures than
just JSON. Our library is also capable of offline-editing, which is
currently not possible with ShareDB or JOT.

Dang and Ignat were, to our knowledge, the first who analyzed
the performance of OT-based collaboration systems at large scale
[DI16]. We followed their idea and used their experiment design to
evaluate our library in direct comparison to ShareDB. Our evalua-
tion is, to the best of our knowledge, the first in depth analysis of
ShareDB at large scale.

Apart from OT, other multi-leader replication mechanism are
currently used to store more state in the presentation tier. Most note-
worthy are Conflict-Free Replicated Data Types [Sha+11b], which
we extensively studied in the previous chapter (see Section 3.2).
Several benchmarks have been conducted to show the suitability
of CRDTs for document editing [BUS16; AN+11]. In recent work,
Nédelec et al introduced a web-based collaborative editor CRATE

4.8 chapter summary 143

that is based on CRDTs and enables collaboration without the need
of a central server [NMM16]. Kleppmann and Beresford’s JSON
CRDT is very promising in that regard as well [KB17]. However, this
CRDT has, to the best of our knowledge, not been utilized in a col-
laborative application. Most recently, Kleppmann et al. introduced
an implementation of the JSON CRDT in form of the JavaScript
library automerge [Kle+18]. The library also enables handling more
state in the presentation tier and supports simultaneous editing of
JSON objects. Unfortunately, the library was introduced after we
conducted our experiments. Nevertheless, we think that an analysis
of automerge at large scale is highly interesting, because we expect
much better scalability properties compared to the server-based OT
approach.

An alternative but noteworthy mechanism is Differential Synchro-
nization by Neil Fraser [Fra09], which is a state based synchroniza-
tion mechanism based on diffing and patching. An implementation
of Jan Monschke demonstrates the applicability to JSON documents
[Mon15]. So far, we have not seen much academic attention to it.

4.8 chapter summary

In order to achieve our goal to show that storing and processing
more state in the presentation tier is worth considering, a usable
multi-leader replication mechanism for web-based applications is
necessary. Therefore, we presented our extension of a replication
mechanism that is extensively used in collaboration systems, namely
Operational Transformation. Our extension enables simultaneous
editing of JSON objects, which are omnipresent in today’s web
applications.

In order to provide the necessary confidence that the properties of
our extension hold, i.e. the convergence of replicas, we introduced a
transformation function for operations on ordered n-ary trees and
verified the necessary convergence property TP1. The proof was
carried out by hand for every combination of operations and parts
of the verification were based on properties that have been proven
in Isabelle/HOL. For the JSON extension we introduced a mapping
between JSON objects and n-ary trees and a translation of JSON
Pointers to paths inside the tree.

144 on stateful presentation tiers with ot

We showed the transferability of our theoretical approach to practice
with our research prototype of a patient documentation system. This
use-case was motivated by our observations at the Charité hospital
in Berlin, where we have seen many paper-based documentation
that could be replaced by our prototype. With our prototype we
demonstrated that our JSON extension has the necessary versatility
to be utilized in conjunction with modern web development in
application domains other than groupware systems.

With formic we presented a library that provides our JSON ex-
tension together with a fully implemented OT system. This library
can be utilized to implement new web applications that benefit
from handling more state in the presentation tier without explicitly
managing the replication or the propagation of operations.

We evaluated our library and our JSON extension of OT in an
experiment design by Dang and Ignat [DI16] and compared our
measurements of formic against the results of Google Docs in a
collaborative editing scenario at large scale. As result, we were
able to show that our library is able to keep up with Google Docs
and even outperforms it at larger scales of 30 to 50 concurrent
collaborators. More importantly, we were able to confirm that the
performance drop at higher scale is an inherent artifact of server-
based OT systems. In a direct comparison to ShareDB, a library
that also offers an OT system for JSON objects, our experiments
revealed that formic needs further improvement of the underlying
engineering in order to keep up. Nevertheless, the fact that ShareDB
also showed similar limitations at large scale is further evidence for
the general limitations of server-based OT systems.

Ultimately, we judge our approach of utilizing end extending OT
to store and process more state in the presentation tier as successful,
as long as concurrent access to a replicated object is within the limits
that were revealed by our evaluation. We see our prototype of a
collaborative patient documentation system and our library that
supports the development of new applications as both evidence and
motivation that our approach is worth considering. Furthermore,
we are happy to see that the contributions that were carried out in
this chapter have been recognized in the scientific community [JH16;
JH15; JCR17; JB17] and that we were able to discuss our ideas with
the most influential researchers in the field.

5O U T L O O K A N D D I S C U S S I O N

5.1 transferability

The example applications that we developed in the previous chap-
ters demonstrated that our approach is worth considering in partic-
ular application domains. While we analyzed those applications, i.e.
an IMAP service and a patient documentation system, in depth, a
discussion on how our approach can be adapted in other applica-
tions is necessary. This discussion, which we conduct in this section,
focuses on what classes of applications are considerable for our
approach and how the arising challenges must be addressed.

IT Services with a stateful Logic Tier

In Chapter 3 we analyzed the feasibility of using CRDTs as multi-
leader replication mechanism for an IMAP service with a stateful
logic tier. In contrast to the OT-based approach in Chapter 4, the
fact that CRDTs require no central server to sequence the operations
is more appealing and predisposed to be applied in the logic tier.
Hence, we are convinced that CRDTs represent the most fruitful
alternative to transfer our approach to other IT services with a
stateful logic tier.

Based on the knowledge that we have gained when we designed
the IMAP-CRDT, we judge the limitations of CRDTs in terms of ex-
pressiveness and capability to preserve invariants as the biggest ob-
stacle. Hence, the biggest challenge when transferring our approach
to other applications would be to define meaningful operations on
a state representation that is composed of CRDT primitives, e.g.
counters, sets, and registers. Unfortunately, this definition requires
careful consideration of the application-dependent requirements
and the desired results in the presence of concurrent updates. As
mentioned in our presentation of the related work in Section 3.7,
there are ongoing research projects that aim to simplify the de-
velopment of CRDT-based applications by providing usable data

145

146 outlook and discussion

type implementations and update propagation mechanisms [AB16;
MVR15; Kle+18].

The mentioned JSON CRDT by Kleppmann and Beresford [KB17]
represents, in our opinion, the most noteworthy contribution to
further follow the idea of handling more state in the logic tier.
The versatility of JSON—especially the capability to nest objects
and order items in an array—is most beneficial when mapping the
structure of an application’s state to a CRDT. Nevertheless, even the
JSON CRDT is not directly capable of enforcing application based
invariants, e.g. that there are only a certain number of values or that
the sum of the values never exceeds a certain threshold.

In essence, we judge that using CRDTs to model an application’s
state is generally easier if the application can tolerate a certain devi-
ation from the defined invariants and the expected behavior of the
operations, e.g. in our IMAP service pluto we allow a deleted folder
to reappear if there were concurrent APPEND or STORE operations. If
an application is less tolerant in that regard, applying our approach
and designing operations on an application specific CRDT would
be significantly more difficult and more likely to fail. However, we
think that a general classification whether our approach can be
applied with reasonable effort would be, at least at the current state
of CRDT-related research, too imprecise to be meaningful. Neverthe-
less, we think that further investigation of the required properties
to apply our approach is certainly valuable and we leave it open for
future work.

Byzantine Fault Tolerance

The system model of CRDTs (see Section 3.2) assumes non-byzantine
behavior of the replicas in order to guarantee convergence. We note
that this assumption also influences the set of applications that can
benefit from our approach. In general, we expect the applications
in the logic tier to be robust and under control of the application’s
administrator. Nevertheless, an administrator must be aware of the
possible attacks on the convergence guarantees and the resulting
damage for the application.

Such attacks include sending wrong causality information, e.g.
wrong vector clocks. If a replica purposely sends the wrong vec-
tor clocks, it is possible to dominate other replicas and revert the
changes by imitating that two operations happened concurrently,

5.1 transferability 147

even though the remote operation happened-before the local op-
eration. In the opposite case, one replica can slow down other
replicas by sending vector clocks from the future to feign that there
are lost messages that need to be retransmitted. While the outlined
attacks seem to be highly critical for our approach, it is question-
able whether traditional approaches that bundle the application
state in the data tier are better in that regard. For example, in a
database management system with single-leader replication (see
Section 2.2.2), a follower could easily disrupt the system by exposing
itself as a new leader, resulting in divergence between the old leader
and the imitation.

In essence, the possibility of our approach to decentralize the
state across multiple replicas in the logic tier requires the same trust
in the operators and administrators as needed when the state is
processed in a centralized fashion within a single data center. For ap-
plications that require byzantine fault tolerance (BFT), there are few
solutions that were recently introduced in the scientific community.
For example, Shoker et al. introduced a combination of eventual
consistent and strong consistent systems that can be used to vali-
date that the results of the eventual consistent system are correct
[SYB17]. Another option that gained a huge amount of attention in
the last years are blockchains [Nak08]. Here, a blockchain similar to
ethereum [Woo14] could be used to implement the state changing
operations as smart contract. Blockchains, however, typically intro-
duce a new set of challenges that need to be addressed [Und16].
The most important drawback, currently, is the required energy that
is necessary to maintain the network and to solve the underlying
consensus problem1.

Transferability of Stateful Presentation Tiers

When it comes to storing and processing more state in the pre-
sentation tier, we think that our approach is easier to transfer to

1 By the time of writing this thesis, the amount of energy per year that is used to
maintain the Bitcoin network is estimated to be 59 TWh, which is equivalent to
the energy consumption of Colombia; a country with a population of over 49

million [Dig18]. While the required energy to maintain the network is that high,
the throughput of Bitcoin is estimated to be between 2 and 3 transactions per
second [Lux18], which is surprisingly low compared to Paypal (over 190) or Visa
(over 1600) [Tod18].

148 outlook and discussion

other applications compared to our efforts for a stateful logic tier.
The main reason is, that the de facto standard device to interpret
the code in the presentation tier is, in fact, a web browser. With
this unification, the set of the necessary technology to transfer our
approach to other applications is reduced to JavaScript libraries
that interact with the browser’s capabilities. Moreover, client-server
based multi-leader replication mechanisms are also applicable, be-
cause this architecture is still the predominant one for web-based
applications. Hence, in addition to CRDTs, which we utilized in our
idea of a stateful logic tier, OT systems can also be considered.

The major challenge when transferring our approach to other
applications is to express the structure of the application’s state as a
datatype that is supported by a multi-leader replication mechanism.
To this end, we judge our JSON extension of OT as promising in that
regard. Moreover, the JSON CRDT [KB17] and the implementation
for web applications automerge [Kle+18] can be seen as the CRDT-
based pendant to our OT extension and formic.

The limitations of the transferability in terms of scalability have
been analyzed in detail in Section 4.6. In essence, applications that
require highly concurrent write access on the same object with more
than 30 simultaneous users per second are suffering from the OT-
inherent increase of the delay at large scale. Hence, applying our
approach to those applications necessarily requires further investiga-
tion of the best suited replication mechanism. We think that CRDTs
are promising in that regard, but a detailed analysis of the JSON
CRDT for collaborative applications at large scale has, to the best of
our knowledge, not yet been conducted and is certainly interesting
for future work.

5.2 perspectives

While the discussion in the previous section mainly focused on how
existing applications can benefit from more state in the early tiers,
we find it similar interesting to discuss the perspective for future
applications that implement our approach.

5.2 perspectives 149

5.2.1 Decentralized Off-Cloud Services

In Chapter 3 we introduced our idea of storing and replicating more
state in the logic tier, mainly because to increase the reliability and to
enable better performance at very large scale. The underlying multi-
leader replication architecture allows replicas to stay available and
responsive, even in the presence of network partitions. While our
evaluation and the discussion in Section 3.5 and 3.6 already includes
rather unconventional use-cases for our approach, for example
geo-replication or hybrid-cloud setups, we think that the enabled
possibilities are worth exploring.

One interesting idea that emerged from the blockchain commu-
nity is the notion of a decentralized web or Web3 [Fou18c], where
popular services that are currently operated in a centralized fash-
ion, e.g. search engines like Google, social networks like Facebook,
or communication services like WhatsApp, are replaced by fully
distributed ones that run on shared infrastructure, i.e. a blockchain.
On a closer look, the main purpose of the blockchain technology
is to maintain a fault-tolerant consensus on particular transactions
that can be executed by every participant and initiated by every
node that contributes to the network. As a major benefit, everyone
can participate in the network without requiring to trust the other
participants.

Unfortunately, because the multi-leader replication mechanism
that we explored in this thesis assume non-byzantine behavior,
applying our approach requires a certain trust in the operators of the
replicas. In contrast to blockchains, however, no expensive consensus
mechanism is necessary as the replicas converge by design. Hence,
if a group of operators share a certain mutual trust, designing and
operating a decentralized service similar to Web3 is possible with
our approach; without the significant blockchain-related overhead

In order to illustrate this idea, we reuse our IMAP example, which
we extensively analyzed in Section 3.3. In this example, we assume
a small group2 of users that typically trust a smaller number of
administrators that host the group’s IMAP service on a public cloud.
In contrast to this rather traditional approach, the group could use

2 This could be a small organization or a loosely coupled group of students that,
for example, aim to improve the study programs at the university. In both cases,
we assume that they need a reliable mail infrastructure.

150 outlook and discussion

a distributed IMAP service similar to pluto that is hosted by every
member of the group on separate low-budged commodity infras-
tructure with Internet access. This infrastructure possibly includes
smartphones, IoT-Devices like the Raspberry Pi, or wireless routers.
We note that this decentralized deployment of an IMAP service on
edge devices is only possible because of the utilized multi-leader
replication that supports an arbitrary number of replicas without
requiring expensive coordination like consensus.

As mentioned, the absence of BFT must be balanced with the
amount of trust that is necessary between the members of the group.
However, in this case, where the users are considered to be part of
a group and share a common goal, we believe that this balance is
possible to make. Moreover, further improvements to require less
trust are certainly possible, for example by requiring operations to
be signed by the replicas with a private key. We think that the idea
of decentralizing software services to infrastructure beside public
clouds and without requiring expensive consensus mechanisms,
like a blockchain, is worth investigating. The use of multi-leader
replication mechanisms outside the data tier is promising in that
regard and the in depth analysis that we carried out in this thesis
could contribute to the design of off-cloud services.

5.2.2 Collaborative Web

While our idea of decentralized off-cloud services mainly focused
on our approach towards a stateful logic tier, further exploring the
possibilities of a stateful presentation tier is promising as well. We
note that the applications that are already utilizing stateful pre-
sentation tiers and multi-leader replication are, in fact, collaborative
applications, i.e. applications where multiple users simultaneously
edit the same document or object. With our JSON OT extension and
formic we showed how web applications, e.g. patient documentation
systems or games, can implement our approach and benefit from
improved reliability. Nevertheless, we admit that both introduced
use-cases are, in fact, pretty similar to what would be considered a
collaborative application.

This observation raises the question whether web applications
where only one user interacts with certain objects are excluded
from our approach. One example for such applications are web

5.2 perspectives 151

mail clients, where only one user is supposed to interact with the
mailboxes over the web interface. As a consequence, those web
interfaces are not designed to be collaborative in any way.

On the other side, there is a growing number of Internet devices,
such as mobile phones, tablets, or smart watches, that utilize web
browsers or browser engines like WebKit [App18] to access and
edit information on the web. Following the predictions of Gartner,
there will be over 12 billion Internet-ready devices in the consumer
category by 2020 [Gar18]. The amount of devices that a single
person uses to access web services inevitably leads to situations
where a user is in collaboration with him- or herself. This can be
best illustrated with the aforementioned web mail client example:

In this example, we assume that a user starts to compose a new
email message on a smartphone in a rural area without sufficient
mobile Internet access. After the first few paragraphs, the user
switches to a desktop computer with cable Internet access to write
the last paragraphs. At this point, the paragraphs written on the
smartphone are not synchronized with the desktop computer and
therefore not accessible. We note that at this point a multi-leader
replication mechanism is necessary to provide the certainty that
the changes on the two devices eventually converge to a single,
meaningful email. If the user interface, i.e. the presentation tier,
would be designed to be collaborative in the first place, the situation
could be handled like a shared document in Google Docs, where all
changes are exchanged and merged when the devices reconnect with
the server. In traditional interface designs, however, the user would
end up with two separate mails that must be manually merged.

We find the perspective to design a web application to be collab-
orative, even though it is not an online collaboration application,
highly interesting. This resulting Collaborative Web, a term that is
currently not used for this purpose, could be seen as a next step in
the evolution of the services we use. However, we admit that this
perspective is highly visionary at this point and by no means an
inevitable consequence. Nevertheless, the contributions made in this
thesis are certainly valuable to further explore this idea.

6C O N C L U S I O N

In this thesis we analyzed the feasibility to store and process more
state in the logic and presentation tier. During the exploration of our
assertion that such novel placements of stateful components in a 3-
tier architecture are worth considering, we identified and addressed
the emerged challenges that originate from fundamental and un-
solved problems in distributed systems research. Among others, the
CAP dilemma represents a major restriction of the possibilities of
distributed and decentralized services, especially with respect to the
consistency of the state. With the contributions that were carried out
with this thesis, we conduced to close the exposed gap of the CAP
dilemma and demonstrated how standard IT services can benefit
from our approach.

In order to substantiate the assertion of this thesis, we presented
the necessary background in Chapter 2, followed by an exploration
how multi-leader replication systems, and especially CRDTs, can
be utilized to overcome the impossibility to keep a service with
a stateful logic tier both available and consistent in the presence
of failures. In Chapter 3, we exemplified our exploration with an
IMAP service and therefore introduced a verified IMAP-CRDT
and a research prototype to demonstrate that our approach can be
transferred from theory to practice.

We are confident that the initial exploration of the feasibility of
using CRDTs as multi-leader replication mechanism of an IMAP
service can be considered successful. Along the way, we made two
important contributions: a verified IMAP-CRDT design and the
evaluation of our prototype, where we showed that the replication
lag can be significantly reduced compared to dsync, the replication
tool of the de facto standard IMAP server Dovecot.

We considered IMAP as the example to show the benefits of
modeling standard IT services with CRDTs. Offering multi-leader
replication without the need of manual conflict resolution enables
not only the possibility of planet-scale distributed applications, but
also more reliability in the presence of failures. To emphasize this

153

154 conclusion

further, this work convinced us that really any stateful IT service
should be examined for applicability of multi-leader replication.
Relying on strongly-consistent operations and fault-free infrastruc-
ture can get risky as state becomes ever more shared and clients
distributed. CRDTs, combined with formal verification, offer the
means to achieve confidence in relaxed consistency. Thus, consider-
ing this approach when designing and even upgrading large-scale
IT services can be a matter of securing viability of a particular
service—even in a single data center deployment.

Our exploration of the feasibility of storing and processing more
state in the logic tier is followed by the corresponding analysis for
the presentation tier in Chapter 4. Here, we explored how OT—
another multi-leader replication mechanism—can be utilized to
enable more reliable and autonomous user interfaces of web appli-
cations. On this way, we identified an essential obstacle that makes
it unnecessary difficult to apply OT in modern web applications,
i.e. the absence of the possibility to transform operations on JSON
objects. To this end, we contributed a verified transformation func-
tion for operations on ordered n-ary trees, which we utilized to
introduce our JSON extension of OT. The further contributions that
resulted from the exploration in this chapter include a prototype
application where we showed how our extension can be used in a
collaborative patient documentation system, and our programming
library formic.

With formic, we presented an open-source library that simpli-
fies the development of web-based collaborative applications by
providing a fully working OT system with implemented transfor-
mation functions for operations on lists, trees, and JSON objects.
The conducted experiment demonstrated that our library is able
to compete against Google Docs, the most successful collaborative
application that utilizes OT. Moreover, we were able to reveal how
much the underlying client-server architecture limits the perfor-
mance of JSON-based OT systems at large scale.

In summary, this thesis contributed new insights on the challenges
that arise when following an unconventional but yet promising
application design that uses stateful components in the early tiers.
The arising challenges were addressed with novel extensions to
existing multi-leader replication mechanisms that can be reused,
not only for the purpose that was in focus of this thesis, but also

conclusion 155

when applying those mechanisms in other domains. Our approach,
where we began with the system design and verification, followed
by the implementation and evaluation, turned out to be successful
in this regard. The resulting prototypes combine theory and practice
and are able to play off the conceptual benefits.

To conclude, we are convinced that the analyzed unconventional
application designs are, in fact, considerable. We believe that the
resulting opportunities and perspectives of such designs, which we
briefly sketched in Chapter 5, are promising and worth exploring.
Hence, we end this thesis by showing our gratitude that we were
able to discuss our ideas and findings with the scientific community
and are delighted to see that some of our contributions already made
an impact on the work of other scientists and reputable colleagues.

B I B L I O G R A P H Y

[Aba12] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Dis-
tributed Database System Design: CAP is Only Part of the
Story. IEEE Computer 45 (2), 37–42.

[AT03] Navid Aghdaie and Yuval Tamir. 2003. Fast Transparent
Failover for Reliable Web Services. In: Conference on Parallel
and Distributed Computing and Systems (PDCS), 757–762.

[AT09] Navid Aghdaie and Yuval Tamir. 2009. CoRAL: A Transpar-
ent Fault-tolerant Web Service. Journal for System Software
82 (1), 131–143.

[Aha+95] Mustaque Ahamad et al. 1995. Causal Memory: Definitions,
Implementation, and Programming. Distributed Computing
9 (1), 37–49.

[AN+11] Mehdi Ahmed-Nacer et al. 2011. Evaluating CRDTs for Real-
time Document Editing. In: ACM Symposium on Document
Engineering (DocEng), 103–112.

[Akk+16] Deepthi Devaki Akkoorath et al. 2016. Cure: Strong Seman-
tics Meets High Availability and Low Latency. In: Interna-
tional Conference on Distributed Computing Systems (ICDCS),
405–414.

[AB16] Deepthi Akkoorath and Annette Bieniusa. 2016. Antidote:
the Highly-available Geo-replicated Database with Strongest
Guarantees. � pages.lip6.fr

[ASB15] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero.
2015. Efficient State-Based CRDTs by Delta-Mutation. In:
Networked Systems (NETYS), 62–76.

[ASB18] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero.
2018. Delta State Replicated Data Types. Parallel and Dis-
tributed Computing 111 (1), 162–173.

[ALaR13] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013.
ChainReaction: A Causal+ Consistent Datastore Based on
Chain Replication. In: European Conference on Computer Sys-
tems (EuroSys), 85–98.

[Ama18] Amazon. 2018. Elastic Block Store. � aws.amazon.com

157

https://pages.lip6.fr/syncfree/attachments/article/59/antidote-white-paper.pdf
https://aws.amazon.com/ebs/

158 bibliography

[And+09] David Andersen et al. 2009. FAWN: A Fast Array of Wimpy
Nodes. In: Symposium on Operating Systems Principles (SOSP),
1–14.

[App18] Apple. 2018. WebKit: a fast, open source web browser engine.
� webkit.org

[Att+16] Hagit Attiya et al. 2016. Specification and Complexity of
Collaborative Text Editing. In: Symposium on Principles of
Distributed Computing (PODC), 259–268.

[AB00] Luis Aversa and Azer Bestavros. 2000. Load Balancing a
Cluster of Web Servers: Using Distributed Packet Rewriting.
In: International Performance, Computing, and Communications
Conference (IPCCC), 24–29.

[Bai+12] Peter Bailis et al. 2012. The Potential Dangers of Causal
Consistency and an Explicit Solution. In: ACM Symposium
on Cloud Computing (SOCC), 22:1–22:7.

[Bai+13] Peter Bailis, Ali Ghodsi, Joseph Hellerstein, and Ion Stoica.
2013. Bolt-on Causal Consistency. In: International Conference
on Management of Data (SIGMOD), 761–772.

[BAL16] Carlos Baquero, Paulo Sérgio Almeida, and Carl Lerche.
2016. The Problem with Embedded CRDT Counters and
a Solution. In: Principles and Practice of Consistency for Dis-
tributed Data (PaPoC), 10:1–10:3.

[BAS14] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker.
2014. Making Operation-Based CRDTs Operation-Based.
In: Conference on Distributed Applications and Interoperable
Systems (DAIS), 126–140.

[Bas18] Basho. 2018. Riak Key Value Database. � basho.com

[Bie+12] Annette Bieniusa et al. 2012. Brief Announcement: Seman-
tics of Eventually Consistent Replicated Sets. In: Distributed
Computing (DISC), 441–442.

[Bir94] Ken Birman. 1994. A Response to Cheriton and Skeen’s
Criticism of Causal and Totally Ordered Communication.
Operating Systems Review 28 (1), 11–21.

[BSS91] Kenneth Birman, André Schiper, and Pat Stephenson. 1991.
Lightweight Causal and Atomic Group Multicast. ACM
Transactions on Computer Systems 9 (3), 272–314.

[Bis+16] Benjamin Bisping et al. 2016. Mechanical Verification of a
Constructive Proof for FLP. In: Interactive Theorem Proving
(ITP), 107–122.

https://webkit.org/
http://basho.com/products/riak-kv/

bibliography 159

[BEH14] Ahmed Bouajjani, Constantin Enea, and Jad Hamza. 2014.
Verifying Eventual Consistency of Optimistic Replication
Systems. In: Symposium on Principles of Programming Lan-
guages (POPL), 285–296.

[BKR92] Adel Bouhoula, Emmanuel Kounalis, and Michaël Rusi-
nowitch. 1992. SPIKE, an Automatic Theorem Prover. In:
Conference on Logic Programming and Automated Reasoning
(LPAR), 460–462.

[Brä17] Ronny Bräunlich. “Collaborative Editing of JSON Objects
based on Operational Transformation.” Master’s Thesis.
Technische Universität Berlin, 2017.

[BRVR17] Manuel Bravo, Luís Rodrigues, and Peter Van Roy. 2017.
Saturn: A Distributed Metadata Service for Causal Consis-
tency. In: European Conference on Computer Systems (EuroSys),
111–126.

[Bra14] Timothy Bray. 2014. The JavaScript Object Notation (JSON)
Data Interchange Format. 6 RFC 7159

[Bre00] Eric Brewer. 2000. Keynote Presentation at PODC. � podc.org

[Bre12] Eric Brewer. 2012. CAP Twelve Years Later: How the "Rules"
Have Changed. IEEE Computer 45 (2), 23–29.

[Bre17] Eric Brewer. 2017. Spanner, TrueTime and the CAP Theorem.
� research.google.com

[BUS16] Loïck Briot, Pascal Urso, and Marc Shapiro. 2016. High
Responsiveness for Group Editing CRDTs. In: International
Conference on Supporting Group Work (GROUP), 51–60.

[Bry13] Paul Bryan. 2013. JavaScript Object Notation (JSON) Pointer.
6 RFC 6901

[Bur06] Mike Burrows. 2006. The Chubby Lock Service for Loosely-
coupled Distributed Systems. In: Symposium on Operating
Systems Design and Implementation (OSDI), 335–350.

[Bus+96] Frank Buschmann et al. Pattern-Oriented Software Architec-
ture - Volume 1: A System of Patterns. Wiley Publishing.

[Cha+08] Fay Chang et al. 2008. Bigtable: A Distributed Storage Sys-
tem for Structured Data. ACM Transactions on Computer
Systems 26 (2), 1:1–1:4.

[CBDM11] Bernadette Charron-Bost, Henri Debrat, and Stephan Merz.
2011. Formal Verification of Consensus Algorithms Tolerat-
ing Malicious Faults. In: Stabilization, Safety, and Security of
Distributed Systems (SSS), 120–134.

https://tools.ietf.org/html/rfc7159
http://www.podc.org/podc2000/brewer.html
https://research.google.com/pubs/pub45855.html
https://tools.ietf.org/html/rfc6901

160 bibliography

[Che+15] Yunji Chen et al. 2015. Deterministic Replay: A Survey.
ACM Computing Surveys 48 (2), 17:1–17:47.

[CS93] David Cheriton and Dale Skeen. 1993. Understanding the
Limitations of Causally and Totally Ordered Communica-
tion. In: Symposium on Operating Systems Principles (SOSP),
44–57.

[Con14] Continuent. 2014. Tungsten Replicator. � continuent.com

[CDE+12] James Corbett, Jeffrey Dean, Michael Epstein, et al. 2012.
Spanner: Google’s Globally-distributed Database. In: Confer-
ence on Operating Systems Design and Implementation (OSDI),
251–264.

[Cri03] Marc Crispin. 2003. Internet Message Access Protocol. 6 RFC
3501

[Cul+08] Brendan Cully et al. 2008. Remus: High Availability via
Asynchronous Virtual Machine Replication. In: Symposium
on Networked Systems Design and Implementation (NSDI), 161–
174.

[DI16] Quang-Vinh Dang and Claudia-Lavinia Ignat. 2016. Perfor-
mance of real-time collaborative editors at large scale: User
perspective. In: IFIP Networking Conference and Workshops
(IFIP Networking), 548–553.

[DWL10] Alex Mah David Wang and Soren Lassen. 2010. Google Wave
Operational Transformation. � svn.apache.org

[DSL02] Aguido Horatio Davis, Chengzheng Sun, and Junwei Lu.
2002. Generalizing Operational Transformation to the Stan-
dard General Markup Language. In: ACM Conference on
Computer Supported Cooperative Work (CSCW), 58–67.

[DR18] John Day-Richter. 2018. What’s different about the new Google
Docs: Making collaboration fast. � drive.googleblog.com

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, et
al. 2007. Dynamo: Amazon’s Highly Available Key-value
Store. In: ACM Symposium on Operating Systems Principles
(SOSP), 205–220.

[Dig18] Digiconomist. 2018. The Bitcoin Energy Consumption Index.
� digiconomist.net

[Du+13] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwa-
enepoel. 2013. Orbe: Scalable Causal Consistency Using
Dependency Matrices and Physical Clocks. In: ACM Sympo-
sium on Cloud Computing (SOCC), 11:1–11:14.

https://www.continuent.com/
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://svn.apache.org/repos/asf/incubator/wave/whitepapers/operational-transform/operational-transform.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://digiconomist.net/bitcoin-energy-consumption

bibliography 161

[Du+14] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy
Zwaenepoel. 2014. GentleRain: Cheap and Scalable Causal
Consistency with Physical Clocks. In: ACM Symposium on
Cloud Computing (SOCC), 4:1–4:13.

[EG89] Clarence Ellis and Simon Gibbs. 1989. Concurrency Control
in Groupware Systems. SIGMOD Record 18 (2), 399–407.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technol-
ogy, and Design. Prentice Hall PTR.

[Fet11] Ian Fette. 2011. The WebSocket Protocol. 6 RFC 6455

[Fid88] Colin Fidge. 1988. Timestamps in Message-Passing Systems
That Preserve the Partial Ordering. Australian Computer
Science Communications 10 56–66.

[FLP85] Michael Fischer, Nancy Lynch, and Michael Paterson. 1985.
Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM 32 (2).

[Fou18a] Cloud Native Computing Foundation. 2018. Sustaining and
Integrating Open Source Technologies. � cncf.io

[Fou18b] Etherpad Foundation. 2018. Etherpad. � etherpad.org

[Fou18c] Web3 Foundation. 2018. Web3 is the vision of the serverless
internet, the decentralised web. � web3.foundation

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc.

[Fow14] Martin Fowler. 2014. Microservices. � martinfowler.com

[FB99] Armando Fox and Eric Brewer. 1999. Harvest, Yield, and
Scalable Tolerant Systems. In: Workshop on Hot Topics in
Operating Systems (HOTOS).

[Fra09] Neil Fraser. 2009. Differential Synchronization. In: ACM
Symposium on Document Engineering (DocEng), 13–20.

[Gar18] Garner. 2018. Gartner Says 8.4 Billion Connected "Things"
Will Be in Use in 2017, Up 31 Percent From 2016. � gartner.com

[Gen11] Joseph Gentle. 2011. JSON0 OT Type. � ottypes/json0

[Gen12] Joseph Gentle. 2012. JSON2. � josephg/ShareJS

[GL02] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjec-
ture and the Feasibility of Consistent, Available, Partition-
tolerant Web Services. SIGACT News 33 (2), 51–59.

https://tools.ietf.org/html/rfc6455
https://www.cncf.io/
http://etherpad.org/
https://web3.foundation/
https://martinfowler.com/articles/microservices.html
https://www.gartner.com/newsroom/id/3598917
https://github.com/ottypes/json0
https://github.com/josephg/ShareJS/wiki/JSON2

162 bibliography

[Gom+17a] Victor Gomes, Martin Kleppmann, Dominic Mulligan, and
Alastair Beresford. 2017. A framework for establishing Strong
Eventual Consistency for Conflict-free Replicated Datatypes. Is-
abelle Archive of Formal Proofs. � isa-afp.org

[Gom+17b] Victor Gomes, Martin Kleppmann, Dominic Mulligan, and
Alastair Beresford. 2017. Verifying Strong Eventual Consis-
tency in Distributed Systems. In: Proceedings of the ACM on
Programming Languages (OOPSLA), 109:1–109:28.

[GBR17] Chathuri Gunawardhana, Manuel Bravo, and Luis Ro-
drigues. 2017. Unobtrusive Deferred Update Stabilization
for Efficient Geo-replication. In: Usenix Annual Technical
Conference (ATC), 83–95.

[HN10] Florian Haftmann and Tobias Nipkow. 2010. Code Genera-
tion via Higher-Order Rewrite Systems. In: Symposium on
Functional and Logic Programming (FLOPS), 103–117.

[Has18] Hashnode. 2018. MERN: Build production ready universal apps
easily. � mern.io

[Her13] Tobias Herb. “Collaboration via Convergent Replicated
Data Structures.” Master’s Thesis. Technische Universität
Berlin, 2013.

[Her91] Maurice Herlihy. 1991. Wait-free Synchronization. ACM
Transactions on Programming Languages and Systems 13 (1),
124–149.

[HW90] Maurice Herlihy and Jeannette Wing. 1990. Linearizabil-
ity: A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems 12 (3),
463–492.

[HK06] Antawan Holmes and Marc Kellogg. 2006. Automating
functional tests using selenium. In: IEEE Agile Conference.

[IN03] Claudia-Lavinia Ignat and Moira Norrie. 2003. Customiz-
able Collaborative Editor Relying on treeOPT Algorithm.
In: European Conference on Computer Supported Cooperative
Work (ECSCW), 315–334.

[Imi+03] Abdessamad Imine, Pascal Molli, Gérald Oster, and Michaël
Rusinowitch. 2003. Proving Correctness of Transformation
Functions in Real-Time Groupware. In: European Conference
on Computer Supported Cooperative Work (ECSCW), 277–293.

http://isa-afp.org/entries/CRDT.html
http://mern.io/

bibliography 163

[Imi+06] Abdessamad Imine, Michaël Rusinowitch, Gérald Oster,
and Pascal Molli. 2006. Formal Design and Verification of
Operational Transformation Algorithms for Copies Conver-
gence. Theoretical Computer Science 351 (2), 167–183.

[Inc18] MongoDB Inc. 2018. MongoDB Replication.
� docs.mongodb.com

[Jas13] Scott Jaschik. 2013. MOOC Mess. � insidehighered.com

[Jun14] Tim Jungnickel. “Formal Analysis of Collaboration via Con-
vergent Replicated Data Structures.” Master’s Thesis. Tech-
nische Universität Berlin, 2014.

[JB17] Tim Jungnickel and Ronny Bräunlich. 2017. formic: Build-
ing Collaborative Applications with Operational Transfor-
mation. In: Conference on Distributed Applications and Interop-
erable Systems (DAIS), 138–145.

[JCR17] Tim Jungnickel, Juan Cabello, and Klemens Raile. 2017.
HotPi: Open-Source Collaborative Patient Documentation.
In: ACM Conference on Computer-Supported Cooperative Work
and Social Computing Companion (CSCW), 219–222.

[JH15] Tim Jungnickel and Tobias Herb. 2015. TP1-valid Transforma-
tion Functions for Operations on ordered n-ary Trees. � arxiv.org

[JH16] Tim Jungnickel and Tobias Herb. 2016. Simultaneous Edit-
ing of JSON Objects via Operational Transformation. In:
ACM Symposium on Applied Computing (SAC), 812–815.

[JO17] Tim Jungnickel and Lennart Oldenburg. 2017. pluto: The
CRDT-Driven IMAP Server. In: Workshop on Principles and
Practice of Consistency for Distributed Data (PaPoC), 1:1–1:5.

[JOL17a] Tim Jungnickel, Lennart Oldenburg, and Matthias Loibl.
2017. Designing a Planetary-Scale IMAP Service with
Conflict-free Replicated Data Types. In: Conference on Princi-
ples of Distributed Systems (OPODIS), 23:1–23:17.

[JOL17b] Tim Jungnickel, Lennart Oldenburg, and Matthias Loibl.
2017. The IMAP CmRDT. Isabelle Archive of Formal Proofs.
� isa-afp.org

[Kle15] Martin Kleppmann. 2015. A Critique of the CAP Theorem.
� arxiv.org

[Kle16] Martin Kleppmann. Designing Data-Intensive Applications:
The Big Ideas Behind Reliable, Scalable, and Maintainable Sys-
tems. O’Reilly.

https://docs.mongodb.com/manual/replication/
https://www.insidehighered.com/news/2013/02/04/coursera-forced-call-mooc-amid-complaints-about-course
https://arxiv.org/abs/1512.05949
http://isa-afp.org/entries/IMAP-CRDT.html
http://arxiv.org/abs/1509.05393

164 bibliography

[KB17] Martin Kleppmann and Alastair Beresford. 2017. A Conflict-
Free Replicated JSON Datatype. IEEE Transactions on Parallel
and Distributed Systems 28 (10), 2733–2746.

[Kle+18] Martin Kleppmann et al. 2018. automerge. � automerge

[Kub18] Kubernetes. 2018. Production-Grade Container Orchestration.
� kubernetes.io

[Kul+14] Sandeep S. Kulkarni et al. 2014. Logical Physical Clocks.
In: Conference on Principles of Distributed Systems (OPODIS),
17–32.

[KK10] Santosh Kumawat and Ajay Khunteta. 2010. A Survey on
Operational Transformation Algorithms: Challenges, Issues
and Achievements. International Journal of Computer Applica-
tions 3 (12), 30–38.

[Lad+92] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghe-
mawat. 1992. Providing High Availability Using Lazy Repli-
cation. ACM Transactions on Computer Systems 10 (4), 360–
391.

[LM10] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A
Decentralized Structured Storage System. Operating Systems
Review 44 (2), 35–40.

[Lam78] Leslie Lamport. 1978. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of the ACM
21 (7), 558–565.

[Lam79] Leslie Lamport. 1979. How to Make a Multiprocessor Com-
puter That Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers 28 (9), 690–691.

[LPS09] Mihai Letia, Nuno M. Preguiça, and Marc Shapiro. 2009.
CRDTs: Consistency without Concurrency Control. � arxiv.org

[LL04] Du Li and Rui Li. 2004. Preserving Operation Effects Re-
lation in Group Editors. In: ACM Conference on Computer
Supported Cooperative Work (CSCW), 457–466.

[LL08] Du Li and Rui Li. 2008. An Approach to Ensuring Consis-
tency in Peer-to-Peer Real-Time Group Editors. Computer
Supported Cooperative Work 17 (5-6), 553–611.

[Liu+14] Yang Liu, Yi Xu, ShaoJie Zhang, and Chengzheng Sun.
2014. Formal Verification of Operational Transformation. In:
International Symposium on Formal Methods (FM), 432–448.

https://github.com/automerge/automerge
https://kubernetes.io/
http://arxiv.org/abs/0907.0929

bibliography 165

[Llo+11] Wyatt Lloyd, Michael Freedman, Michael Kaminsky, and
David Andersen. 2011. Don’t Settle for Eventual: Scalable
Causal Consistency for Wide-area Storage with COPS. In:
Symposium on Operating Systems Principles (SOSP), 401–416.

[Llo+13] Wyatt Lloyd, Michael Freedman, Michael Kaminsky, and
David Andersen. 2013. Stronger Semantics for Low-latency
Geo-replicated Storage. In: Conference on Networked Systems
Design and Implementation (NSDI), 313–328.

[Lux18] Blockchain Luxembourg. 2018. Confirmed Transactions Per
Day. � blockchain.info

[MUW10] Stéphane Martin, Pascal Urso, and Stéphane Weiss. 2010.
Scalable XML Collaborative Editing with Undo. In: On the
Move to Meaningful Internet Systems (OTM), 507–514.

[Mat88] Friedemann Mattern. 1988. Virtual Time and Global States
of Distributed Systems. In: International Workshop on Parallel
and Distributed Algorithms, 120–131.

[MIM15] Frank McSherry, Michael Isard, and Derek Murray. 2015.
Scalability! But at What Cost? In: Workshop on Hot Topics in
Operating Systems (HOTOS).

[MVR15] Christopher Meiklejohn and Peter Van Roy. 2015. Lasp:
A Language for Distributed, Coordination-free Program-
ming. In: International Symposium on Principles and Practice
of Declarative Programming (PPDP), 184–195.

[Mei+17] Christopher Meiklejohn et al. 2017. Practical Evaluation of
the Lasp Programming Model at Large Scale: An Experi-
ence Report. In: International Symposium on Principles and
Practice of Declarative Programming (PPDP), 109–114.

[Mil16] Ross Miller. 2016. Gmail now has 1 billion monthly active users.
� theverge.com

[Mon15] Jan Monschke. 2015. DiffSync. � janmonschke/diffsync

[MCT08] Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. De-
Lorean: Recording and Deterministically Replaying Shared-
Memory Multiprocessor Execution Ef?Ciently. In: Interna-
tional Symposium on Computer Architecture (ISCA), 289–300.

[Nak08] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system. � bitcoin.org

[NMM16] Brice Nédelec, Pascal Molli, and Achour Mostefaoui. 2016.
CRATE: Writing Stories Together with Our Browsers. In: In-
ternational Conference Companion on World Wide Web (WWW),
231–234.

https://blockchain.info/charts/n-transactions
https://www.theverge.com/2016/2/1/10889492/gmail-1-billion-google-alphabet
https://github.com/janmonschke/diffsync
https://bitcoin.org/bitcoin.pdf

166 bibliography

[Néd+13] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Em-
manuel Desmontils. 2013. LSEQ: An Adaptive Structure for
Sequences in Distributed Collaborative Editing. In: ACM
Symposium on Document Engineering (DocEng), 37–46.

[Nic+95] David A. Nichols, Pavel Curtis, Michael Dixon, and John
Lamping. 1995. High-latency, Low-bandwidth Windowing
in the Jupiter Collaboration System. In: Symposium on User
Interface and Software Technology (UIST), 111–120.

[Nic17] Shaun Nichols. 2017. AWS’s S3 outage was so bad Amazon
couldn’t get into its own dashboard to warn the world - Websites,
apps, security cams, IoT gear knackered. � theregister.co.uk

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence Paulson. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic. Springer-
Verlag.

[Ora18] Oracle. 2018. MySQL Replication. � dev.mysql.com

[Ost+05] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad
Imine. 2005. Proving Correctness of Transformation Functions
in Collaborative Editing Systems. � hal.inria.fr

[Ost+06a] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad
Imine. 2006. Data Consistency for P2P Collaborative Editing.
In: ACM Conference on Computer Supported Cooperative Work
(CSCW), 259–268.

[Ost+06b] Gérald Oster, Hala Skaf-Molli, Pascal Molli, and Hala Naja-
Jazzar. 2006. Supporting Collaborative Writing of XML Docu-
ments. � hal.inria.fr

[Ost+06c] Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad
Imine. 2006. Tombstone Transformation Functions for En-
suring Consistency in Collaborative Editing Systems. In:
Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing (CollaborateCom), 1–10.

[Par08] Craig Partridge. 2008. The Technical Development of Inter-
net Email. IEEE Annals of the History of Computing 30 (2),
3–29.

[Pos82] Jonathan Postel. 1982. Simple Mail Transfer Protocol. 6 RFC
821

[Pos18] PostgreSQL. 2018. High Availability, Load Balancing, and Repli-
cation. � postgresql.org

[PK94] Atul Prakash and Michael Knister. 1994. A Framework for
Undoing Actions in Collaborative Systems. ACM Transac-
tions on Computer-Human Interactions 1 (4), 295–330.

https://www.theregister.co.uk/2017/03/01/aws_s3_outage/
https://dev.mysql.com/doc/en/replication.html
https://hal.inria.fr/inria-00071213/document
https://hal.inria.fr/inria-00108996
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc821
https://www.postgresql.org/docs/current/static/high-availability.html

bibliography 167

[Pro18] Prometheus. 2018. Monitoring system & time series database.
� prometheus.io

[Ran+15] Aurel Randolph, Hanifa Boucheneb, Abdessamad Imine,
and Alejandro Quintero. 2015. On Synthesizing a Consistent
Operational Transformation Approach. IEEE Transactions
on Computers 64 1074–1089.

[Res08] Peter Resnick. 2008. Internet Message Format. 6 RFC 5322

[RNRG96] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzen-
häuser. 1996. An Integrating, Transformation-oriented Ap-
proach to Concurrency Control and Undo in Group Editors.
In: ACM Conference on Computer Supported Cooperative Work
(CSCW), 288–297.

[Roh+11] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon
Lee. 2011. Replicated Abstract Data Types: Building Blocks
for Collaborative Applications. Parallel and Distributed Com-
puting 71 (3), 354–368.

[RGO12] Arnon Rotem-Gal-Oz. SOA Patterns. Manning Pubications
Co.

[SS05] Yasushi Saito and Marc Shapiro. 2005. Optimistic Replica-
tion. ACM Computing Surveys 37 (1), 42–81.

[Ser17] Amazon Web Services. 2017. Summary of the Amazon S3
Service Disruption in the Northern Virginia Region.
� aws.amazon.com

[Sha+11a] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek
Zawirski. 2011. A comprehensive study of Convergent and Com-
mutative Replicated Data Types. � hal.inria.fr

[Sha+11b] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek
Zawirski. 2011. Conflict-free Replicated Data Types. In: In-
ternational Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), 386–400.

[Sha+18] Marc Shapiro et al. 2018. Just-Right Consistency: reconciling
availability and safety. � arxiv.org

[Shi17] Laura Shin. 2017. Why Bitcoin’s Greatest Asset Could Also
Spell Its Doom. � forbes.com

[SYB17] Ali Shoker, Houssam Yactine, and Carlos Baquero. 2017. As
Secure As Possible Eventual Consistency: Work in Progress.
In: Workshop on Principles and Practice of Consistency for Dis-
tributed Data (PaPoC), 5:1–5:5.

https://prometheus.io/
https://tools.ietf.org/html/rfc5322.html
https://aws.amazon.com/message/41926/
https://hal.inria.fr/inria-00555588/file/techreport.pdf
https://arxiv.org/abs/1801.06340
https://www.forbes.com/sites/laurashin/2017/04/20/why-bitcoins-greatest-asset-could-also-spell-its-doom

168 bibliography

[Sie07] Rob Siemborski. 2007. The Post Office Protocol (POP3). 6 RFC
5034

[SCS16] Sergey Sinchuk, Pavel Chuprikov, and Konstantin Soloma-
tov. 2016. Verified Operational Transformation for Trees. In:
International Conference on Interactive Theorem Proving (ITP),
358–373.

[SG15] Nate Smith and Joseph Gentle. 2015. ShareDB. � sharedb

[Spi10] Daniel Spiewak. 2010. Understanding and Applying Opera-
tional Transformation. � codecommit.com

[SCF97] Maher Suleiman, Michèle Cart, and Jean Ferrié. 1997. Se-
rialization of Concurrent Operations in a Distributed Col-
laborative Environment. In: Conference on Supporting Group
Work: The Integration Challenge (GROUP), 435–445.

[SCF98] Maher Suleiman, Michèle Cart, and Jean Ferrie. 1998. Con-
current Operations in a Distributed and Mobile Collab-
orative Environment. In: International Conference on Data
Engineering (ICDE), 36–45.

[Sun02] Chengzheng Sun. 2002. Undo As Concurrent Inverse in
Group Editors. ACM Transactions on Computer-Human Inter-
actions 9 (4), 309–361.

[SE98] Chengzheng Sun and Clarence Ellis. 1998. Operational
Transformation in Real-time Group Editors: Issues, Algo-
rithms, and Achievements. In: ACM Conference on Computer
Supported Cooperative Work (CSCW), 59–68.

[SXA14] Chengzheng Sun, Yi Xu, and Agustina Agustina. 2014. Ex-
haustive Search of Puzzles in Operational Transformation.
In: ACM Conference on Computer Supported Cooperative Work
& Social Computing (CSCW), 519–529.

[Sun+98] Chengzheng Sun et al. 1998. Achieving Convergence,
Causality Preservation, and Intention Preservation in Real-
time Cooperative Editing Systems. ACM Transactions on
Computer-Human Interactions 5 (1), 63–108.

[Sun+06] Chengzheng Sun et al. 2006. Transparent Adaptation of
Single-user Applications for Multi-user Real-time Collabo-
ration. ACM Transactions on Computer-Human Interaction 13

(4), 531–582.

[SS06] David Sun and Chengzheng Sun. 2006. Operation Context
and Context-based Operational Transformation. In: ACM
Conference on Computer Supported Cooperative Work (CSCW),
279–288.

https://tools.ietf.org/html/rfc5034
https://tools.ietf.org/html/rfc5034
https://github.com/share/sharedb
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation

bibliography 169

[SS09] David Sun and Chengzheng Sun. 2009. Context-Based Oper-
ational Transformation in Distributed Collaborative Editing
Systems. IEEE Transactions on Parallel and Distributed Systems
20 (10), 1454–1470.

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed
Systems: Principles and Paradigms. Prentice-Hall, Inc.

[Tau13] Joshua Tauberer. 2013. JSON Operational Transformation
(JOT). � JoshData/jot

[Ter+94] Douglas Terry et al. 1994. Session Guarantees for Weakly
Consistent Replicated Data. In: International Conference on
Parallel and Distributed Information Systems (PDIS), 140–149.

[Ter+95] Douglas Terry et al. 1995. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System.
In: ACM Symposium on Operating Systems Principles (SOSP),
172–182.

[Tod18] Altcoin Today. 2018. Bitcoin and Ethereum vs Visa and PayPal
– Transactions per second. � altcointoday.com

[Und16] Sarah Underwood. 2016. Blockchain Beyond Bitcoin. Com-
munications of the ACM 59 (11), 15–17.

[Vid+00] Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maher
Suleiman. 2000. Copies Convergence in a Distributed Real-
time Collaborative Environment. In: ACM Conference on
Computer Supported Cooperative Work (CSCW), 171–180.

[VV16] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-
Transactional Distributed Storage Systems. ACM Computing
Surveys 49 (1), 19:1–19:34.

[WUM10] Stephane Weiss, Pascal Urso, and Pascal Molli. 2010. Logoot-
Undo: Distributed Collaborative Editing System on P2P
Networks. IEEE Transactions on Parallel and Distributed Sys-
tems 21 (8), 1162–1174.

[Woo14] Gavin Wood. 2014. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yellow Paper.

[ZBPH14] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter.
2014. Formal Specification and Verification of CRDTs. In:
Formal Techniques for Distributed Objects, Components, and
Systems (FORTE), 33–48.

[gRP18] gRPC. 2018. A high performance, open-source universal RPC
framework. � grpc.io

https://github.com/JoshData/jot
https://altcointoday.com/bitcoin-ethereum-vs-visa-paypal-transactions-per-second
https://grpc.io/

AA P P E N D I X : O P E R AT I O N A L T R A N S F O R M AT I O N

a.1 the wave control algorithm

In both prototypes HotPi and formic, we used the Wave [DWL10]
control algorithm in conjunction with the transformation functions
we introduced in Section 4.3. Alongside with the sketched mechanics
of the Wave algorithm in Section 4.2, we provide a more detailed
description of the algorithm in pseudocode in Listing A.1 and A.2
based on the descriptions in [Her13; Spi10].

We start with the description of the Wave server part in Listing A.1.
In the pseudocode of the server we see, that the server maintains
a history of operations, which can be seen as sequenced version
of all (possibly concurrent) operations that happened. We note
that the server’s history might differ from the order of operations
executed at a client, because the operations that were initiated at a
client will always be executed before the operations that happened
concurrently. However, the concurrent operations from other clients
are always in the same order as on the server. This way, causal
communication is achieved.

We note that the server’s broadcast function can be implemented
in different ways, for example by queuing the operations until
a client polls the next time, or by sending the operations over a
WebSocket connection.

We present the client part of the Wave algorithm in Listing A.2.
We note that the pseudocode is divided into two parts: one function
to receive an operation from the server, and one function to initiate
an operation. Here, the global variables are slightly more complex,
because the list of operations that are not transmitted to the server
yet, i.e. the bridge, is further divided into the in flight operation and
the buffer.

We note that the function to send the operations to the server can
be executed asynchronously, i.e. the client does not need to wait
for the server’s approval before applying an operation locally. This
is particularly important, because otherwise the client would be

171

172 appendix : operational transformation

Listing A.1: Server part of Wave (adapted from [Her13]).

1

2 # history of all applied operations
3 history = []
4

5 def wave_server_receive_operations(remote_op, revision_number):
6

7 # compute all concurrent operations from the history
8 concurrent_ops = sublist(history, revision_number)
9

10 for op in concurrent_ops:
11 # transformation of the remote operation against the
12 # concurrent operations
13 remote_op = fst(XFORM(remote_op, op))
14

15 # add the transformed version of the remote operation
16 # to the history
17 add(history, remote_op, revision_number)
18

19 # sends the transformed version asynchronously to the clients,
20 # the client that initiated the operation receives
21 # an acknowledgment
22 broadcast(remote_op)

blocked until the server has confirmed an operation. If the client
receives a new operation from the server, the server’s operation is
transformed against the bridge, i.e. the concurrent operations that
happened on the client, before it is applied locally.

While we find the presented pseudocode of the Wave algorithm
particularly useful to understand the mechanics, for a more detailed
description, however, we refer to the Wave documentation [DWL10]
and further literature [Spi10].

a.2 the remaining tree transformation functions

In Section 4.3 we introduced a transformation function for replaceT
operations on n-ary trees and omitted a details of the transforma-
tion for combinations of insertT and deleteT , mainly because those
transformations have already been introduced in a previous thesis
[Jun14]. For the sake of completeness, however, we state the remain-
ing transformation functions in Listing A.3, A.4, and A.5. We note,
that the correctness with respect to TP1 has been proven in detail in
our corresponding technical report [JH15].

A.2 the remaining tree transformation functions 173

Listing A.2: Client part of Wave (adapted from [Her13]).

1

2 # the operation that has been sent to server
3 # but not yet acknowledged
4 inflight_operation = None
5

6 # the local operations that have been applied but
7 # not yet sent to the server
8 buffer = []
9

10 # the number of operations received from the server
11 revision_number = 0
12

13 def wave_client_initiate_operations(operation):
14

15 if inflight_operation == None:
16 inflight_operation = operation
17 send_to_server(operation, revision_number) # asynchronous
18 else:
19 buffer.append(operation)
20

21 applyLocal(operation)
22

23 def wave_client_receive_operation(operation):
24

25 revision_number = revision_number + 1
26

27 if is_acknowledge(operation):
28 # send the next operation if the server has acknowledged the
29 # previous operation
30 if buffer != []:
31 inflight_operation = buffer.pop()
32 send_to_server(inflight_operation, revision_number)
33

34 else:
35 inflight_operation = None
36

37 else:
38 # the server’s operation happened concurrently to the local
39 # operations in the bridge
40

41 if(inflight_operation != None):
42 # transform the server’s operation against the bridge
43 operation = fst(XFORM(operation, inflight_operation))
44

45 for op in buffers:
46 operation = fst(XFORM(operation, op))
47

48 applyLocal(operation) # apply the transformed version

174 appendix : operational transformation

Listing A.3: Pseudocode of the transformation of insertT against
insertT .

1 function XFORMT(insertT(t1, pos1), insertT(t2, pos2)):
2 TP = TPt(pos1, pos2)
3

4 if effectIndependent(pos1, pos2):
5 return(insertT(t1, pos1), insertT(t2, pos2))
6

7 if pos1[TP] > pos2[TP]:
8 return(insertT(t1, update+(pos1, TP)), insertT(t2, pos2))
9

10 if pos1[TP] < pos2[TP]:
11 return(insertT(t1, pos1), insertT(t2, update+(pos2,TP)))
12

13 if pos1[TP] == pos2[TP]:
14 if len(pos1) > len(pos2):
15 return(insertT(t1, update+(pos1, TP)), insertT(t2, pos2))
16

17 if len(pos1) < len(pos2):
18 return(insertT(t1, pos1), insertT(t2, update+(pos2, TP)))
19

20 if pos1 == pos2:
21 # use application dependent priorities

We present the pseudocode for the transformation of an insertT
operation against one insertT operation as XFORMT in Listing A.3.
Transforming one insertT operation against another one is similar
to the transformation of two insertL list operations in XFORML.
Particularly, in XFORMT we perform exact the same transformation
at the transformation point as in XFORML, only the items of the
lists are now subtrees. First, we check whether we need a trans-
formation, i.e. if both operations are effect independent as defined
in Definition 16. Thereafter, we check, similar to Listing 4.1, how
the position parameters at the transformation point are related and
transform the position parameter at the transformation point as in
XFORML. If we need to transform one insertT operation against
another one with an identical access path, application dependent
priorities are used to prioritize one operation.

We introduce a transformation function for two deleteT opera-
tions in Listing A.4. The main difference to the previous transfor-
mation of insertT operations is, that we decrement the position
parameters at the transformation point as in XFORML. Therefore,
we use the function update−. If the transformation point of both

A.3 extended evaluation results 175

Listing A.4: Pseudocode of the transformation of deleteT against
deleteT .

1 function XFORMT(deleteT(pos1), deleteT(pos2)):
2 TP = TPt(pos1, pos2)
3

4 if effectIndependent(pos1, pos2):
5 return(deleteT(pos1), deleteT(pos2))
6

7 if pos1[TP] > pos2[TP]:
8 return(deleteT(update-(pos1, TP)), deleteT(pos2))
9

10 if pos1[TP] < pos2[TP]:
11 return(deleteT(pos1), deleteT(update-(pos2, TP)))
12

13 if pos1[TP] == pos2[TP]:
14 if len(pos1) > len(pos2): # delete from a deleted tree
15 return(no-op, deleteT(pos2))
16 if len(pos1) < len(pos2): # delete from a deleted tree
17 return(deleteT(pos1), no-op)
18 if pos1 == pos2:
19 return(no-op, no-op)

deleteT operations is equal, we either delete a subtree from an al-
ready deleted subtree or we have two identical position parameters.
Both variants are handled with no-op operations.

After introducing transformation functions for two insertT or two
deleteT operations, we combine both functions to achieve a trans-
formation function for a transformation of insertT against deleteT .
We state the last transformation function in Listing A.5. In the trans-
formation function we modify the access paths exactly as shown
in the previous XFORML functions. We observe one special case if
the access paths of both operations at the transformation point are
identical. In this case, the access path of the insertT operation con-
tains more items than the access path of the deleteT operation. For
example, one tree is inserted into a deleted tree (corresponding lines
14-15). To solve this conflict, we use a no-op operation as shown in
Listing A.4.

a.3 extended evaluation results

In contrast to the experiment of Dang and Ignat [DI16], the pre-
sented comparison between Google Docs and formic in Section 4.6

176 appendix : operational transformation

Listing A.5: Pseudocode of the transformation of insertT against
deleteT .

1 function XFORMT(insertT(t, pos1), deleteT(pos2)):
2 TP = TPt(pos1, pos2)
3

4 if effectIndependent(pos1, pos2):
5 return(insertT(t, pos1), deleteT(pos2))
6

7 if pos1[TP] > pos2[TP]:
8 return(insertT(t, update-(pos1, TP)), deleteT(pos2))
9

10 if pos1[TP] < pos2[TP]:
11 return(insertT(t, pos1), deleteT(update+(pos2, TP)))
12

13 if pos1[TP] == pos2[TP]:
14 if len(pos1) > len(pos2): # insert into deleted tree
15 return(no-op, deleteT(pos2))
16 else:
17 return(insertT(t, pos1), deleteT(update+(pos2, TP)))

only shows the result for a collaborative editing session with one
keystroke per second. In Figure A.1 to A.4, we visualize the remain-
ing runs with 2-10 keystrokes per second. Furthermore, we reduced
the number of series per run to save computing time. Hence, we
only simulated the collaborative editing sessions for 1, 2, 5,10,20,
and 30 DummyWriters.

Ultimately, we would like to thank Quang-Vinh Dang and
Claudia-Lavinia Ignat for publishing their evaluation tool under the
terms of a free software license that allows other researchers to use,
study, improve, and share the source code. We believe, that this is a
crucial step to ensure the reproducibility of scientific results. We are
especially thankful for giving us the opportunity to contribute to
their research by accepting our pull request.

A.3 extended evaluation results 177

Figure A.1: Performance of
formic with a typing speed
of two keystroke/second.

Figure A.2: Performance of
formic with a typing speed
of five keystroke/second.

Figure A.3: Performance of
formic with a typing speed
of eight keystroke/second.

Figure A.4: Performance of
formic with a typing speed
of ten keystroke/second.

Schriftenreihe Foundations of computing

Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter Linear-

Time Algorithms for NP-hard Graph and

Hypergraph Problems Arising in Industrial

Applications. - 2014. - 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00

 ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André: Degree-Constrained

Editing of Small-Degree Graphs. - 2015. -
xiv, 225 S.

ISBN 978-3-7983-2705-4 (print) EUR 12,00

ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate Com-

plexity Analysis of Team Management

Problems. - 2015. - xix, 228 S.

ISBN 978-3-7983-2764-1 (print) EUR 12,00

ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod: Algorithmic Aspects of

Manipulation and Anonymization in Social

Choice and Social Networks. - 2016. -

xiv, 275 S.

ISBN 978-3-7983-2804-4 (print) EUR 13,00

ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian: Nowhere Dense Classes

of Graphs. Characterisations and Algorithmic

Meta-Theorems. - 2016. - xxii, 149 S.

ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

06: Chen, Jiehua: Exploiting Structure in

Computationally Hard Voting Problems. -

2016. - xxi, 255 S.
ISBN 978-3-7983-2825-9 (print) EUR 13,00

ISBN 978-3-7983-2826-6 (online)

07: Arbach, Youssef: On the Foundations of

dynamic coalitions. Modeling changes and

evolution of workflows in healthcare scenarios -
2016. - xv, 171 S.

ISBN 978-3-7983-2856-3 (print) EUR 12,00

ISBN 978-3-7983-2857-0 (online)

08: Sorge, Manuel: Be sparse! Be dense!

Be robust! Elements of parameterized

algorithmics. - 2017. - xvi, 251 S.

ISBN 978-3-7983-2885-3 (print) EUR 13,00

ISBN 978-3-7983-2886-0 (online)

09: Dittmann, Christoph: Parity games,

separations, and the modal μ-calculus. -

2017. - x, 274 S.
ISBN 978-3-7983-2887-7 (print) EUR 13,00

ISBN 978-3-7983-2888-4 (online)

10: noch nicht erschienen

11: Jungnickel, Tim: On the Feasibility of

Multi-Leader Replication in the Early Tiers. -

2018. - xiv, 177 S.

ISBN 978-3-7983-3001-6 (print)
ISBN 978-3-7983-3002-3 (online)

12: Froese, Vincent: Fine-Grained Complexity

Analysis of Some Combinatorial Data Science

Problems. - 2018. - xiv, 166 S.

ISBN 978-3-7983-3003-0 (print) EUR 11,00
ISBN 978-3-7983-3004-7 (online)

O
n

th
e

Fe
as

ib
ili

ty
 o

f M
ul

ti-
Le

ad
er

 R
ep

lic
ati

on
 in

 th
e

Ea
rly

 T
ie

rs

Universitätsverlag der TU Berlin

Universitätsverlag der TU Berlin

Foundations of computing Volume 11

In traditional service architectures that follow the service statelessness principle, the state is pri-
marily held in the data tier. Here, service operators utilize tailored storage solutions to guarantee
the required availability; even though failures can occur at any time. This centralized approach
to store and process an application’s state in the data tier implies that outages of the entire tier
cannot be tolerated. An alternative approach, which is in focus of this thesis, is to decentralize
the processing of state information and to use more stateful components in the early tiers.
The possibility to tolerate a temporary outage of an entire tier implies that the application’s state
can be manipulated by the remaining tiers without waiting for approval from the unavailable tier.
This setup requires multi-leader replication, where every replica can accept writes and forwards
the resulting changes to the other replicas.
This thesis explores the feasibility of using multi-leader replication to store and process state in
a decentralized manner across multiple tiers. To this end, two replication mechanisms, namely
Conflict-free Replicated Data Types and Operational Transformation, are under particular investi-
gation. We use and extend both mechanisms to demonstrate that the aforementioned decentra-
lization is worth considering when designing a service architecture.

Ti

m
 Ju

ng
ni

ck
el

11

On the Feasibility of Multi-Leader Replication in the Early Tiers

http://verlag.tu-berlin.de

ISBN 978-3-7983-3001-6 (print)
ISBN 978-3-7983-3002-3 (online)

9 783798 330016I S B N 9 7 8 - 3 - 7 9 8 3 - 3 0 0 1 - 6

Tim Jungnickel

On the Feasibility of Multi-Leader Replication
in the Early Tiers

	Frontcover
	Titlepage
	Imprint
	Abstract
	Zusammenfassung
	Acknowledgments
	Dedication
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Challenges and Problem Statement
	1.3 Outline of this Thesis
	1.4 Main Contributions and Publications

	2 Background
	2.1 State in Service-Oriented Architectures
	2.2 Scaling with Replication and Partitioning

	3 On stateful Logic Tiers with CRDTs
	3.1 Chapter Overview
	3.2 Conflict-free Replicated Data Types
	3.3 A Case Study for IMAP
	3.4 pluto: The Planetary-Scale IMAP Server
	3.5 Evaluation
	3.6 Discussion
	3.7 Related Work
	3.8 Chapter Summary

	4 On stateful Presentation Tiers with OT
	4.1 Chapter Overview
	4.2 Operational Transformation
	4.3 From Tree Transformations to JSON Operations
	4.4 Open-Source Collaborative Patient Documentation
	4.5 formic: A Library for Collaborative Applications
	4.6 Evaluation
	4.7 Related Work
	4.8 Chapter Summary

	5 Outlook and Discussion
	5.1 Transferability
	5.2 Perspectives

	6 Conclusion
	 Bibliography
	A Appendix: Operational Transformation
	A.1 The Wave Control Algorithm
	A.2 The Remaining Tree Transformation Functions
	A.3 Extended Evaluation Results

	Bandnachweis
	Backcover

