
Minimum Cost Flows Over Time without Intermediate Storage∗

Lisa Fleischer† Martin Skutella‡

Abstract. Flows over time (also called dynamic flows) generalize
standard network flows by introducing an element of time. They
naturally model problems where travel and transmission are not
instantaneous. Solving these problems raises issues that do not
arise in standard network flows. One issue is the question of
storage of flow at intermediate nodes. In most applications (such
as, e. g., traffic routing, evacuation planning, telecommunications
etc.), intermediate storage is limited, undesired, or prohibited.

The minimum cost flow over time problem is NP-hard. In
this paper we 1) prove that the minimum cost flow over time
never requires storage; 2) provide the first approximation scheme
for minimum cost flows over time that does not require storage;
3) provide the first approximation scheme for minimum cost flows
over time that meets hard cost constraints, while approximating
only makespan.

Our approach is based on a condensed variant of time-
expanded networks. It also yields fast approximation schemes with
simple solutions for the quickest multicommodity flow problem.

Finally, using completely different techniques, we describe
a very simple capacity scaling FPAS for the minimum cost flow
over time problem when costs are proportional to transit times.
The algorithm builds upon our observation about the structure of
optimal solutions to this problem: they are universally quickest
flows. Again, the FPAS does not use intermediate node storage.
In contrast to the preceding algorithms that use a time-expanded
network, this FPAS runs directly on the original network.

1 Introduction

While standard network flows are useful to model a vari-
ety of optimization problems, they fail to capture a cru-
cial element of many routing problems: routing occurs over
time. In their seminal paper on the subject, Ford and Fulk-
erson [3] introduced flows with transit times to remedy this
and described a polynomial time algorithm to solve the maxi-

∗To appear in Proceedings of the 14th Annual ACM–SIAM Symposium
on Discrete Algorithms, Baltimore, MD, January 2003.

†GSIA, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA
15213, USA, Email:lkf@andrew.cmu.edu . Supported in part by IBM
and by NSF through grant CCR-0049071.

‡Technische Universität Berlin, Institut f̈ur Mathematik,
MA 6–1, Str. des 17. Juni 136, 10623 Berlin, Germany, Email:
skutella@math.tu-berlin.de . Supported in part by the EU
Thematic Networks APPOL I+II, Approximation and Online Algorithms,
IST-1999-14084 and IST-2001-30012, and by the DFG Research Center
‘Mathematics for key technologies: Modelling, simulation and optimization
of real-world processes’.

mum flow-over-time, also called the maximum dynamic flow
problem.1 Since then, this model has proved to be very use-
ful [1, 13]. However, flows over time are significantly harder
than their standard flow counterparts. For example, both
minimum cost flows over time and fractional multicommod-
ity flows over time are NP-hard [10, 6], even for very simple
series-parallel networks.

Problem Definitions. We consider routing problems on a
networkN = (V,A) with n := |V | nodes andm := |A|
arcs. Each arce ∈ A has an associated integraltransit time
or lengthτe and a capacityue. Moreover, there is a set of
terminalsS ⊆ V which can be partitioned into a subset of
sourcesS+ and sinksS−. Every source nodev ∈ S+ has a
supplyDv ≥ 0 and every sinkv ∈ S− has a demandDv ≤ 0
such that

∑
v∈S Dv = 0.

A flow over timef on N with time horizonT (also
called makespan) is given by Lebesgue-measurable func-
tions fe : [0, T) → R+ wherefe(θ) determines the rate
of flow (per time unit) entering arce at time θ. Transit
times are fixed throughout, so that flow on arce progresses
at a uniform rate. In particular, the flowfe(θ) entering
arce = (v, w) at timeθ arrives atw at timeθ + τe. Thus, in
order to obey the time horizonT , we require thatfe(θ) = 0
for θ ∈ [T − τe, T). In order to simplify notation, we some-
times usefe(θ) for θ /∈ [0, T), implicitly assuming that
fe(θ) = 0 in this case.

With respect to flow conservation, there are two differ-
ent models of flows over time. In the model withintermedi-
ate storage of flow at nodes, it is possible to hold inventory
at a node before sending it onward. Thus, the flow conserva-
tion constraints are integrated over time to prohibit deficit at
any node:∫ ξ

0

(∑
e∈δ+(v)

fe(θ) −
∑

e∈δ−(v)

fe(θ − τe)

)
dθ ≤ 0 ,(1.1)

1Earlier work on this topic referred to the problems asdynamic flow
problems. Recently the termdynamichas been used in many algorithmic
settings to refer to problems with input data that arrives online, or changes
over time, and the goal of the algorithms described is to modify the current
solution quickly to handle the slightly modified input. For the problem of
dynamic flows, the input data is available at the start. The solution to the
problem involves a describing how the optimal flow changes over time. For
these reasons, we use the term “flows over time” instead of “dynamic flows”
to refer to these problems.

for all ξ ∈ [0, T), v ∈ V \ S+. Here,δ+(v) andδ−(v) de-
note the set of arcse leaving nodev and entering nodev, re-
spectively. Moreover, we require that equality holds in (1.1)
for ξ = T and v ∈ V \ S, meaning that no flow should
remain in the network after timeT . In the model without
intermediate storage of flow at nodes we additionally require
that equality holds in (1.1) for allξ ∈ [0, T) andv ∈ V \ S.

A flow over timef satisfies the supplies and demands if
by timeT the net flow into each sink equals the demand at
the sink and the net flow out of each source equals the supply
at the source:∫ T

0

(∑
e∈δ+(v)

fe(θ) −
∑

e∈δ−(v)

fe(θ − τe)

)
dθ = Dv

for all v ∈ S. As for the setting of static flows, we use the
terms-t-flow over timefor the case of a single sources and
a single sinkt. An s-t-flow over time satisfying the supply
D = Ds = −Dt hasvalue|f | = D.

A flow over timef is feasibleif it obeys the capacity
constraintsfe(θ) ≤ ue, for all θ ∈ [0, T) ande ∈ A. Here,
capacityue is interpreted as an upper bound on the rate of
flow entering arce, i. e., a capacity per unit time.

Given a vector of cost functions(ce)e∈A, the cost of a
flow over timef is defined as

c(f) :=
∑
e∈A

∫ T

0

ce(fe(θ)) dθ .(1.2)

Given a sources, a sinkt, a flow valueD, and an integral
time horizonT , the (min-cost) flow-over-time problemasks
for a feasibles-t-flow over time of valueD with time
horizon T (and minimum cost). Similarly, for the case
of a set of several terminalsS with supplies and demands
Dv, v ∈ S, the(min-cost) transshipment-over-time problem
is to find a feasible flow over time with time horizonT ,
satisfying all supplies and demands (at minimum cost). The
quickest transshipment problem (with bounded cost)asks for
a solution with minimal makespan (and cost bounded by a
given valueC).

1.1 Results from the Literature
Flows over time.Many flow over time problems can be
solved in an exponentially sized time-expanded network.
The size of this graph depends linearly on the makespanT .
Such algorithms are termed ”pseudopolynomial”, since the
run time of the algorithm depends onT and not log T .
In general, the size of these networks makes the problem
solution prohibitively expensive.

Maximum Flows.Ford and Fulkerson [3] show how a
path decomposition of a special static minimum cost flow
in a network with transit times can be used to describe a
maximum flow over time. This solution is periodic and does
not require intermediate node storage.

Unlike standard network flows, the multiple source,
multiple sink, single commodity flow over time is not equiv-
alent to ans-t maximum flow over time. Hoppe and Tar-
dos describe the first polynomial time algorithm to solve this
problem [9, 7], and give a solution that does not require in-
termediate node storage. Their algorithm is not practical as
it requires a submodular function minimization oracle for a
subroutine.

An earliest arrival flowis ans-t-flow over time which
simultaneously maximizes the amount of flow arriving at the
sink before timeθ, for all θ = 0, . . . , T . Gale [4] observes
that these flows exist; and Wilkinson [14] and Minieka [11]
give equivalent pseudo-polynomial time algorithms to find
them. Their solution is also alatest departure flow, i. e., a
flow over time which simultaneously maximizes the amount
of flow departing from the source after timeθ, for all θ =
0, . . . , T (subject to the constraint that the flow is finished
by time T). A flow over time which is both an earliest
arrival flow and a latest departure flow is calleduniversally
maximal flow over time. Hoppe and Tardos [8, 7] describe
a polynomial-time approximation scheme for the universally
maximal flow problem that routes a1 − ε fraction of the
maximum possible flow that can reach the sinkt by time
θ, for all 0 ≤ θ ≤ T . An equivalent problem is the
universally quickest flow problemwhich asks for a flow over
time that sendsD units of flow to a single sink such that
the earliest point in time whend units have arrived at the
sink is simultaneously minimized for alld ≤ D and the
earliest point in time whend units have left the source is
simultaneously maximized for alld ≤ D.

Minimum Cost Flows.Orlin [12] describes a polynomial
time algorithm to compute a infinite horizon, minimum cost
flow over time that maximizes throughput. The infinite
horizon problem does not have specified demand and is not
concerned with computing how a flow starts and stops, issues
that are crucial when flow demands are changing over time.
For the finite horizon problems that we treat in this paper,
Klinz and Woeginger show via a reduction from partition that
the minimum cost flow over time problem is NP-Hard [10].
In a recent paper [2], we describe a(2 + ε)-approximation
algorithm for the quickest flow problem with bounded cost
that does not require intermediate node storage. In the
quickest flow problem, the task is to find a flow over time
with minimal makespanT . We also give an FPAS for this
problem that requires an exponential amount of additional
storage. This approximation scheme approximates both cost
and time.

Multicommodity Flows. The approximation results
in [2] also apply to the quickest multicommodity flow prob-
lem with bounded cost. In the multicommodity setting,
the FPAS relies on solving a linear program withp =
O(|A|5k2/ε2) variables. Lemma 4.2 of this paper implies
that it is sufficient to obtain an approximately optimal so-

lution to the LP, and thus it is possible to use an FPAS for
concurrent multicommodity flow [5] instead of solving the
LP exactly. The run time of the fastest known FPAS depends
quadratically onp. Already in the setting without costs, mul-
ticommodity flows over time are NP-hard [6].

1.2 Our Contribution
We prove that the minimum convex cost transshipment over
time never requires storage2 and provide the first approxima-
tion scheme for minimum cost flows over time that does not
require storage; this is also the first approximation scheme
for minimum cost flows over time that meets hard cost con-
straints, while approximating only makespan.

Our algorithm makes use of a completely new and
much simpler analysis of condensed time-expanded net-
works, which results in considerably reduced run times and
simpler solutions, that is, solutions with fewer parts: In or-
der to obtain(1 + ε)-approximate solutions, we show that
the number of time layers of the condensed time-expanded
network can be chosen to beO(|V |/ε2) instead of the
O(|A|4/ε2) bound in [2]. As our algorithm employs stan-
dard minimum cost flow algorithms, it also yields a version
that is the first strongly polynomial FPAS for the problem.

For the transshipment problem without costs, our FPAS
is significantly faster and simpler than the exact algorithm of
Hoppe and Tardos [9] when the number of sources and sinks
is Ω(|V |1/3+δ) for anyδ > 0.

Another consequence of our new approach is a signif-
icantly simpler FPAS for the multicommodity flow prob-
lem over time. This new FPAS is faster than the previous
FPAS [2] by a factor of roughlyO(|A|6k4).

In Section 5, using very different techniques, we de-
scribe a new and simple capacity scaling FPAS for the min-
imum cost flow over time problem when costs are propor-
tional to transit times. The FPAS does not use intermedi-
ate node storage, and runs iñO(|A|2ε−1 log U) time, on a
network with integer capacities bounded byU . This is a
speed up of roughly|A|6 over the general FPAS described
in [2] and a significant reduction in the dependence onε of
the simpler general FPAS we provide here. In contrast to
the preceding algorithms which require constructing a large
time-expanded network, this FPAS runs directly on the orig-
inal networkN . Our algorithm builds on a connection we
establish between minimum cost flow over time problems
when costs are proportional to transit times, and the univer-
sally maximal flow over time problem.

2 Preliminaries

2.1 Static Flows
A static flowx on N assigns every arce a non-negative

2Klinz and Woeginger [10] claim a special case of this result: the single-
source, single-sink, minimum cost flow over time does not require storage.

flow value xe such that flow conservation constraints∑
e∈δ+(v) xe −

∑
e∈δ−(v) xe = 0 for all v ∈ V \ S, are

obeyed. The static flowx satisfies the supplies and demands
if
∑

e∈δ+(v) xe −
∑

e∈δ−(v) xe = Dv for all v ∈ S. For
the case of a single sources and a single sinkt we also
use the terms-t-flow. An s-t-flow x satisfying the supply
D = Ds = −Dt hasvalue |x| = D. Finally, a flowx is
calledfeasibleif it obeys thecapacity constraintsxe ≤ ue,
for all e ∈ A. The cost of a static flowx is defined as
c(x) :=

∑
e∈A ce(xe).

A pathP in networkN is a subgraph consisting of an
ordered sequence of nodes(v0, v1, . . . , vp) ⊆ V p+1 and arcs
(vi, vi+1) ∈ A between each consecutive pair of nodes. It
is a well-known result from network flow theory that any
static flow x in N can be decomposed into flowsxP on
simple pathsP ∈ P, whereP is the set of all possible
simple flow paths (and flows on cycles3). That is, xe =∑

P∈P : e∈P xP for all e ∈ A. The number|P| of simple
paths can be bounded by the number of arcsm. Similarly, a
flow over timef in N without intermediate storage can be
decomposed into flows over timefP on pathsP ∈ P. Here,
fP (θ) denotes the rate of flow entering pathP at timeθ and
thus arriving at the end vertex of the path at timeθ + τ(P).

2.2 Time-Expanded Networks
Traditionally, flows over time are solved in a time-expanded
network. Given a networkN = (V,A) with integral transit
times on the arcs and an integral time horizonT , the T -
time-expanded networkof N , denotedN T is obtained by
creatingT copies ofV , labeledV0 through VT−1, with
the θth copy of nodev denotedvθ, θ = 0, . . . , T − 1. The
flow that passes throughVθ corresponds to flow over time in
the interval[θ, θ+1). For every arce = (v, w) in A and0 ≤
θ < T − τe, there is antransit arceθ from vθ to wθ+τe with
the same capacity and cost as arce. For each terminalv ∈ S
there is an additional infinite capacityholdover arcfrom vθ

to vθ+1, for all v ∈ V and0 ≤ θ < T − 1, which models
the possibility to hold flow at nodev in the time interval
[θ, θ+1). We assume without loss of generality that a source
(sink) has no incoming (outgoing) arc inN . Thus, a terminal
is never an intermediate node on a path flow. We treat the first
copyv0 of a sourcev ∈ S+ as the corresponding source in
N T ; and treat the last copyvT−1 of a sinkv ∈ S− as the
corresponding sink inN T . In the model with intermediate
storage of flow at nodes, we introduce holdover arcs for all
nodesv ∈ V .

Any static flow in this time-expanded network corre-
sponds to a flow over time of equal cost: interpret the flow
on arceθ as the flow rate entering arce = (v, w) in the time
interval [θ, θ + 1). Similarly, any flow over time completing

3We will show in section 3 that the path decompositions we obtain
contain only paths, no cycles.

by timeT corresponds to a flow inN T of the same value and
cost obtained by setting the flow oneθ to be the average flow
rate intoe over the interval[θ, θ+1). Thus, we may solve any
flow-over-time problem by solving the corresponding static
flow problem in the time-expanded network.

One problem with this approach is that the size ofN T

depends linearly onT , so that if T is not bounded by a
polynomial in the input size, this is not a polynomial-time
method of obtaining the required flow over time. However,
if all arc lengths are a multiple of∆ > 0 such thatdT/∆e
is bounded by a polynomial in the input size, then instead
of using theT -time-expanded network, we may rescale
time and use a∆-condensed time-expanded networkthat
contains onlydT/∆e copies ofV . In the∆-condensed, time-
expanded network, there aredT/∆e copies ofV . CopyVθ

corresponds to flow throughV in the interval[θ∆, (θ+1)∆).
Thus, the capacity of transit arceθ is ue∆. Other capacities
and costs are the same as in the unit-interval, time-expanded
network. We denote this condensed, time-expanded network
byN T /∆.

LEMMA 2.1. ([2], LEMMA 4.1) Suppose that all arc
lengths are multiples of∆ andT/∆ is an integer. Then, any
flow over time that completes by timeT corresponds to a
static flow of equal cost inN T /∆, and any flow inN T /∆
corresponds to a flow over time of equal cost that completes
by timeT .

3 Min-Cost Flows without Storage

In this section we show that the ability to store flow at
intermediate nodes does not help reduce the cost of a min-
cost transshipment-over-time. This result also holds if the
cost on an arc is an arbitrary convex function of the flow
rate into the arc. As mentioned in Section 2.2, when
transit times are integers, the min-cost transshipment-over-
time problem with or without intermediate storage can be
solved by solving the corresponding static flow problem in
the time-expanded networkN T .

THEOREM 3.1. The cost of a minimum convex cost trans-
shipment over time that does not use intermediate node stor-
age is no more than the cost of a minimum convex cost trans-
shipment over time using intermediate node storage.

Proof. Consider a minimum cost transshipment over time
with intermediate node storage and a corresponding static
min-cost flowx in the time-expanded networkN T . Notice
that the setX of all min-cost solutionsx is the intersection
of the polytope formed by all feasible solutions with a closed
convex set given by the convex cost constraint. In particular,
X is convex and compact.

For a nodez ∈ V , let x(δ(zθ)) be the net flow leavingz

in the time interval[θ, θ + 1):

x(δ(zθ)) :=
∑

e∈δ+(z)

xeθ
−

∑
e∈δ−(z)

xeθ−τe
.

SinceX is compact, there exists anx ∈ X minimizing
the convex functionF (x) :=

∑
z∈V

∑T−1
θ=0 |x(δ(zθ))|. We

show thatx does not send flow along holdover arcs of
vertices inV \ S.

By contradiction, letvϕ be the earliest copy of node
v /∈ S to send flow along a holdover arc. We have that
x(δ(vϕ)) = −xvϕ,vϕ+1 < 0. Let [ϕ + q, ϕ + q + 1),
q > 0 integral, be the first time interval after[ϕ, ϕ + 1)
in which v has more flow leaving it than entering it; that is,
x(δ(vϕ+q)) > 0. We show in the following thatF (x) can
be decreased by augmenting flow along a cycle in the time-
expanded networkN T . This is a contradiction to the choice
of x.

Consider a time-expanded network that is infinite in
both directions,N (−∞,+∞). Note thatN (−∞,+∞) looks the
same atvϕ as it does atvϕ+q. However,x in this network
looks different at each of these copies ofv. We indicate
this difference by coloring the arcs ofN (−∞,+∞) as follows.
Color transit arc(iθ−τij , jθ)

red if x(iθ−τij
,jθ) < x(iθ−τij−q,jθ−q)

blue if x(iθ−τij
,jθ) > x(iθ−τij−q,jθ−q)

no color if x(iθ−τij
,jθ) = x(iθ−τij−q,jθ−q) .

All holdover arcs remain colorless. Note that there are no
blue arcs leavingVθ for θ ≥ T − 1; and there are no red arcs
enteringVθ for θ ≤ q.

Let P be a simple path consisting of backward red
arcs and forward blue arcs fromvϕ+q to a nodewµ with
the property thatx(δ(wµ)) < x(δ(wµ−q)). We claim that
such aP exists: Sincex(δ(vϕ+q)) − x(δ(vϕ)) > 0, node
vϕ+q has either a red arc entering it or a blue arc leaving
it. Consider the set of all nodes which can be reached from
vϕ+q on a path consisting of backward red arcs and forward
blue arcs. Sincex(δ(vϕ+q)) − x(δ(vϕ)) > 0, it follows
from flow conservation that there must exist a nodewµ with
x(δ(wµ))− x(δ(wµ−q)) < 0 in this set.

Note thatV (P) ⊂
⋃T−1

θ=q Vθ. We define the capacity
u(P) of P to be

u(P) := min
(iθ,jθ+τij

)∈P
|x(iθ,jθ+τij

) − x(iθ−q,jθ−q+τij
)| .

We modifyingx to reduce|x(δ(vϕ))| and|x(δ(vϕ+q))|. Let

κ := min
{
u(P),−x(δ(vϕ)), x(δ(vϕ+q)),

x(δ(wµ−q))− x(δ(wµ))
}

> 0 .

If an arc (iθ, jθ+τij
) ∈ P is red, then we modify

x on (iθ, jθ+τij
) and (iθ−q, jθ−q+τij

) to x(iθ,jθ+τij
) :=

x(iθ,jθ+τij
) + κ andx(iθ−q,jθ−q+τij

) := x(iθ−q,jθ−q+τij
) − κ.

If (iθ, jθ+τij
) ∈ P is blue, thenx(iθ,jθ+τij

) := x(iθ,jθ+τij
)−

κ andx(iθ−q,jθ−q+τij
) := x(iθ−q,jθ−q+τij

) + κ. Finally, we
removeκ units of flow from the path of holdover arcs from
vϕ to vϕ+q and addκ to the path of holdover arcs from
wµ−q to wµ. Notice that we have augmented flow on a
cycle inN T by κ. Since the domain ofP is restricted to
V (P) ⊂

⋃T−1
θ=q Vθ, the flowx is still a feasible solution to

our problem.
We next argue that the cost ofx is not increased such

thatx is still in X: Since the flow augmentation transfers an
equal amount of flow from one copy of an arc to a parallel
copy, if flow costs are linear, this does not change the cost of
our solution. Since the sum of flow on these two arcs does
not change, and we simply move flow so that the flow on
each is closer to the average flow on each, if our flow costs
are convex, then the cost of our solution does not increase.

Finally, the augmentation byκ ensures that|x(δ(vϕ))|
and|x(δ(vϕ+q))| are each reduced byκ, and|x(δ(wµ))| +
|x(δ(wµ−q))| is not increased (either|x(δ(wµ−q))| > κ,
|x(δ(wµ))| < −κ, or, sinceκ ≤ x(δ(wµ−q)) − x(δ(wµ)),
|x(δ(wµ))| and |x(δ(wµ−q))| exchange values). Thus,
F (x) =

∑
z∈V

∑T−1
θ=0 |x(δ(zθ))| is decreased by at least

2κ > 0. This concludes the proof. �

Theorem 3.1 implies that we can find a minimum
cost flow over time in the time-expanded networkwithout
holdover arcs for intermediate nodes. We can even state the
following stronger result.

COROLLARY 3.1. For every instance of the minimum con-
vex cost transshipment-over-time problem, there exists an
optimal solution without intermediate storage such that any
infinitesimal unit of flow visits every node at most once.

Proof. We first consider the case that there is no cycle of zero
cost inN . If some path flow in an optimal flow visits a node
v more than once, it travels along a cycle inN . Therefore the
cost of the solution can be decreased by letting the flow wait
atv. This is a contradiction to the optimality of the solution.

If there exist zero cost cycles inN , we can increase the
cost of every arc by a small amount such that an optimal
solution to the modified problem always yields an optimal
solution to the original problem. This eliminates cycles of
zero cost and thus concludes the proof. �

4 Approximation Schemes

In this section we present a fully polynomial time approxi-
mation scheme for the quickest transshipment problem with
bounded (linear) cost which does not use storage at interme-
diate nodes. We also discuss a generalization of our approach
to the multicommodity flow setting at the end of this section.

The basic idea of our algorithm is to round up transit
times to the nearest multiple of∆ for an appropriately

d∆/4e

0s v t

∆

d∆/2e

d∆/3e b∆/3c

d∆/4e b∆/4c

b∆/4c

b∆/3c

b∆/2c

Figure 1: In this partially drawn unit capacity network, there
are∆ paths froms to v. The ith path containsi arcs, each
with transit time roughly∆/i.

chosen∆, solve the static flow problem in the corresponding
∆-condensed, time-expanded network, and then translate
this flow back to the setting of the original transit times.

In order to obtain provably good solutions in this way,
one has to make sure that the following two conditions are
fulfilled: (a) the value of an optimal solution to the instance
with increased transit times (obtained in the condensed time-
expanded network) approximates the value of an optimal
solution in the original setting; (b) the solution to the instance
with increased transit times can be transformed into a flow
over time with original arc lengths without too much loss in
flow value.

Before discussing how to fulfill these conditions, we
first give a simple example to show that non-trivial problems
have to be dealt with to address both (a) and (b).

Consider first a (sub)network consisting of four nodes
{1, 2, 3, 4} and three arcs(1, 3), (2, 3), (3, 4). All capacities
are 1. The transit times areτ(1,3) = ∆/2, τ(2,3) = ∆, and
τ(3,4) = 0. A flow in the graph without rounded transit
times can send∆/2 units of flow in interval[0,∆/2) on
each pathP1 = 1 → 3 → 4 andP2 = 2 → 3 → 4. Path
P1 will use arc(3, 4) in interval [∆/2,∆) and pathP2 will
use arc(3, 4) in interval [∆, 3∆/2). However, if we send
flow simultaneously on pathsP1 andP2 in the network with
transit times rounded up to the nearest multiple of∆, then
this will cause a bottleneck on arc(3, 4).

Now consider the unit capacity (sub)network depicted
in Figure 1. If all transit times are rounded to the nearest
multiple of ∆, we may send∆ units of flow simultaneously
on each path froms to t, and each path will use arc(v, t) in a
distinct interval of time. If we try to interpret this flow in the
network with original transit times, however, each path-flow
will try to use arc(v, t) in the same time interval, causing a
large bottleneck.

As pointed out in [2], condition (b) can be enforced by

allowing storage of flow at nodes. If arce = (v, w) has
length increased by∆′ ≤ ∆, then this can be emulated in
the original network by holding flow arriving atw for ∆′

time units. If∆′ is large, then this requires a large amount
of additional storage. Here, we present a new approach that
works if storage of flow at nodes is not allowed.

There are two main steps to the approach: First, we
choose∆ small enough so that we can increase the time
horizon by a sufficiently large amount relative to∆ to
account for bottlenecks caused by problems of type (a).
Second, we average the flow computed in the rounded
network over sufficiently large intervals relative to∆ so that
bottlenecks caused by problems of type (b) are averaged over
a sufficiently long time to make the flow almost feasible.
This second step also increases the total time horizon of the
flow, but again, by careful choice of∆, by a sufficiently
small amount.

In the following, letT ∗ be the makespan of a quickest
transshipment with cost bounded byC. We start with a
description of the algorithm in Figure 2. The exact choice
of the time horizonT ′ will be given in the analysis of the
algorithm. (See Lemma 4.1.)

INPUT: network N with capacities, linear costs, and
transit times, demand vectorD, cost boundC, andε > 0;
OUTPUT: feasible flow over timef satisfying demandsD
at cost at mostC;

1. guessT such thatT ∗ ≤ T ≤ (1 + ε) T ∗;

2. round transit times up to nearest multiple of∆ :=
ε2 T/n;

3. construct ∆-condensed time-expanded network
(without holdover arcs for intermediate nodes) with
time horizonT ′ = (1 + O(ε))T ;

4. compute static flowx′ in this network satisfying
(1 + ε)D at cost at most(1 + ε) C;

5. interpretx′ as flow over timef ′ with path decompo-
sition (f ′P)P∈P ;

6. setfP (θ) := 1
1+ε

1
ε T

∫ θ

θ−ε T
f ′P (ξ) dξ for all P ∈ P

andθ ∈ [0, T ′ + ε T).

Figure 2: A fully polynomial time approximation scheme.

The flow over timef ′ lives in networkN with transit
times rounded up to multiples of∆ = ε2 T/n. In contrast,
the flow over timef is defined onN with original transit
times. It uses the same set of simple pathsP. However,f
flows through these paths at a faster pace thanf ′.

We start by discussing the running time of this algo-
rithm. Using geometric mean binary search in step 1, we

find T such thatT ∗ ≤ T ≤ (1 + ε) T ∗. We can begin
with standard binary search to find lower and upper bounds
on T that are within a constant multiple of each other. This
requireslog T ∗ iterations. Alternatively, it follows from [2,
Section 3] that there is a constant factor approximation algo-
rithm for the quickest transshipment problem with bounded
cost which yields a lower boundL and an upper boundU
on T ∗ such thatU ∈ O(L). Using this, then the estimateT
can be obtained withinO(log(1/ε)) geometric mean binary
search steps.

The condensed time-expanded network (without
holdover arcs) constructed in step 3 containsO(n2/ε2)
nodes andO(mn/ε2) arcs. Thus the static flowx′ in step 4
can be computed in polynomial time. The corresponding
flow over timef ′ can be decomposed into flows over time
on at mostO(mn/ε2) simple pathsP ∈ P such that the
flow ratef ′P on each pathP is zero except for an interval
of lengthε2 T/n wheref ′P attains a positive constant value
(notice that a pathP can occur up toO(n/ε2) times in
this decomposition). Thus, computingf in step 6 takes
O(mn/ε2) time. To outputf requiresn work per path, so
O(mn2/ε2) time.

We next discuss the choice ofT ′ in the algorithm.

LEMMA 4.1. If T ′ is chosen to be at leastT (1+ε+ε2) (1+
ε)2, then there exists a static flowx′ as described in step 4.

Proof. Consider a quickest transshipmentf∗ on networkN
with original transit timesτe. The time horizon off∗ is T ∗

and its cost is at mostC. By Corollary 3.1, there exists a
decomposition off∗ = (f∗P)P∈P∗ into flows over timef∗P
on simple pathsP ∈ P∗.

Consider an arbitrary arce = (v, w) ∈ A. The total
flow into arce at timeθ in f∗ is

(4.3) f∗e (θ) =
∑

P∈P∗ : e∈P

f∗P
(
θ − τ(P, e)

)
≤ ue .

Here,τ(P, e) denotes the length of the subpath ofP which is
obtained by removing arce and all its successors. We obtain
a ‘smoothed’ flow over time(f̂P)P∈P∗ with time horizon
(1 + ε) T by defining

(4.4) f̂P (θ) :=
1

ε T

∫ θ

θ−ε T

f∗P (ξ) dξ

for θ ∈ [0, (1 + ε) T) andP ∈ P∗. An illustrative example
is given in Figure 3. It is easy to check thatf̂ obeys capacity
constraints and the total amount of flow sent on a pathP ∈
P∗ is the same inf∗ andf̂ . In particular,c(f̂) = c(f∗) ≤ C

andf̂ satisfies demandsD.
Notice that(f̂P)P∈P∗ still describes a (not necessarily

feasible) flow over time inN when transit times are rounded
up to multiples ofε2 T/n. We denote the rounded transit

εT

εT
θ

θ

f∗P (θ)

0

f̂P (θ)

0

Figure 3: The ‘smoothed’ path flow over timêfP in compar-
ison to the original flow over timef∗P sent into pathP .

time of arce ∈ A by τ̃e. Since every pathP ∈ P∗ is simple,
it contains at mostn− 1 arcs; therefore,

(4.5) τ(P) ≤ τ̃(P) ≤ τ(P) + ε2 T

andτ(P, e) ≤ τ̃(P, e) ≤ τ(P, e)+ε2 T , for all e ∈ P . Thus,
in the setting with rounded transit times we get, for alle ∈ A
andθ ∈ [0, (1 + ε) T + ε2 T),

f̂e(θ) =
∑

P∈P∗ : e∈P

f̂P (θ − τ̃(P, e))

(4.4)
=

1

ε T

∑
P∈P∗ : e∈P

∫ θ−τ̃(P,e)

θ−τ̃(P,e)−ε T

f∗P (ξ) dξ

≤ 1

ε T

∑
P∈P∗ : e∈P

∫ θ−τ(P,e)

θ−τ(P,e)−ε2 T−ε T

f∗P (ξ) dξ(4.6)

(sinceτ(P, e) ≤ τ̃(P, e) ≤ τ(P, e) + ε2 T)

=
1

ε T

∫ θ

θ−ε2 T−ε T

∑
P∈P∗ : e∈P

f∗P
(
ξ − τ(P, e)

)
dξ

(4.3)
=

1

ε T

∫ θ

θ−ε2 T−ε T

f∗e (ξ) dξ

≤ ε2 T + ε T

ε T
ue = (1 + ε) ue .(4.7)

Thus, if we scalef̂ by a factor of1/(1 + ε), we get a
feasible flow over time for the setting with rounded transit
times. The time horizon of this flow iŝT = (1 + ε + ε2) T ,
its cost isc(f̂)/(1+ ε) ≤ C/(1+ ε) and it satisfies demands
D/(1 + ε).

In step 3, we require a flow to satisfy demandsD(1+ε).
To obtain this, we use Lemma 4.2 below withδ = (1 + ε)2,
to see that it is sufficient to start with a time horizon of
T ′ := (1 + ε)2T̂ = (1 + ε + ε2)(1 + ε)2T . �

We show that increasing demands and supplies by a
factor of 1 + δ requires an increase in time and cost by at
most1 + δ.

LEMMA 4.2. Consider a flow over timef with time horizon
T and costc(f), satisfying a vector of demands and sup-
plies D. Then, there exists a flow over timef ′ satisfying
demands and supplies(1 + δ) D within time(1 + δ)T and
with cost(1 + δ) c(f).

Proof. By rescaling time, we can assume without loss of
generality thatT and all transit times are integral. Letx
be the static flow in theT -time-expanded network which
corresponds tof . Consider a modified instance where all
transit times of arcs are increased by a factor of1 + δ.
Then, the(1 + δ)-condensed time-expanded network of the
modified instance with time horizon(1 + δ) T is identical
to the T -time-expanded network of the original instance,
but with arc capacities multiplied by a factor of1 + δ. In
particular,(1 + δ)x defines a feasible flow over time with
time horizon (1 + δ) T and cost(1 + δ) c(f) satisfying
demands and supplies(1 + δ) D for the modified instance.
Since transit times in the original instance are smaller, it can
be seen as a relaxation of the modified instance. This yields
the existence off ′ and concludes the proof. �

It remains to show that the flow over timef computed
in step 6 of the algorithm is feasible and satisfies the vector
of demands and suppliesD at cost at mostC. The result on
the demand and cost follows from the definition off since
f ′ satisfies demands(1 + ε) D with cost at most(1 + ε) C.
The feasibility off follows from the same line of arguments
given in the proof of Lemma 4.1 for the flow over timêf .
This yields the following main result of this section.

THEOREM 4.1. For an arbitrary ε > 0, a (1 + ε)-
approximate solution to the quickest transshipment problem
with bounded cost can be obtained fromO(log(1/ε)) static
min-cost flow computations in a condensed time-expanded
network withO(n2/ε2) nodes andO(mn/ε2) arcs (without
holdover arcs). In particular, this solution does not use in-
termediate node storage.

For the case of the quickest transshipment problem with-
out costs, the min-cost flow computations in the condensed
time-expanded network can be replaced by max-flow com-
putations.

Quickest Multicommodity Flows. The quickest multicom-
modity flow problem with costs is defined as follows. We are
given a networkN = (V,A) with capacities, transit times,
and costs on the arcs. Moreover, there arek commodities
i = 1, . . . , k, each given by a source-sink pair(si, ti) ∈ V 2

and a demand valueDi. We are looking forsi-ti-flows over
time with time horizonT and valueDi, for i = 1, . . . , k

that share the arc capacities: the sum of flow values over
all commodities on an arc must never exceed the capacity of
the arc. The sum of the costs of thek flows over time must
not exceed a given budgetC and the task is to minimize the
common time horizonT .

In [2] we discuss an example which shows that an op-
timal solution to this problem must use intermediate storage
of flow at nodes. On the other hand, if storing at intermediate
nodes is not allowed, then the optimal solution may contain
non-simple flow paths. The analysis in (4.6) relies on the
fact that one can restrict to simple flow paths, since it uses
(4.5). However, if intermediate storage is allowed, its easy
to see that one can restrict to simple paths. In this case, we
can generalize the approach given above to get the following
theorem.

THEOREM 4.2. Consider an instance of the quickest multi-
commodity flow problem with bounded cost and intermedi-
ate node storage. For anyε > 0, a (1 + ε)-approximate flow
over time with bounded cost can be found byO(log(1/ε))
static multicommodity flow computations with bounded cost
in a condensed time-expanded network withO(n2/ε2) nodes
andO(mn/ε2) arcs (including holdover arcs).

5 Length-Proportional Costs

In this section, we describe a simple and fast FPAS for
the minimum cost flow over time problem when costs are
proportional to transit times. This FPAS will also not use any
intermediate storage. We begin by establishing a connection
between this version of the minimum cost flow over time
problem and an earliest-arrival, latest-departure flow.

5.1 Universally Quickest Flows

THEOREM 5.1. LetD be the value of a maximum flow inN
with time horizonT . A minimum, length-proportional cost
flow over time of valueD completing by timeT that uses no
intermediate node storage is also a universally quickest flow
completing by timeT .

Proof. The cost of the flow over time is

c(f) =
∑
e∈A

∫ T

0

ce(fe(θ)) dθ =
∫ T

0

∑
e∈A

τe fe(θ) dθ

=
∫ T

0

∫ θ

0

(∑
e∈δ+(s)

fe(ϕ)−
∑

e∈δ−(s)

fe(ϕ− τe)

)
dϕ

−
∫ θ

0

(∑
e∈δ−(t)

fe(ϕ− τe)−
∑

e∈δ+(t)

fe(ϕ)

)
dϕ dθ.

The last equality follows since if there is no storage of flow
then the time a unit of flow spends in transit is equal to the

time it takes to travel from the source to the sink. The last
expression is minimized whenf is an earliest arrival, latest
departure flow. �

Together with Theorem 3.1 this implies the equivalence
between minimum length-proportional cost flows and uni-
versally quickest flows (i.e. earliest-arrival, latest-departure
flows).

COROLLARY 5.1. Let D be the value of a maximum flow
in N with time horizonT . A minimum length-proportional
cost flow over time of valueD completing by timeT is also
a universally quickest flow completing by timeT .

In the discrete time model, a universally maximal
flow over time can be computed in the time-expanded net-
work by using lexicographically maximal flows introduced
by Minieka [11]. A lexicographically maximal flowis
defined in a static network with multiple sources and/or
sinks. There is a strict ordering on the sources and sinks,
e. g. {ν1, ν2, . . . , νk}, whereνi is used here to denote ei-
ther a source or a sink. A lexicographically maximal
flow is a flow that simultaneously maximizes the flow
leaving each ordered subset of sources and sinksSi =
{ν1, ν2, . . . , νi}. A universally maximal flow over time with
time horizonT is a lexicographically maximal flow in the
time-expanded network with ordering of sources and sinks
as {sT−1, sT−2, . . . , s1, s0, tT−1, tT−2, . . . , t1, t0}. How-
ever, due to the exponential size of the time-expanded net-
work, this insight does not lead to an efficient algorithm for
the problem.

Wilkinson and Minieka also describe algorithms that
use only the original networkN . They are not polynomial,
but only pseudo-polynomial, as they are based on the suc-
cessive shortest path algorithm. The algorithm presented
in Figure 4 is a slight modification of an interpretation by
Hoppe and Tardos [8, 7] of algorithms by Wilkinson [14] and
Minieka [11] for the universally maximal flow problem. Be-
fore discussing the algorithm, it is necessary to define some
concepts and notation.

Chain Decompositions.Let γ = 〈P, ω〉 be the static flow
of valueω along pathP . For a givenT ≥ τ(P), the static
flow γ inducesa flow over time with time horizonT , which
sends flow at rateω into pathP during the time interval
[0, T − τ(P)) such that all flow reaches the end ofP before
timeT . The value of this flow over time is(T − τ(P))ω.

Consider a path decompositionΓ = {γ1, . . . , γk} of a
static flowx in N , that is,x =

∑k
i=1 γi. If the transit times

of all underlying paths inΓ are bounded byT , thenΓ (and
thusx) induces atemporally repeated flow[Γ]T which is the
sum of all flows over time induced byγi = 〈Pi, ωi〉, for
i = 1, . . . , k. The value of this flow over time is denoted by
|[Γ]T | and equals

∑k
i=1(T − τ(Pi))ωi.

We also consider pathsP in the bidirected network
corresponding toN where, for eachforward arc e =
(v, w) ∈ A, there is also abackward arc ē = (w, v)
with transit timeτ(w,v) = −τ(v,w). For such a pathP
containing backward arcs, the corresponding generalized
path flowγ = 〈P, ω〉 inN assigns the non-positive value−ω
to the corresponding forward arcs, that is, it pumps flow in
the wrong direction through these forward arcs. A collection
Γ = {γ1, . . . , γk} of generalized flows on paths yields a
feasible static flowx =

∑k
i=1 γi if, for any arc e ∈ A,

the sum of the flow values on this arc inγ1, . . . , γk is non-
negative; i.e.

∑
i:e∈γi

ωi −
∑

i:ē∈γi
ωi ≥ 0.

Establishing the feasibility of the corresponding flow
over time [Γ]T is considerably more complicated. First
consider the case of only one generalized path flowΓ =
{〈P, v〉} where P contains a backward arc(w, v) with
(v, w) ∈ A. Then, flow sent by[Γ]T into arc (w, v) at
time θ arrives inv at timeθ + τ(w,v) = θ − τ(v,w). Thus,
the flow travels backwards in time. This is of course not
feasible. However, if at timeθ − τ(v,w) flow at the same or
a higher rate was sent into arc(v, w), thus arriving inw at
time θ, it can cancel the flow on(w, v). Thus, for a set of
path flowsΓ, the resulting flow over time[Γ]T is feasible if
for any pointθ in time and for any backward arc(w, v) the
flow sent through(w, v) is canceled by flow sent on(v, w),
arriving in w at timeθ. Such a flow over time[Γ]T is called
chain-decomposable; in particular, any temporally repeated
flow is chain-decomposable. For an elaborate discussion of
this topic we refer to [9, 7].

Given a feasible static flowx in N , defineNx to be the
residual graph ofx. For nodess, y ∈ V , definedx(s, y)
to be the shortest path distance with respect toτ from s
to y in Nx. (If there is no path froms to y in Nx, then
dx(s, y) =∞.)

The Successive Shortest Path Algorithm.The algorithms
described by Wilkinson and Minieka are variants of the well-
known successive shortest path algorithm. A restatement of
their algorithm appears in Figure 4.

THEOREM 5.2. (WILKINSON [14] AND M INIEKA [11])
Let D be the value of a maximum flow inN with time
horizon T . Let Γ be the set of chain flows returned by
MCFT(T,D). Then,[Γ]T is a universally quickest flow over
time inN completing by timeT .

Theorem 5.2 and Corollary 5.1 imply that whenD is the
value of a maximum flow inN with time horizonT , then
MCFT(T,D) returns a set of chain flowsΓ such that[Γ]T is
a minimum cost flow over time for cost vectorc = τ . The
following theorem states a stronger result: whenc = τ , [Γ]T

is a minimum cost flow over time forall feasibleD.

THEOREM 5.3. For cost vectorc = τ and set of chain flows
Γ returned byMCFT(T,D), [Γ]T is a minimum cost flow

MCFT(T,D):

Γ← ∅, D′ ← D
x← zero flow
while dx(s, t) < T andD′ > 0 {

P ← shortest(s, t)-path inNx

v ← min{ residual capacity ofP, D′

T−τ(P)}
augmentx by v alongP
Γ← Γ + {〈v, P 〉}
D′ ← D′ − v(T − τ(P))

}
returnΓ

Figure 4: Algorithm for universally maximal flow.

over time inN of valueD.

Proof Sketch.We prove this by interpreting[Γ]T in the
time-expanded network and producing dual variablesπ that
demonstrate the optimality of[ΓT] by satisfying complemen-
tary slackness conditions in the time-expanded network.

We start by determining the flow in[Γ]T on arc(y, z)
at timeθ, i. e. f∗(y,z)(θ). In the time-expanded network, this
corresponds to the flow on arc(yθ, zθ+τ(y,z)). Let

Γ′ := {γ ∈ Γ | dxγ (s, y) ≤ θ anddxγ (y, t) ≤ T − θ} .

Here,xγ denotes the static flowx in MCFT(T,D) before
the iteration in which the path flowγ is added toΓ. Let
x′ :=

∑
γ∈Γ′ γ. Thenf∗(y,z)(θ) = x′(y,z).

We determine the dual variableπ(yθ) of nodeyθ in the
time-expanded network by

π(yθ) :=

{
−dx′(s, y) if dx′(s, y) ≤ θ,

−∞ otherwise.

The proof concludes by showing that the vectorπ and the
flow corresponding to[Γ]T in the time-expanded network
satisfy standard complementary slackness conditions for
minimum cost flows. The details are technical and are
contained in the full paper. �

5.2 A Capacity-Scaling FPAS
The successive shortest path algorithm described in the pre-
vious section requires an exponential number of iterations in
the worst case; see, e. g., Zadeh [15]. For the universally
maximal flow problem, Hoppe and Tardos [8, 7] present a
fully polynomial time approximation scheme based on suc-
cessive shortest paths in a capacity scaling framework. For
every ε > 0, their algorithm efficiently computes a flow
over time whose value is within a factor of(1 − ε) of
the universally maximal dynamic flow over any time inter-
val [0, θ], θ = 0, . . . , T , and the same performance guarantee

holds for the departure schedule. Their result, however, does
not imply that the same algorithm is an FPAS for the mini-
mum length-proportional-cost flow over time problem, since
they approximate flow value, not flow cost. The Hoppe-
Tardos algorithm is presented in Figure 5 asUniversal(T, ε).

Universal(T, ε):

Γ← ∅; ∆← 1; ũ← u; x← zero flow
while (∃(s, t)-path inNũ,x of length≤ T) {

ρ← 0
while (ρ < m∆/ε) and
(∃(s, t)-path inNũ,x of length≤ T) {

P ← shortest(s, t)-path inNũ,x

v ← residual capacity ofP
augmentx by v alongP
Γ← Γ + {〈v, P 〉}
ρ← ρ + v

}
∆← 2∆
∀ yz ∈ E : ũyz ← ũyz − (ũx

yz mod ∆)
}
returnΓ

Figure 5: FPAS for universally maximal flow.

We prove that a modification yields an FPAS for the flow
over time problem with length-proportional costs.

THEOREM 5.4. (HOPPE ANDTARDOS [8]) [Γ]T is a feasi-
ble flow over time.

Our algorithmApproxMCFT(T,D, ε) starts by invok-
ing Universal(T, ε) modified so that augmentation is allowed
on paths of value∆ as long asρ < 4m∆/ε (instead of
ρ < m∆/ε). This change does not affect the proof and
thus the correctness of the corresponding version of The-
orem 5.4. Denote the resulting set of chain flows byΓ.
ApproxMCFT(T,D, ε) then increasesT to T (1 + ε) and
modifiesΓ to Γ′ by reducing the value of the longest chain
flows inΓ to zero, one-by-one, until|[Γ′]T (1+ε)| = D.

THEOREM 5.5. ApproxMCFT(T, ε) computes a flow over
time of valueD and makespanT (1 + ε) with cost at
most the cost of the min-cost flow over time of value
D and makespanT . ApproxMCFT(T, ε) runs in time
O(ε−1m(m+n log n) log U), on a network with integer ca-
pacities bounded byU .

Proof Sketch.The essential idea of the proof is to show that
the flow lost by rounding down residual capacities in one
iteration can be compensated by increasing the time horizon
for flow paths added toΓ in the previous iteration fromT to
T (1 + ε). Since the successive shortest path algorithm adds
paths in increasing order of cost, the cost of a “lost” flow path

is at least the cost of the flow paths in the previous iteration,
and thus the cost of the new flow is at most the cost of the
original. The full proof is technical and is contained in the
full paper.

The run time is dominated by the run time of
Universal(T, ε) for which each path calculation takes
O(m + n log n) time, and there are at most4m/ε paths per
iteration. Since∆ is doubled each iteration, the number of
iterations is bounded byO(log U). �

References

[1] J. E. Aronson. A survey of dynamic network flows.Annals of
Operations Research, 20:1–66, 1989.

[2] L. Fleischer and M. Skutella. The quickest multicommodity
flow problem. In W. J. Cook and A. S. Schulz, editors,Integer
Programming and Combinatorial Optimization, number 2337
in Lecture Notes in Computer Science, pages 36–53. Springer-
Verlag, 2002.

[3] L. R. Ford and D. R. Fulkerson. Constructing maximal dy-
namic flows from static flows.Operations Research, 6:419–
433, 1958.

[4] D. Gale. Transient flows in networks.Michigan Mathemati-
cal Journal, 6:59–63, 1959.

[5] N. Garg and J. K̈onemann. Faster and simpler algorithms for
multicommodity flow and other fractional packing problems.
In 39th Annual IEEE Symposium on Foundations of Computer
Science, pages 300–309, 1998.

[6] A. Hall and M. Skutella. Personal communication, 2002.
[7] B. Hoppe. Efficient Dynamic Network Flow Algorithms.

PhD thesis, Cornell University, June 1995. Department of
Computer Science Technical Report TR95-1524.

[8] B. Hoppe andÉ. Tardos. Polynomial time algorithms for
some evacuation problems. InProc. of 5th Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 433–441, 1994.

[9] B. Hoppe and́E. Tardos. The quickest transshipment problem.
Mathematics of Operations Research, 25:36–62, 2000.

[10] B. Klinz and G. J. Woeginger. Minimum cost dynamic flows:
the series-parallel case. In E. Balas and J. Clausen, editors,In-
teger Programming and Combinatorial Optimization, number
920 in Lecture Notes in Computer Science, pages 329–343.
Springer-Verlag, 1995.

[11] E. Minieka. Maximal, lexicographic, and dynamic network
flows. Operations Research, 21:517–527, 1973.

[12] J. B. Orlin. Minimum convex cost dynamic network flows.
Mathematics of Operations Research, 9:190–207, 1984.

[13] W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and
dynamic networks and routing. In M. O. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser, editors,Handbooks in
Operations Research and Management Science: Networks.
Elsevier Science Publishers B. V., 1995.

[14] W. L. Wilkinson. An algorithm for universal maximal dy-
namic flows in a network.Operations Research, 19:1602–
1612, 1971.

[15] N. Zadeh. A bad network problem for the simplex method
and other minimum cost flow algorithms.Mathematical
Programming, 5:255–266, 1973.

