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The understanding of locomotion in neurological disorders requires technologies for

quantitative gait analysis. Numerous modalities are available today to objectively capture

spatiotemporal gait and postural control features. Nevertheless, many obstacles prevent

the application of these technologies to their full potential in neurological research and

especially clinical practice. These include the required expert knowledge, time for data

collection, and missing standards for data analysis and reporting. Here, we provide a

technological review of wearable and vision-based portable motion analysis tools that

emerged in the last decade with recent applications in neurological disorders such as

Parkinson’s disease andMultiple Sclerosis. The goal is to enable the reader to understand

the available technologies with their individual strengths and limitations in order to make

an informed decision for own investigations and clinical applications. We foresee that

ongoing developments toward user-friendly automated devices will allow for closed-loop

applications, long-term monitoring, and telemedical consulting in real-life environments.

Keywords: motion tracking, human kinematics, locomotion, postural control, wearables, digital image processing,

Parkinson’s disease, multiple sclerosis

1. INTRODUCTION

The widespread application of technologies for gait analysis has contributed greatly to our
current understanding of healthy and pathological locomotion (Celik et al., 2021). On one hand,
instrumented gait analysis complements the quantification of long-established clinical scales [e.g.,
Berg Balance Scale (Berg et al., 1989), Timed-up-and-go test (Podsiadlo and Richardson, 1991)]
and patient self-reports [e.g., Freezing of Gait Questionnaire (Giladi et al., 2000)]. On the other
hand, portable technologies for gait analysis may improve diagnosis, follow-up, and treatment of
gait disorders through continuous monitoring in activities of daily living (Tzallas et al., 2014; Filli
et al., 2018; Ancona et al., 2021). In concert with functional neuroimaging and neuromodulation,
gait analysis technologies can enhance our knowledge of healthy and pathological gait function
(Maetzler et al., 2009; Artusi et al., 2018; Buckley et al., 2019).

Gait and postural control disorders in the context of neurological diseases, such as Parkinson’s
Disease (PD) and Multiple Sclerosis (MS), have an immense impact on affected people’s quality
of life (Snijders et al., 2007). Parkinson’s Disease is the second most common neurodegenerative
disease in the elderly in Europe (Deuschl et al., 2020). Patients frequently suffer from slow
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FIGURE 3 | Methods overview for instrumented gait analysis with inertial sensors in commonly used positions on pelvis and lower limbs. acc, accelerometer readings;

G, Global coordinate system; gyr, gyroscope readings; mag, magnetometer readings.

analysis with IMUs offers the possibility to examine the
differential effects of established and novel PD treatments
on gait. A selection of exemplary studies is presented in
Table 2.

For instance, Curtze et al. (2015) studied the effect of levodopa
treatment on gait in a large cohort of patients and found
that pace-related gait measures responded well to levodopa
treatment, while balance parameters did not improve in the
ON- compared to the OFF-state. Iijima et al. (2017) used 24 h
single-accelerometer measurements from the trunk in order to
track improvements in the gait fluctuations of PD patients after
the addition/increase in dose of selegiline, showing a higher
sensitivity than clinical scores. Recently, Cebi et al. (2020) used
gait kinematics derived from IMU sensors placed at the hip
and ankles to examine the therapeutic outcome of deep brain
stimulation of the Nucleus subthalamicus (STN-DBS) on gait
disorders in PD. Time to complete a 7 m walking task and
number of steps were reduced and gait kinematics improved
(stride length, ROM) 8 weeks after STN-DBS surgery in the
DBS-ON compared to the DBS-OFF condition. In addition,
freezers with a pre-surgical levodopa response of gait kinematics
responded better to STN-DBS, indicating that the assessment
with IMUss might be useful to predict the outcome of such
treatments in specific patient subgroups.

Another popular application of IMUs in PD is as a tool to
recognize and quantify FoG, a symptom which is rarely observed
during clinical consultations since it occurs episodically. Freezing
of gait usually appears in everyday life situations, i.e., during
turning or walking through narrow doorways, and is associated
with an increased risk of falls (Gray and Hildebrand, 2000; Bloem
et al., 2004). Various sensor-based methods have been developed
to objectively measure FoG in terms of number of episodes and

episode duration (Moore et al., 2008; Rodrguez-Martn et al.,
2017; Silva de Lima et al., 2017; Suppa et al., 2017; Pardoel et al.,
2019). Sensor-based FoG detection opens up the possibility of
monitoring FoG in the home environment of patients, which
could facilitate the diagnosis and treatment of FoG (Suppa et al.,
2017; Mancini et al., 2021).

Furthermore, IMUs are integrated in novel therapeutic cueing
devices, which aim to monitor and treat gait disorders in PD.
Cueing was shown to be effective in improving gait function in
PD and a multitude of cueing paradigms exists (Muthukrishnan
et al., 2019). Table 2 includes examples of cueing devices using
IMUs to either administer gait-synchronized cues or to analyze
the gait pattern in response to treatment. For example, the
gait training tool CuPiD-system consists of wearable IMUs,
a smartphone, and headphones to deliver intelligent auditory
feedback on gait (Casamassima et al., 2014; Ferrari et al., 2016).
Patients using the device showed improvements in maintaining
cadence during prolonged walking, improved balance, and
quality of life (Ginis et al., 2016, 2017). The GaitAssist system
applies adaptive, rhythmic auditory cues and was used in the
home environment of PD patients, who showed a trend toward
reduced FoG episodes after several days of gait training with the
system (Mazilu et al., 2015). Other cueing systems administer
gait-synchronized sensory stimulation, which process IMU data
online to analyze the gait while walking: Mancini and colleagues
examined the effect of vibrotactile cueing at the wrist (VibroGait)
and found reduced FoG, improved turning and trunk stability,
increased first step duration, but reductions in gait speed and
stride length (Harrington et al., 2016; Mancini et al., 2018; Fino
and Mancini, 2020; Schlenstedt et al., 2020). Sijobert et al. (2016)
developed a smart cueing device applying sensory, electrical
stimulation at the lower leg via skin electrodes and found that
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TABLE 2 | Exemplary clinical studies utilizing IMUs for gait assessment in PD.

Publication Study population IMU position(s) Clinical intervention Outcome

IMUs for therapeutic outcome

Curtze et al. (2015) n = 104 PD patients,

n = 64 age-matched

controls

Ankles, wrists, lumbar

spine, sternum

Levodopa treatment

(ON- vs. OFF-state)

Improved pace-related gait

measures in ON-state: increased

stride velocity and stride length,

improved lower leg ROM and

arm swing; impaired balance

measures in ON-state: increased

postural sway

Iijima et al. (2017) n = 14 PD patients Waist Selegiline Treatment

(before vs. after the

addition/increase in

dose)

Increased amplitudes and range

of gait accelerations after dosage

addition/increase in 40–63% of

the patients; diminished

fluctuations in gait throughout

the day (86%)

Cebi et al. (2020) n = 13 PD+FoG, n = 5

PD-FoG

Ankles, lumbar spine DBS-STN (DBS-ON vs.

DBS-OFF)

Reduced time to complete

walking task, increased stride

length, improved lower leg ROM;

reduced freezing events (freezer

subgroup)

IMUs for cueing

Mazilu et al. (2015) n = 9 PD patients Feet, ankles, thighs,

lumbar spine, wrists

Adaptive auditory

cueing (metronome

beats)

Trend toward reduced number of

FoG episodes

Sijobert et al.

(2016)

n = 13 PD patients Foot Gait-synchronized

sensory electrical

stimulation

Reduction of FoG events and

reduced time to complete a

walking task

Ginis et al. (2016) n = 40 PD patients Feet, ankles Adaptive auditory

feedback, personalized

gait advice (active

control)

Improved single / dual task gait

speed (both groups), improved

balance and quality of life

(adaptive auditory feedback)

Ginis et al. (2017) n = 28 PD patients,

n = 13 age-matched

controls

Feet, ankles, lumbar

spine, wrists

Adaptive auditory

feedback, continuous

auditory cueing,

adaptive auditory

cueing (metronome

beats)

Reduced deviation of cadence

(continuous and adaptive

cueing), maintaining cadence but

increased fatigue (adaptive

feedback)

Mancini et al.

(2018)

n = 25 PD+FoG,

n = 18 PD-FoG

Feet, shins, lumbar

spine, sternum

Gait-synchronized

tactile feedback at

wrist, rhythmic auditory

cueing

Both modalities reduced FoG

during turning, increased

smoothness of turns, decreased

turning speed

Fino and Mancini

(2020)

n = 43 PD patients Feet, ankles, lumbar

spine, sternum, wrists

Gait-synchronized

tactile feedback wrist,

rhythmic auditory

cueing

Improved trunk stability (tactile

cueing), but reductions in gait

speed and stride length and

increased stride time

Schlenstedt et al.

(2020)

n = 36 PD+FoG,

n = 18 PD-FoG

patients

Shins, lumbar spine Gait-synchronized

tactile feedback wrist

Increased first step duration, no

effect on anticipatory postural

adjustments

the time to complete a walking task and the number of FoG
episodes decreased.

These studies show that sensor-based gait measurements
(1) might help to objectively examine treatment effects on
gait disorders, (2) might facilitate the monitoring of treatment
outcomes over longer follow-up periods, (3) may be used to
predict the outcome of treatments in specific patient subgroups,
and (4) could become integral part of new therapeutic methods.

Inertial sensors in MS. Shah et al. (2020) postulated that
daily life monitoring with IMUs might be more sensitive to

impairments from neurological diseases than laboratory IMU-
based gait measures but that the analyzed neurological diseases
(PD and MS) might require different gait outcome measures.
Trunk-, shank-, or foot-placed IMUs have been frequently
applied to measure gait and, especially, balance dysfunction in
MS patients, commonly in the form of the instrumented TUG
test (Shanahan et al., 2018): Spain et al. (2014) utilized IMUs
to differentiate between mild MS, moderate MS, and control
groups based on the variability in gait velocity, trunkmotion, and
sway (range, area). Craig et al. (2017) showed the reproducibility
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of the instrumented TUG results over two sessions and that
stride velocity, cadence, and cycle time correlate significantly
with disease severity and number of recent falls. IMU-based
analysis has been found useful to detect even early changes in
gait and balance in MS (Spain et al., 2012). Measurements with
IMUs were able to reflect intra-individual changes in identified
biomarkers associated with a change in clinical severity scores in
a 12-month prospective study by Galea et al. (2017). Therefore,
objective gait analysis with IMUs might increase the sensitivity
of clinical and performance tests to monitor gait dysfunction
in MS (Vienne-Jumeau et al., 2020). Moreover, spatiotemporal
parameters from walking have been used to objectively measure
MS disease specific characteristics, such as muscle fatigue, which
could be helpful in monitoring and evaluating rehabilitation and
treatment efficacy (Motta et al., 2016; Ibrahim et al., 2020). In the
area of therapeutic aids and home-care, IMU-based fall detection
is an emerging application for various gait disorders (Wang et al.,
2020).

3.2. Smart Devices
3.2.1. Technology
Although smart devices, such as smartphones or smartwatches,
use inertial sensors as a technique, they are presented separately
in this section due to their high presence and popularity in
everyday life that makes them particularly interesting for long-
term monitoring in home environments. Smart devices can be
used as single sensor units like previously described IMUs, for
example, by wearing a smart device on the hip for a postural
control assessment (Kosse et al., 2015). The data can then
be transferred and processed in the same way as previously
described for IMUs. Usually, measurement setups are limited
to two measurement locations, for example, one smartphone
and a paired smartwatch. However, most frequently only one
device is utilized (e.g., Chomiak et al., 2019; Hsieh et al., 2019).
Available sampling rates for smart-device-based IMUs depend on
the hardware (e.g., for Apple products3 (Cupertina, CA, USA),
it is supposed to be at least 100Hz), and can limit the range of
applications. The reliability of smart device measurements for
motion tracking is still being investigated (Vohralik et al., 2015).

In addition to regular IMUs, smart devices come with an
integrated interface and specific software (“apps”) facilitating
a user-friendly operation of the data assessment. Different
apps provide different data collection modes, such as real-
time streaming, recording, and post-recording wireless data
download. In literature, mostly customized apps were used to
record the sensor data and calculate gait or balance parameters
on- or offline (Franco et al., 2012; Kosse et al., 2015; Chomiak
et al., 2019), or to upload the data to cloud servers for offline
gait analysis (Manor et al., 2018). As an advantage to standalone
IMUs, smart devices promote direct biofeedback in the form
of visual, auditory, or haptic signals. Due to these features,
smartphones are often combined with IMUs for gait monitoring
and therapy systems (e.g., Ferrari et al., 2016; Palmerini et al.,
2017).

3https://developer.apple.com/documentation/coremotion/
getting_raw_accelerometer_events [accessed July 6, 2021].

3.2.2. Applications
Although the use of smart devices to assess gait and balance
is under extensive investigation, most applications are still
under development. Multiple studies explore smart devices for
balance assessments measuring trunk movements and postural
stability but so far mostly in neurologically intact participants
(e.g., Alberts et al., 2015a,b; Kosse et al., 2015; Hsieh et al.,
2019). Roeing et al. (2017) reviewed 13 studies and found that
five evaluated the validity of their smartphone applications for
balance and risk of falls assessment; the results demonstrated
strong concurrent validity with standalone accelerometry, 3D
motion capture, and force plate measurements. Three of these
studies included a measure of reliability revealing high ICC
values for mixed variables (Mellone et al., 2012; Cerrito et al.,
2015; Kosse et al., 2015; Roeing et al., 2017). Standardized
clinical assessments, such as sit-to-stand evaluation (Cerrito et al.,
2015; Marques et al., 2021), the TUG (Mellone et al., 2012;
Ponciano et al., 2020), and postural balance (Hsieh and Sosnoff,
2021), were instrumented using a single smart device. Also
applications in rehabilitation in the form of biofeedback loops
with potential use at home, e.g., as a smartphone-based audio-
biofeedback in order to improve balance during bipedal standing
(Franco et al., 2012), are being evaluated. However, special
research interest is on utilizing smart devices for gait assessment
as there lies a great potential for long-term monitoring in
everyday activities. Fall detection with smart devices is already
available on the market in the form of Apple Watch Series 4–
6 (Apple Inc, 2020). The accelerometer and gyroscope readings
from the wrist are used in combination with a fall detection
threshold yielding a high false-positive rate (Wang et al.,
2020).

Most approaches aim at extracting gait parameters from
the use of a single smart device (Ellis et al., 2015; Kosse et al.,
2015; Manor et al., 2018). For example, Manor et al. (2018)
created an app for systematic gait data recording and analysis
that can be performed independently by the user either in
the laboratory or at home with the smartphone placed in the
trousers’ front pocket. When comparing normal and dual-
task trials in neurologically intact volunteers, average stride
times derived from the app demonstrated high correlation
with the simultaneously used instrumented mat in the
laboratory. Lipsmeier et al. (2018) explored the potential
of smartphones for assessing biomarkers in PD that might
serve as outcome measures in clinical trials. The authors
presented moderate to strong retest reliability and successful
discrimination between PD and controls with increased
sensitivity compared to traditional clinical scales (Buckley et al.,
2019).

Despite regular gait assessment, smart devices were evaluated
for continuous monitoring in PD for FoG detection and fall
prevention. For example, Ellis et al. (2015) developed a mobile
application with the smartphone at the front waist to track gait
and its variability, an indicator for FoG in PD, presenting it as an
alternative to conventional gait analysis technologies. Chomiak
et al. (2019) utilized an iPod Touch, worn on the thigh, and ML
to identify gait-cycle breakdown and freezing episodes of varying
duration. Ahn et al. (2017) presented a system for FoG detection
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and visual cueing based on smart glasses (Android): The subject’s
movements are tracked using the inertial sensor from the glasses,
which projects visual patterns in the case of a recognized
FoG event. Furthermore, numerous smartphone applications
have been designed for the assessment and monitoring of
multiple health parameters in patients with PD (Monje et al.,
2019). The apps combine questionnaires, cognitive, voice, and
motor tasks providing repeated measures of the patients motor
state along with valid and clinically meaningful knowledge of
symptom evolution (Bot et al., 2016; Lakshminarayana et al.,
2017; Lipsmeier et al., 2018). Similar applications are available for
monitoring MS patients [e.g., elevateMS by Pratap et al., 2020].

These diverse applications of smart devices in gait and
balance assessments reveal their future potential to be utilized for
objective evaluation of treatments over short and long follow-up
periods, closed-loop applications, and telemedical consulting in
real-life environments.

3.3. Instrumented Insoles
3.3.1. Technology
Instrumented insoles are insoles that have integrated force or
pressure sensors to measure changes in pressure between the
foot and the ground. Force sensors measure the applied force
discriminating the component of each axis that is measured,
whereas pressure sensors are non-discriminating and thereby
measure the combined ground reaction force (de-la Herran
et al., 2014). Most commonly used insole sensors are capacitive,
resistive piezoelectric, and piezoresistive sensors (de-la Herran
et al., 2014). Themeasurement principle is based on the detection
of voltage changes caused by fluctuations in electrical capacity or
electrical resistance in semiconductor materials due to stretching
or compression (Chen and Yan, 2020). The choice of sensor
depends on the desired range of pressure/force, sampling rate,
and sensitivity (Diaz et al., 2020). Insoles typically incorporate
arrays of sensors measuring a spatial pressure/force profile over
the plantar foot surface (Shanahan et al., 2018). The profile varies
during the gait cycle and depends on a person’s body weight: In
healthy gait, the maximum vertical force is applied and, thereby,
the maximum pressure occurs when the whole body weight is on
one leg/foot during the stance phase (Clarke, 1980). No force is
applied during the swing phase. The profile’s spatial resolution
depends on the number of integrated sensors in the insole,
its temporal resolution on the applied sampling rate, and its
sensitivity on the utilized sensor and analog-to-digital converter.

Available systems are among others the F-Scan (Tekscan Inc.,
Boston, MA, USA) with 3.9 force-sensitive resistors per cm2, the
Moticon SCIENCE pressure insoles (Moticon,Munich, Germany)
with 16 capacitive pressure sensors, or WalkinSense (Kinematix
SA, Sheffield, UK) with eight force-sensing piezoresistors. The
latter two and other newer insole types often incorporate
additional sensors such as an IMU (Arafsha et al., 2018). Besides,
the available systems differ in the type of power supply, data
transmission and storage, in the user operation, and associated
analysis software.

The validity of discrete pressure and force measurements with
insoles is comparable to optical motion capture and they show
a high reliability within and between trials (Shanahan et al.,

2018). From the profiles, spatiotemporal gait parameters (e.g.,
stride time, gait phases) can be extracted. However, patients
with neurological gait disorders tend to walk slowly, shuffle,
and perform short and dragged steps making it challenging for
automatic gait event detection based on heel strike or initial
contact (Pirker and Katzenschlager, 2017; Diaz et al., 2020). For
balance analysis, insoles are regularly used to measure the COP
to evaluate postural stability (Ma et al., 2016).

3.3.2. Applications
So far, the clinical application of instrumented insoles in
PD patients has mostly been limited to the differentiation
between PD and controls. Extracted gait and balance parameters
have been used successfully for discrimination between the
groups (Mazumder et al., 2018; Chatzaki et al., 2021), in line
with the findings from established laboratory gait assessments.
Furthermore, instrumented insoles have been investigated for
their ability to recognize and quantify FoG in PD (Popovic et al.,
2010; Shalin et al., 2020; Pardoel et al., 2021). Pardoel et al. (2021)
combined features derived from a pressure-sensing insole and
IMUs on the leg to detect FoG in 11 PD patients. The authors
reported that the combination of both modalities outperformed
classification models that used data from a single sensor type. In
a small data sample (n = 5), Shalin et al. (2020) demonstrated
that foot pressure distributions from 60 × 21 sensor-arrays
could be used for FoG prediction (0.5–3 s before FoG onset).
Therefore, together with inertial sensors, instrumented insoles
could be integrated into therapeutic cueing devices for treating
gait disorders in PD (cf. section 3.1).

Few studies utilized insoles to examine gait function in
MS patients so far (Shanahan et al., 2018). Viqueira Villarejo
et al. (2014) reported an increased plantar pressure during the
stance phase and variability in step timing in MS compared
to controls. Galea et al. (2017) quantified MS-related gait
and balance deterioration over 12 months using EMG and
insoles and observed decreases in gait speed and balance scores,
and an increase in double support time. Domínguez et al.
(2020) validated gait velocity and other parameters from a new
insole system with an incorporated IMU against a common
instrumented walkway in 205 MS patients. The results revealed
a high correlation between devices in velocity, ambulation time,
cadence, and stride length. Note that spatial parameters, such as
stride length and stride wide, can only be derived from the IMU
data (Farid et al., 2021).

Although the use of insoles is unobtrusive and, therefore, has
a high potential in monitoring daily activities (Diaz et al., 2020),
the hesitant use in research and clinical application may have
practical reasons. For reliable measurements, diverse sole sizes
must be available to cover the variety in foot sizes. Systems with
multiple soles and validated analysis software can initially require
a five-digit amount. Due to the mechanical stress during walking,
the soles’ life is limited. People must wear shoes that allow the use
of additional insoles. Furthermore, shoes must be taken off and
put on again to set up the measurement, an additional obstacle
for elderly patient groups such as PD. However, for long-term
monitoring in the future, the ease of integration in patients’
everyday life could be an advantage.

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 768575

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Salchow-Hömmen et al. Emerging Technologies for Gait Analysis

3.4. Summary and Discussion
Wearable sensor technology is currently being applied and
explored in existing and newly developed clinical gait and balance
assessments as well as for long-term monitoring of various
activities in daily living. For multiple reasons, body-worn sensors
are of great value for balance and gait assessments in neurological
disorders: Their high level of portability theoretically facilitates
unlimited use in laboratory research environments, clinical
settings, and home environments. No line-of-sight restrictions
apply as in vision-based technologies. The small, lightweight,
and wireless devices do not restrict the subject’s movement. In
contrast to laboratory-based methods, wearable devices might
come at low prices and facilitate easier setups. When provided
with a graphical user interface and validated analysis software,
usability can be as good that patients can record data on their
own. The number of gait parameters that can be extracted from
wearables has expanded dramatically over the last years and new,
more robust algorithms are under permanent development.

However, all these potential advantages are not always
met in the available systems. The gait estimation algorithms
for IMUs and insoles are often still in exploration, not
evaluated to a reliable extent in the desired target group.
The optimal sensor layout is still debated and requires a
trade-off between usability and accuracy. Furthermore, it is
challenging to calculate paths and distances traveled (Buckley
et al., 2019). Necessary sensor-to-segment alignment, the need
for precise manual sensor attachment, and required calibration
movements by many methods halt the advance of inertial sensor
techniques into clinical trials. When utilizing magnetometer
readings, measurement errors occur in magnetically-disturbed
environments, such as typical clinic or home environments
containing electronic devices and objects of ferromagnetic
material (de Vries et al., 2009). With increasing algorithm
complexity, required processing resources rise yielding high
energy consumption and waiting times between subsequent
recordings. Still, algorithm development is an active area of
research tackling these issues (e.g., Marín et al., 2020; Laidig et al.,
2021). Also, existing hardware issues, such as limited recording
time by battery and storage capacity, and data loss during the
wireless transfer from sensors to applications or cloud servers
should be a trivial problem in the future. Patient user interfaces
continue to improve (Shanahan et al., 2018).

In addition to their use in recording and analyzing gait and
balance disorders, wearables can be applied in rehabilitation
technologies or therapeutic aids, such as a cueing device to
treat gait impairments in PD (cf. Table 2). Besides beneficial
therapeutic effects, full-time body-worn sensors allow long-term
monitoring and might contribute to the individualization of
therapies as well as to telemedicine concepts. The objective
tracking and quantification of a PD patient’s motor activity
over the day is valuable information for the precise adjustment
of individual medication plans. Particularly in times of global
pandemics, where the number of regular face-to-face visits
is reduced (Roy et al., 2020), automatically extracted and
shared parameters from wearables have the potential to
support clinical decisions. Automatic evaluation methods of
data from wearables in clinical gait and balance assessments

(e.g., Karatsidis et al., 2017; Nguyen et al., 2019) but also in
unrestricted activities of daily living (e.g., Roth et al., 2021)
are constantly investigated. Machine learning techniques are the
driving force behind this rapid growth of applications. Still, a
remaining challenge lies in obtaining validated measures and
standardized motor parameters that predict relevant clinical
outcomes for each neurological disease (Monje et al., 2019;
Shah et al., 2020). Further investigations are required before the
analysis of locomotion in everyday activities becomes reliable and
thereby clinically relevant (Graham et al., 2008; Lord et al., 2013).

4. NON-WEARABLE TECHNOLOGIES:
VISION-BASED MOTION ANALYSIS

Marker-less optical motion capture systems have become popular
with the launch of affordable in-depth cameras. Even though
computer gaming and virtual reality serve as the main drivers
for this rapid evolution of digital image processing, the practical
application in the health sector has been discussed and performed
frequently (Clark et al., 2012; Albert et al., 2020). Despite
being an older technology, motion tracking with optical markers
is generally handled as the gold standard with which newly
developed technologies for gait analysis are compared. However,
marker-based tracking requires an extensive, expensive, non-
portable setup. Similar restrictions apply for instrumented mats,
walkways, or treadmills, although they are portable on a large
scale and often easier to handle. For the sake of completeness,
we mention these approaches as references; overviews of gold
standard methods can be found elsewhere (e.g., Shanahan et al.,
2018; Celik et al., 2021).

Presently, vision-based non-wearable technologies with
standard cameras or depth cameras are increasingly applied in
human motion tracking. Image acquisition is most conveniently
achieved via standard 2D cameras that output images as 2D pixel
grids. Each pixel traditionally carries a red, green, and blue
(RGB) value, with intensities ranging from 0 to 255. However,
2D cameras do not provide any spatial depth information on
the tracked pose. This information has to be obtained either by
performing additional post-capture processing with machine
learning (ML) algorithms, by using multiple cameras, or by
switching to another technology, such as depth cameras which
provide 4D information on the tracked object. Pixels obtained
with depth cameras are primarily coupled to the distance of
the tracked object from the sensor and are typically paired
together with a classical RGB value. Both, standard and depth
cameras, are able to extract detailed information required for
biomechanical analyses.

4.1. In-depth Camera Technology
There are several types of in-depth cameras that rely on different
methods to infer depth, as illustrated in Figure 4. Structured light
imaging uses patterned light to capture the 3D topography of a
surface (Geng, 2011). Here, the scale and direction of a distorted
pattern are used to assess the depth of an object. Furthermore,
time-of-flight (ToF) technology measures the time it takes for
infrared light to travel toward an object and reflect into the
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FIGURE 4 | Illustration of different camera technologies for in-depth measurements.

imaging sensor (Kolb et al., 2010). The corresponding phase
shift in the signal is subsequently measured and converted into
distance. Lastly, stereoscopic vision (also: stereotactic imaging)
incorporates two ormore stereo cameras to compare two ormore
simultaneously recorded images for the estimation of depth.
Likewise to human eyes, the distance between the cameras is
fixed and used to measure the closeness of an object on multiple
juxtaposed images obtained by using any type of light.

Two well-known, affordable depth-sensing cameras that are
frequently used in medical applications are Kinect (Microsoft,
Redmond, WA, USA) and RealSense (Intel, Santa Clara, CA,
USA), which are reviewed here as examples due to their manifold
occurrence in literature on gait and balance. Other commercially
available systems on the market are, e.g., ZED (StereoLabs, San
Francisco, CA, USA) or XtionPro (ASUS, Taipeh Taiwan).

4.1.1. Microsoft Kinect
Microsoft’s Kinect is a motion-sensing device originally
developed for gaming purposes and is one of the earliest motion
capture technologies of its kind to be used in medical research.
Owing to Kinect’s long history in pose estimation, it has been
well-assessed in various research settings and utilized in tracking
different movement patterns. Throughout the last decade, several
versions of Kinect have been produced: The introductory model
Kinect 1 (2010) integrates a structured near-infrared light source
with an accompanying sensor to capture the reflected light
patterns, whereas Kinect 2 (2013) and Azure Kinect (2019) use
wide angle ToF cameras (Zhang, 2012).

Although Kinect 1 is a well-established system, when
compared to gold standard techniques, it provides only basic
motion capture capabilities such as collecting temporal gait
parameters, estimating single joint angles, or assessing postural
control during reaching and balance tasks (Clark et al.,
2012; Schmitz et al., 2014). In kinematic gait recordings, the
system generally underestimates joint flexion and overestimates
extension during walking in the sagittal plane. Here, stride
timing measurements perform surprisingly well with the highest
accuracy at low gait speeds, despite a high error in hip and

knee displacement (Pfister et al., 2014). Clothing and different
body shapes were discussed as possible reasons for measurement
errors. Therefore, approaches that use additional multi-layer
filtering, where the estimated pose is further refined through a
synthetic library of posture variations, can alleviate some tracking
inaccuracies, increase parameter precision, and allow for better
recognition of occluded body parts (Shotton et al., 2011; Wei
et al., 2012; Xu et al., 2013). Moreover, recording frameworks
with multiple cameras were able to improve pose estimation
accuracy and approximation of occluded segments at the costs
of a higher setup effort (Gao et al., 2015).

Nonetheless, Kinect 1 has been used in several clinically-
oriented studies to measure lower body biomechanics for
determining stride time, length, and speed in healthy individuals
(Gabel et al., 2012; Auvinet et al., 2015). In the context of PD,
scientists used wavelet-based digital signal processing to analyze
gait parameters and quantitatively distinguish gait phases with
an accuracy of up to 93% (Muñoz et al., 2018). Spatiotemporal
parameters were distinguishable in stage II and III PD patients
compared to a control group, reaching a maximum accuracy of
97.2% after classification with a neural network (NN) (Ťupa et al.,
2015). Likewise, Kinect 1 technology has been implemented in
MS gait analysis to discernMS patients from neurologically intact
controls by differences in the average walking speed and lateral
body sway (Behrens et al., 2014), or ROM, stride length, and step
width (Gholami et al., 2016).

The newer Kinect 2 system uses continuous-wave ToF
technology instead of structured light, enabling a more stable
data feed with an increased accuracy within the measurement
range of 4m (Gonzalez-Jorge et al., 2015). In clinical assessments,
Kinect 2 displayed an adequate performance when tracking joint
center displacement (Napoli et al., 2017). The second generation
demonstrates better accuracy in joint estimation and stays more
robust to body rotation as well as occlusions during various
movements like walking and jogging (Wang et al., 2015; Guess
et al., 2017). Therefore, Kinect 2 seems to outperform Kinect 1
in locomotion tracking except for foot position tracking during
standing, where a larger amount of noise is generated, possibly
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due to ToF artifacts (Otte et al., 2016). Kinect 2 reliably assessed
spatiotemporal parameters during comfortable and fast-paced
gait (Mentiplay et al., 2015). However, significant performance
variations in different motion planes and incompatibility with
certain functional movements still exist in Kinect 2 when
compared to marker-based systems, especially in the context of
compound joint movement (Mentiplay et al., 2015). The validity
of lower limb joint kinematics depends on the camera’s capture
angle for recording the walking subject. Moreover, in treadmill
walking, accuracy levels appear to vary across gait parameters,
with temporal parameters based on heel strike having fewer
errors than those based on toe-off, and their accuracy fluctuates
with changing walking speeds (Xu et al., 2015). Linear pelvic
and trunk ROM can still be tracked with reasonable precision at
70 and 90% of maximal locomotion speed, providing a reliable
reference point across all velocities (Macpherson et al., 2016). In
attempts to use multiple Kinect 2 cameras to achieve a higher
tracking accuracy, several cameras have to be calibrated together
via geometric trilateration. The distance between the subject
and at least three recording cameras is measured through signal
strength. When used to determine gait parameters, three Kinect 2
sensors show a much higher spatiotemporal reliability compared
to a single Kinect 2 camera (Yang et al., 2016).

Kinect 2 has been applied in PD patients, where 92% of
freezing episodes, 91% of tremor occurrences, and 99% of falling
incidents could be detected with customized algorithms (Bigy
et al., 2015). Moreover, Kinect 2 measurements in combination
with customized algorithms were able to consistently produce
results similar to a marker-based system and output significant
differences between PD and control groups for stride length,
gait, and swing velocity (Eltoukhy et al., 2017; Sabo et al., 2020).
In MS patients, moderate and fast walking speed measurements
agree with results derived from marker-based systems, but once
more, only if combined with customized software or auxiliary
ML-based classifiers (Bethoux et al., 2018; Elkurdi et al., 2018).
Indeed, it seems that additional ML algorithms or NNs can
frequently increase the validity and reliability with depth cameras
(Rocha et al., 2018).

Microsoft’s Azure is the most recent Kinect upgrade that
supports additional features and several depth-sensing modes.
Although part of the same production line, it has been specifically
designed for distinctive non-gaming purposes such as research
and health care use. Compared to Kinect 2, Azure has a
higher angular resolution, lower noise, and better tracking
accuracy (Tölgyessy et al., 2021). When used as a dual system
consisting of two cameras, Azure outputs precise knee angles
and demonstrates an overall improved validity over Kinect 2
(Ma et al., 2020b). During the estimation of sagittal hip and
knee joint angles, a single Azure appears to have a superior
depth resolution and shows better tracking performance when
subjects walk at non-frontal camera viewing angles (Yeung
et al., 2021). In treadmill walking, spatial gait parameters (e.g.,
step length and width) can be measured more reliably with
Azure, though the accuracy of temporal parameters (e.g., stride
duration) does not change significantly between the two models.
Interestingly, Kinect 2 seems to outperform Azure regarding
upper body tracking. However, an overall increase in the quality

of lower extremity parameters and the additional introduction of
integrated deep learning-based body tracking algorithms create
appeal for Azure to be used in gait rehabilitation (Albert et al.,
2020). As far as the application of Azure in PD and MS studies
is concerned, to our knowledge there has not been any material
published yet.

4.1.2. Intel RealSense
Intel’s RealSense cameras stem from several generations of stereo
depth cameras with a production start in 2015. The system
comprises a left-right depth stereo camera pair and an additional
color camera. The stereo cameras use textured light to ensure
unambiguous image matching, which in turn enables more
accurate depth measurements. Accordingly, stereotactic systems
including RealSense are less sensitive to noise compared to
other in-depth camera types, which allows for a more flexible
experimental setup (Keselman et al., 2017; Zabatani et al.,
2019). In motion analysis, the system can be used to measure
a definite amount of spatiotemporal variables, however, joints
with multiple degrees of freedom exhibit inaccuracies yielding
difficulties for the forthcoming gait data analysis (Mejia-Trujillo
et al., 2019). In general, RealSense seems to perform better at
slow to normal walking speeds located in small to medium-
sized environments (Hausamann et al., 2021). Auxiliary tools
can be used to extend the current three-part system to up to
six cameras to improve body shape and joint position tracking
(Boppana and Anderson, 2019). Intriguingly, despite having an
older production age, bothKinect 1 and 2 seem to rivalRealSense’s
signal quality and capture range during walking (Mejia-Trujillo
et al., 2019). Moreover, temporal parameters seem to exhibit
slightly better accuracy when recorded with RealSense, whereas
spatial parameters retain similar values to Kinect measurements
(Gutta et al., 2021). While a few gait studies with Intel’s RealSense
exist, up to the present moment no publications known to the
authors have used the technology to assess gait and balance
explicitly in either PD or MS patient groups. However, RealSense
convincingly holds the potential to be used in clinical research,
whether as a new method for motion tracking or as a Kinect
substitute (Clark et al., 2019).

4.2. Standard Camera Technology
In daily clinical practice, video recordings are still predominantly
recorded with conventional standard cameras. Clinicians may
film their patients during outpatient or inpatient visits (e.g.,
in frequented hallways) or are presented with home videos
for neurological evaluation (Sato et al., 2019). However, the
material has so far only been used for subjective assessment
and documentation, not exploiting its full potential. The use of
standard camera material for motion analysis would require a
less demanding setup, fewer recording constraints, and would
offer more favorable pricing, and integrability into daily research,
clinical and telemedical settings. The resulting demand for swift
algorithms that accurately determine body part locations on
video images drove the development of numerous approaches
for pose estimation in standard imaging. In comparison to depth
cameras that output distance information without requiring
training and often include built-in post-processing software,
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standard camera footage has to be analyzed offline by a separate
learning pipeline for motion tracking. The software pipeline
either determines pose coordinates in 2D or deduces depth,
in case 3D coordinates are the desired output. In this section,
we go over recent findings in pose estimation and discuss
available toolboxes designed as ready-to-use software packages
for a broader scientific audience that might be applied for gait
analysis in neurological disorders.

4.2.1. 2D Pose Estimation
Most recent 2D pose estimation approaches rely heavily on
contemporary advances in deep learning, a branch of ML that
employs NNs with many layers. With an annotated image data
set where objects have been manually labeled, a NN can be
trained via supervised learning to classify and track those objects.
Pose estimation algorithms frequently use convolutional neural
networks (CNNs) as their architectural foundation with multiple
layers (e.g., Toshev and Szegedy, 2014). The greatest advantage
of CNNs is their ability to learn feature representations directly
from the data set in use, which removes the need for additional
training data, thus, ensuring a straightforward experimental flow.
Their convolutional structure produces 2D probability maps for
the location of each body part after they had been trained to
recognize image features that belong to specific shapes (e.g., knee,
foot) (Wei et al., 2016). This establishes a statistical relationship
between the input images and output pose key-points, which can
be used to track pose in yet unanalyzed data andmake predictions
on the spatiotemporal appearance of tracked key-points.

In video data, 2D pose tracking represents a unique set of
challenges and numerous network designs have been created
to optimize both for speed and reliability in their specific
study context. Contrary to static image analysis, images that
have been extracted from video frames are often subject to
motion blur, frequent body occlusions, unconventional subject
positions and further represent large data sets due to the
sheer amount of frames in a single video (cf. Figure 5). The
continuously increasing amount of new pose algorithms also
evokes the demand for largely manually annotated data sets
that thematically represent the defined area of research: sports,
outdoors, medical research, and many others (Sigal et al., 2010;
Ionescu et al., 2013; Andriluka et al., 2014). To withstand these
challenges, attempts have been made to increase the quality of
parameter supervision by, for example, cross-correlating features
in adjacent video frames or integrating various mathematical
approaches with NNs, and to reduce the amount of required pre-
labeled data (Ouyang et al., 2014; Szegedy et al., 2015; Tompson
et al., 2015; Feichtenhofer et al., 2017).

In gait analysis, established preliminary models use standard
cameras ranging from simple mobile phone cameras to multiple
cameras accompanied with additional sensors such as IMUs or
floor sensors (Alharthi et al., 2019; Viswakumar et al., 2019; Vaith
et al., 2020; Stenum et al., 2021). The validity, reliability, and
processing time of these models vary according to the type and
quality of camera footage, computational system architecture,
type and amount of training data used as well as many other
factors. Therefore, choosing a suitable pose estimation model
is strongly influenced by the experimental setting and might

FIGURE 5 | An example of 2D motion tracking performed with DeepLabCut.

Here, several joints are being tracked simultaneously to determine the exact

limb position during straight walking.

depend on the number of tracked legs, frequency of body part
occlusions, subjects’ clothing, and room background color. Until
these and other issues are resolved, 2D pose estimation will
not be applied on a wide scale in the clinical field. However,
first studies indicating possible applications of this technique
in neurological disorders have been published: Li et al. (2018)
combined the outcome of convolutional pose machines with
ML-based classification for discriminating disease and symptom
severity in PD patients in tasks such as toe-tapping and stamping.
Hu et al. (2019) successfully established a novel graph CNN to
classify freezing episodes from regular gait in the TUG test of 45
Parkinsonian patients, recorded in frontal view.

4.2.2. Single-View 3D Pose Estimation
Occlusion of body parts has continuously presented a challenge
to 2D human pose estimation for gait analysis, especially when
both legs are tracked simultaneously, as desired, for example,
for analyzing gait symmetry in PD. Thus, advances have been
made toward setting the pose in a 3D coordinate framework
instead of 2D by subsequently generating a 3D environment from
images obtained by a single RGB camera. Complementary 3D
pose libraries can be used to create 2D projections from virtual
camera views. In such cases, 2D pose estimation is performed on
input images and then depth is calculated using an additional pre-
existing 3D library as a reference (Chen and Ramanan, 2017).
However, the employment of 3D libraries requires even larger
amounts of annotated data. To address this challenge, specialized
CNNs have been implemented to output 2D key-points together
with body silhouettes, which are later synchronized with a
mathematically generated 3D body mesh model to estimate full
3D pose (Loper et al., 2015; Pavlakos et al., 2018). Moreover, some
networks specialize in the detection of individual people from
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group images and automatically crop out single subjects that are
present on the input image, subsequently performing individual
2D pose tracking and later placing the obtained parameters into
a virtual 3D environment (Moon et al., 2019). Recently, single-
view 3D pose estimation has been integrated into the gait analysis
of PD patients, where spatiotemporal parameters including step
length, velocity, and cadence evaluated with a deep learning pose
estimation algorithm seemed in good agreement with reference
data obtained through pressure sensors (ICC > 0.9) (Shin et al.,
2021).

4.2.3. Multi-View 3D Pose Estimation
The multi-view approach to 3D pose estimation is an alternative
scheme that further reduces training set size and eliminates the
need for large 3D libraries. One strategy is to train the network
on images from multiple cameras before predicting the 3D pose
from images obtained by a single camera (Rhodin et al., 2018).
Specifically, a network is trained to predict the same 3D pose
regardless of camera perspective and can perform 3D predictions
solely based on 2D imagery. Other methods include algebraic
and volumetric triangulation that are speculated to be more
robust to occlusions or partial body visibility (Iskakov et al.,
2019). Further strategies use so-called key-point coordinates
instead of heatmaps (Pavllo et al., 2019) or employ a multi-
stage architecture to reconstruct the 3D pose from 2D heatmap
predictions at each CNN processing stage (Tome et al., 2018).

As multi-view 3D pose estimation approaches effectively deal
with body part occlusions and simultaneously alleviate the need
for large training libraries, they present a promising tool in gait
tracking. Indeed, such models are able to qualitatively reproduce
locomotion compared to marker-based motion capture, albeit
still producing a small error rate in the final 3D pose (Nakano
et al., 2020). Therefore, technical challenges of multi-view
systems such as the setup of multiple cameras, triangulation, and
more extensive processing make the experimental setting more
demanding but at the same time offer an opportunity to improve
the quality of gait parameters.

4.2.4. Software Toolboxes
While numerous algorithms have been created in the attempt
to improve the performance of 2D and 3D pose estimation
algorithms, we will now briefly summarize several that have
been pre-packaged as software toolboxes and are being used
by a wider, non-specialist scientific community to track human
motion promoting new fields of application (Table 3).

One of the earliest of such packages is DeeperCut, a multi-
person pose estimation method based on the integer linear
programming approach DeepCut (Pishchulin et al., 2016). Here,
deep residual neural networks (ResNets) have been adapted
inside a convolutional architecture in form of a sliding window-
based body part detection (He et al., 2016). ResNets build on
constructs known from pyramidal cells in the cerebral cortex:
They utilize skip connections, or shortcuts to jump over some
network layers and map nonlinearities. Moreover, DeeperCut
features image-conditioned pairwise terms or architecture
components that indicate the presence of other body parts in
the vicinity of a tracked point and group these body parts into

a valid pose configuration (Insafutdinov et al., 2016). Published
in 2018,DeepLabCut is a more recent tracking toolbox. Although
a CNN architecture as well,DeepLabCut significantly differs from
its predecessor DeeperCut by implementing pre-trained ResNets,
which fine-tune the already existing node weights following
the tracked body part. Therefore, DeepLabCut exhibits a faster
performance and requires a smaller amount of pre-labeled images
for training. After network processing, the user can readily access
spatial coordinates and the existential probability of every tracked
body part, stored in the form of x- and y-coordinates for each
video time frame (Mathis and Warren, 2018; Mathis et al.,
2018). Figure 5 shows an example of 2D motion tracking with
DeepLabCut. Additional reconstruction of 3D kinematics with
DeepLabCut is possible by either establishing individual networks
for each camera view or training a single network that generalizes
across all views (Nath et al., 2019).

OpenPose is a real-time 2D pose estimation approach
developed for motion processing of multiple individuals on a
single image. An integral part are Part Affinity Fields (PAFs), a
set of 2D vector fields that encode the orientation and location
of limbs on the analyzed image. Moreover, PAFs are bottom-up
representations of unstructured pairwise relationships between
detected body parts that enable the reconstruction of the full-
body pose while decreasing the total computational cost. As with
any multi-person tracking algorithm, OpenPose faces obstacles
like subjects present on the image at different positions or scales
and body part occlusions (Cao et al., 2019).OpenPose has recently
been implemented with multiple synchronized cameras to
evaluate motor performance in a 3D pose framework. Compared
to a marker-based system, the mean absolute error of points
tracked during walking equaled less than 30 mm, excluding 10%
of cases where OpenPose initially failed to recognize the correct
body segment during 2D estimation (Nakano et al., 2020).

Several other prominent pose estimation toolboxes exist
which have not yet been frequently featured in gait research:
Anipose is an open-source toolkit designed to augment the
existing 2D tracking methods for accurate pose tracking in a 3D
setting. It deploys optimization on the calibration, triangulation,
and filtering over multiple camera views that accompanies
the processing by antecedent NN packages (Karashchuk et al.,
2020). DeepPoseKit aims to resolve the limitations of over-
parametrization by pre-trained ResNets and the lack of
robustness in GPU-based approaches. The pipeline is based
on alternative confidence map processing methods, multi-scale
inference, and GPU-oriented convolutional layers (Graving et al.,
2019). Lastly, AlphaPose is another open-source multi-pose
estimator featuring a regional multi-person pose estimation
(RPME) framework (Fang et al., 2017). During training,
the RPME pipeline detects single humans on the image by
establishing bounding boxes around each individual. Afterwards,
single pose estimation is performed on each bounding box
and the output is further refined (Xiu et al., 2018; Li et al.,
2019).

In conclusion, several toolboxes have already been tested on
human footage of walking and running. Among the software
packages in Table 3, OpenPose has been most extensively
evaluated both in 2D and 3D gait estimation. In 2D video
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TABLE 3 | Overview of available software toolboxes for 2D and 3D pose estimation from 2D cameras.

Toolbox Modality Feature Tracking Gait analysis research

DeeperCut 2D ResNets, pairwise terms Multiple -

DeepLabCut 2D/3D Pre-trained ResNets Single*
Cronin et al., 2019

Needham et al., 2021

OpenPose 2D/3D Part Affinity Fields Multiple
Xue et al., 2018

Gu et al., 2018

Viswakumar et al., 2019

D’Antonio et al., 2020, 2021

Zago et al., 2020

Needham et al., 2021

Stenum et al., 2021

Anipose 3D Pre-trained ResNets Single -

DeepPoseKit 2D Multi-scale inference Single -

AlphaPose 2D Regional pose estimation Multiple Needham et al., 2021

*Designed for single person tracking, but can optionally perform multi-pose tracking.

analysis, mean absolute errors of temporal parameters are smaller
than differences arising from natural variations in the walking
pattern making temporal changes detectable in healthy gait
(Stenum et al., 2021). Step length estimation accuracy depends
on the participant’s position in the camera field of view, with
central positions resulting in lower error rates. Unlike gait speed
that reaches accuracy levels similar to the gold standard, errors
in sagittal hip, knee, and ankle angles are in proximity of test-
retest errors in the same plane. In an underwater running
setup, the accuracy of predictions for 2D-joint marker positions
extracted with DeepLabCut seems to match manual labels with a
mean difference of fewer than three pixels (Cronin et al., 2019).
Although not compared to a marker-based system, DeepLabCut
seemed sensitive enough to differentiate between closely-spaced
running cadences with a high test-retest reliability of the mean
stride data. In 3D motion capture obtained with OpenPose,
DeepLabCut, and AlphaPose, significant kinematic differences at
hip and knee occurred in comparison to marker-based systems
(Needham et al., 2021). Here, tracking accuracy of the ankle
unexpectedly performed better than other joints, possibly owing
to more precise manual annotation during training due to
its apparent anatomical position. When compared to IMUs,
OpenPose seems to exhibit tracking discrepancies in joint angles
of up to 14 (Gu et al., 2018; D’Antonio et al., 2020, 2021).
Despite these reports, Sato et al. (2019) employed a pipeline
with OpenPose to analyze cadence in daily clinical movies
recorded from the frontal angle in healthy controls (n =

117) and two PD patients with prominent FoG. The authors
reported a discrimination performance for mild PD gait from
controls of 0.75–0.96 (area under curve) and for comparing
gait sequences before vs. after DBS treatment (n = 1) of 0.98.
On the whole, as the demand for efficient and cost-effective
technologies for gait analysis grows, deep learning architectures
are still lacking in precision but continue to improve rapidly
and are increasingly being implemented into clinical studies and
home assessments (Xue et al., 2018; Viswakumar et al., 2019;
Sibley et al., 2021).

4.3. Summary and Discussion
Non-wearable technologies are becoming an attractive tool for
gait and balance analysis due to their advantages compared
to wearables. Their availability, portability, easy setup, and
complete non-intrusiveness shorten the preparation time
significantly and may reduce the stress of the participant.
These attributes yield comparatively low pricing, bringing non-
wearable marker-less tools distinct advantages over customary
gold standard technologies that are costly and difficult to
deploy in environments of everyday activities. Conversely,
vision-based motion tracking accuracy of non-wearable systems
remains lower than that of marker-based systems. While
discrepancies in temporal parameters stay at a small scale, spatial
parameter differences including joint angles vary from system
to system and are significantly influenced by the experimental
environment. Indeed, the error rate of most systems depends
on the recording conditions as well as movement complexity
and speed, which limits data capture to greater constraints and
reduces the number of feasible walking assessments. Moreover,
depth camera technology remains sensitive to potential light
interference from multiple sensors and operates only in certain
volume ranges, reducing the amount of suitable settings (Colyer
et al., 2018).

At present, the application of in-depth technology in
neurological disorders to quantify gait and balance impairments
is yet in exploration. Although the performance of the reviewed
systems has been exploited in healthy gait, studies on validity and
reliability in pathological gait patterns are still rare, especially
for most recent developments (Azure). Existing studies showed
that spatiotemporal and kinematic parameters from walking and
standing can be extracted and used for differentiation between
PD/MS individuals and neurologically intact controls (Behrens
et al., 2014; Ťupa et al., 2015; Gholami et al., 2016; Eltoukhy et al.,
2017; Sabo et al., 2020), as well as for falling, tremor, and freezing
detection in PD (Bigy et al., 2015). Furthermore, combining the
in-depth camera output with downstream ML methods seems
promising for robust gait analysis in the clinical context (Ťupa
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et al., 2015; Bethoux et al., 2018; Elkurdi et al., 2018; Rocha et al.,
2018). However, this comes at the loss of simplicity, and requires
expert knowledge in the application.

Intensive research is currently carried out in the area of pose
estimation with standard cameras. Yet, the available methods
appear too complex for human gait analysis to be applied
outside research environments at the moment. Nonetheless, the
rapid evolution of these techniques can be predicted due to the
high availability of video material and the already distributed
toolboxes under creative commons licenses. Once intensively
trained networks on large, standardized data sets are available, the
application in clinical and home environments will be possible
on a larger scale. In conclusion, for current and planned studies
on movement disorders, the careful recording of video material,
ideally from two or more perspectives, should be an integral part
as this could allow a detailed motion analysis in the near future.

Altogether, marker-less vision-based motion tracking offers
an exciting new opportunity for capturing gait-related data
in the clinical context. Even though the technology is not
yet mature, it shows distinct advantages over gold standard
methods and might help unfold a new niche of easily accessible,
repeated, longitudinal data collection not only in clinical but
patients’ home environments. The steady transition toward
simpler recording technologies also fits impeccably the contact
restrictions in the ongoing COVID-19 pandemic pushing
the need for remote video measurements and analysis in
telemedicine (Sibley et al., 2021).

5. CONCLUSION AND FUTURE
DIRECTIONS

This review examined established and emerging wearable
and vision-based portable technologies for objective gait and
balance analysis applicable for neurological disorders. The
literature published on the topic is extensive reflecting the high
demand for reliable, sensitive, easily accessible, easy to use,
and mobile measurement systems. New developments aim to
reduce monetary and personnel costs, improve accessibility,
and allow short as well as long-term assessments in and
outside the clinic. Meeting all these demands still poses a
challenge, since the continuous detection and characterization
of locomotion in various environments is a complex task.
Nonetheless, a great number of gait and posture parameters
can be captured with inertial sensors, instrumented insoles,
smartphones, in-depth cameras, and also to some extent with
standard camera technology. Due to the increased sensitivity
of these objective parameters, early subtle gait dysfunction or
disease progression become measurable (Horak et al., 2015).
Therefore, instrumentalized gait and balance analysis will play
a major role in prospective diagnosis, prevention, therapy, and
monitoring of neurological disorders.

The decision on a suitable measurement and analysis tool for
current studies and clinical examinations depends on balancing
the requirements for validity, reliability, and usability. The
first step is to define the key parameters that are to be

measured with high accuracy and sensitivity with respect to the
target group and their gait and movement characteristics. For
example, step length was shown to be an important biomarker
in PD and vision-based tracking methods might be more
reliable than wearables in tracking this parameter (de-la Herran
et al., 2014). Especially in joint angle tracking, the reviewed
technologies still lack reliability compared to laboratory-based
systems, which offer the greatest sensitivity and are reliable
over a wide spectrum of measures. Secondly, the choice of a
measurement instrument is heavily influenced by the given or
desired measurement setup. The various technical solutions also
offer different operating concepts and workflows. Parameters
can be either extracted in real-time, thus being available for
immediate biofeedback or adaptive therapies, or parameters
are determined offline, often yielding a higher accuracy. The
distinct usability aspects must be carefully weighed before
deciding to integrate a system into clinical trials, workflows, or
home applications.

Provided with the broad overview of literature in this review,
we recommend a number of improvements for future research:
(1) To overcome the existing inconsistencies in application,
reporting, and interpretation of the extracted gait and balance
measures, the utilized hardware and software, including the
version number, should be reported. (2) When comparing the
assessed parameters with values from the literature, one has to
be very careful regarding the exact definition of the parameter
calculation. At themoment, reported gait and balance parameters
vary greatly between studies, making it difficult to compare
treatment effects or to choose meaningful parameters for future
investigations. Therefore, publications should provide the exact
parameter definitions and methods in the supplements, when
using self-implemented algorithms, or refer to applied definitions
from literature (Benedetti et al., 2013; Siragy and Nantel, 2018).
(3) For the same reasons, in any gait data analysis, gait velocity
should be included in experiments as a final common expression
of gait performance, plus a range of gait variables according
to pre-defined criteria (Lord et al., 2013). (4) Due to rapid
developments in pose estimation, the careful recording of video
material, ideally from two or more perspectives, should be an
integral part of any upcoming study as this material could allow
a detailed motion analysis soon.

However, before the new systems are integrated into clinical
routines, further research into the validity and reliability of
each device is essential, preferably with comparative studies
in large populations of neurologically intact controls and
individuals with neurological disorders (Horak et al., 2015).
This requirement contrasts with the advantage that wearable
and marker-less vision-based systems are less expensive than
gold-standard technologies: The more effort that has been
put into the development and validation of a technology,
the more expensive commercially available systems become.
Despite the required improvements, we hold the opinion that
portable systems for objective assessment of gait and balance
characteristics are indispensable to support the neurological,
face-to-face exam along with imaging and other biomarkers to
facilitate individualized, adaptive treatments in the future. We
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see that there is a vicious circle to be escaped where as long
as the technologies for simple and reliable gait analysis are
not yet mature, the search for disease-specific biomarkers will
be held up yielding skepticism toward the usefulness of these
techniques. One future direction is the integration of several and
novel sensor modalities (Buckley et al., 2019; Espay et al., 2019;
Morita et al., 2020). Multiple sensors can provide redundant
information and their fusion might reduce uncertainty, which
can increase reliability in case of a sensor failure. The different
modalities can provide objective, real-world data about the
clinical phenotypes of individual patients over flexible amounts
of time, possibly boosting our knowledge of locomotion and
disease pathologies in the concept of deep phenotyping (Dorsey
et al., 2020). The creation of normative databases (big data
approaches) will yield an increased understanding of pathologies,
enhancing the evaluation of therapies, and improve patient care
(Buckley et al., 2019; Monje et al., 2019). In the long term,
the emerging techniques for gait and balance tracking might
be used for continuous monitoring and predicting disability
such as fall risks in real-world environments (Weiss et al.,
2015) and can be integrated into new, personalized therapeutic
interventions. In the context of tele-consultations, tele-therapy
and -rehabilitation, wearable and vision-based technologies
can be utilized to report and monitor movement conditions
and compliance with treatments. In the development of these
telemedical applications, a strong focus should be on usability
such that target user groups suffering from motor as well as
mild cognitive impairments can use the technologies safely
and reliably.
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