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Abstract. Flows over time (also called dynamic flows) generalizenum flow-over-time, also called the maximum dynamic flow
standard network flows by introducing an element of time. Thgyoblem? Since then, this model has proved to be very use-
naturally model problems where travel and transmission are fiok[1, 13]. However, flows over time are significantly harder
instantaneous. Solving these problems raises issues that dotlman their standard flow counterparts. For example, both
arise in standard network flows. One issue is the questionminimum cost flows over time and fractional multicommod-
storage of flow at intermediate nodes. In most applications (stthflows over time are NP-hard [10, 6], even for very simple
as, e.g., traffic routing, evacuation planning, telecommunicatisaries-parallel networks.

etc.), intermediate storage is limited, undesired, or prohibited. Problem Definitions. We consider routing problems on a

The minimum cost flow over time problem is NP-hard. "l]letwork/\/' = (V, A) with n := |V| nodes andn := | 4|
this paper we 1) prove that the minimum cost flow over timg..s Each are ¢ A has an associated integteinsit time
never requires storage; 2) provide the first approximation scheg}qength 7. and a capacity,.. Moreover, there is a set of
for minimum cost flows over time that does not require Stora%rminalss C V which can be partitioned into a subset of
3) provide the first approximation scheme for minimum cost rovg%urcess+ a_nd sinksS—. Every source node € S+ has a
over time that meets hard cost constraints, while approximatiggpplyDv > 0 and every sink € S~ has a deman®, < 0
only makespan. _ _suchthaty, 4 D, = 0.

Our approach is based on a condensed variant of time- A flow over timef on A with time horizonT (also
expanded networks. It also yields fast approximation schemes V\‘,itcﬂled makespahis given by Lebesgue-measurable func-
simple solutions for the quickest multicommaodity flow problem. tions f, : [0,7) — R+ where f.(¢) determines the rate

Finally, using completely different techniques, we descrit& flow (per time unit) entering are at time §. Transit
a very simple capacity scaling FPAS for the minimum cost ﬂOWmeS are fixed throughout, so that flow on arprogresses
over time problem when costs are proportional to transit timeasr a uniform rate. In particular, the floi.(6) entering
The algorithm builds upon our observation about the structureé}fCe = (v, w) attimed arrives atw at timeé + .. Thus, in
optimal solutions to this problem: they are universally quickea}cler to obey the time horizdf, we require tha:Ife(é)) —0
flows. Again, the FPAS does not use intermediate node storage. € [T - 7.,T). In order to simplify notation, we some-

In contrast to the preceding algorithms that use a time-expam{iﬁges usef.(9) for & ¢ [0,T), implicitly assuming that
network, this FPAS runs directly on the original network. £.00) =0 inethis case T
e(0) = .

, With respect to flow conservation, there are two differ-
1 Introduction ent models of flows over time. In the model wititermedi-
While standard network flows are useful to model a vagte storage of flow at nodei is possible to hold inventory
ety of optimization problems, they fail to capture a cruat a node before sending it onward. Thus, the flow conserva-
cial element of many routing problems: routing occurs ovgén constraints are integrated over time to prohibit deficit at
time. In their seminal paper on the subject, Ford and Fulny node:

erson [3] introduced flows with transit times to remedy this

and described a polynomial time algorithm to solve the ma>(<i1— 1) 3 <
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forall¢ € [0,T),v € V\ S*T. Here,6"(v) andé~ (v) de- Unlike standard network flows, the multiple source,
note the set of arasleaving nodey and entering node, re- multiple sink, single commodity flow over time is not equiv-
spectively. Moreover, we require that equality holds in (1.4)ent to ans-t maximum flow over time. Hoppe and Tar-
for ¢ = T andv € V \ S, meaning that no flow shoulddos describe the first polynomial time algorithm to solve this
remain in the network after tim&. In the model without problem [9, 7], and give a solution that does not require in-
intermediate storage of flow at nodes we additionally requiermediate node storage. Their algorithm is not practical as
that equality holds in (1.1) fora§f € [0, 7) andv € V' \ S. it requires a submodular function minimization oracle for a
A flow over time f satisfies the supplies and demandss$iubroutine.
by timeT the net flow into each sink equals the demand at An earliest arrival flowis an s-t-flow over time which
the sink and the net flow out of each source equals the supgipultaneously maximizes the amount of flow arriving at the
at the source: sink before time), for all @ = 0,...,T. Gale [4] observes
T that these flows exist; and Wilkinson [14] and Minieka [11]
/ ( Z f.(0) — Z fo(6 — Te)>d9 - D, give equwa_llent ps_euo_lo-polynomlal time aIgonthms to find
0 \cest (o) c€o—(v) them. Their solution is also latest departure flowi.e., a
flow over time which simultaneously maximizes the amount
forallv € S. As for the Setting of static flows, we use th@f flow departing from the source after tinde for all § =
term s-¢-flow over timefor the case of a single sourseand (... T (subject to the constraint that the flow is finished
a single sinki. An s-i-flow over time satisfying the supplypy time 7). A flow over time which is both an earliest
D = D, = —D; hasvalue|f| = D. arrival flow and a latest departure flow is callediversally
A flow over time f is feasibleif it obeys the capacity maximal flow over time Hoppe and Tardos [8, 7] describe
constraintsf. (¢) < u., forall6 € [0,7) ande € A. Here, g polynomial-time approximation scheme for the universally
capacityu, is interpreted as an upper bound on the rate gfaximal flow problem that routes B — ¢ fraction of the

flow entering are, i. e., a capacity per unit time. maximum possible flow that can reach the sinky time
Given a vector of cost functiong.)cca, the costofa ¢, for all 0 < ¢ < 7. An equivalent problem is the
flow over timef is defined as universally quickest flow problemhich asks for a flow over
T time that sendsD units of flow to a single sink such that
(1.2) c(f) = Z/ ce(fe(0)) do . the earliest point in time whed units have arrived at the
ecA”0 sink is simultaneously minimized for ali < D and the

earliest point in time whem units have left the source is
simultaneously maximized for all < D.

Minimum Cost FlowsOrlin [12] describes a polynomial
time algorithm to compute a infinite horizon, minimum cost

: 4 : low over time that maximizes throughput. The infinite
of a set of several terminalS with supplies and demands_" . e .
; : : orizon problem does not have specified demand and is not
D,, v € S, the(min-cost) transshipment-over-time problem

is to find a feasible flow over time with time horizdh, concerned with computing how a flow starts and stops, issues

satisfying all supplies and demands (at minimum cost). T heat are crucial when flow demands are changing over time.

. . ; I or the finite horizon problems that we treat in this paper,
qwcke;t traqsshlpment problem (with bounded p for Klinz and Woeginger show via a reduction from partition that
a solution with minimal makespan (and cost bounded bs{hae minimum cost flow over time problem is NP-Hard [10].
given valuec). In a recent paper [2], we describg2a+ ¢)-approximation
algorithm for the quickest flow problem with bounded cost

1.1 Results from the Literature T .
. . that does not require intermediate node storage. In the
Flows over time.Many flow over time problems can be

solved in an exponentially sized time-expanded ne,[\,VOH(uickest flow problem, the task is to find a flow over time
P y P with minimal makespaf”. We also give an FPAS for this

The size of this graph depends linearly on the make§banﬁroblem that requires an exponential amount of additional

Such algorithms are termed "pseudopolynomial”, since t 2 . oo .
. : storage. This approximation scheme approximates both cost
run time of the algorithm depends dfi and notlogT. and time

In general, the size of these networks makes the problem Multicommodity Flows. The approximation results

solution prohibitively expensive. in [2] also apply to the quickest multicommodity flow prob-

Maximum FlowsFord and Fulkerson [3] show how 8em with bounded cost. In the multicommodity setting,

path decomposition of a special static minimum cost fIO\P{ . : . .
; . o . the FPAS relies on solving a linear program with =
in a network with transit times can be used to descnbeO"ﬂAPk?/g?) variables. Lemma 4.2 of this paper implies

maximum ﬂ.OW over t.|me. This solution is periodic and doeiﬁat it is sufficient to obtain an approximately optimal so-
not require intermediate node storage.

Given a source, a sinkt, a flow valueD, and an integral
time horizonT’, the (min-cost) flow-over-time probleasks
for a feasibles-t-flow over time of valueD with time

horizon T (and minimum cost). Similarly, for the cas



lution to the LP, and thus it is possible to use an FPAS fflow value x. such thatflow conservation constraints
concurrent multicommodity flow [5] instead of solving the_ ;. () Te — >_ccs5- () e = O forallv € V'\ S, are
LP exactly. The run time of the fastest known FPAS depenalseyed. The static flow satisfies the supplies and demands

quadratically orp. Already in the setting without costs, mulif > ;. () Te — X ccs-(n) Te = Do forallv € S. For

ticommodity flows over time are NP-hard [6]. the case of a single soureeand a single sink we also
use the terms-t-flow. An s-t-flow z satisfying the supply

1.2 Our Contribution D = Dy, = —D, hasvalue|z| = D. Finally, a flowz is

We prove that the minimum convex cost transshipment owalledfeasibleif it obeys thecapacity constraints,. < .,
time never requires storagand provide the first approxima-for all e € A. The cost of a static flow: is defined as
tion scheme for minimum cost flows over time that does nér) := > 4 ce(ze).
require storage; this is also the first approximation scheme A path P in network A/ is a subgraph consisting of an
for minimum cost flows over time that meets hard cost coordered sequence of nodes, v, . .., v,) C VP! and arcs
straints, while approximating only makespan. (vi,vi+1) € A between each consecutive pair of nodes. It

Our algorithm makes use of a completely new ansg a well-known result from network flow theory that any
much simpler analysis of condensed time-expanded rehtic flow z in A/ can be decomposed into flows on
works, which results in considerably reduced run times asidnple pathsP € P, whereP is the set of all possible
simpler solutions, that is, solutions with fewer parts: In osimple flow paths (and flows on cycR®s That is,z. =
der to obtain(1 + ¢)-approximate solutions, we show thap _,.,...pzp foralle € A. The numberP| of simple
the number of time layers of the condensed time-expangsths can be bounded by the number of ancsSimilarly, a
network can be chosen to b@(|V|/s?) instead of the flow over timef in A without intermediate storage can be
O(|A]*/?) bound in [2]. As our algorithm employs standecomposed into flows over tinfg- on pathsP € P. Here,
dard minimum cost flow algorithms, it also yields a versiofi-(6) denotes the rate of flow entering pathat timeé and
that is the first strongly polynomial FPAS for the problem. thus arriving at the end vertex of the path at tithe 7(P).

For the transshipment problem without costs, our FPAS
is significantly faster and simpler than the exact algorithm 8f2 Time-Expanded Networks
Hoppe and Tardos [9] when the number of sources and sifikaditionally, flows over time are solved in a time-expanded
is Q(|V[Y/3+9) for anyd > 0. network. Given a networl/ = (V, A) with integral transit

Another consequence of our new approach is a sigrtifnes on the arcs and an integral time horiZzBnthe 7-
icantly simpler FPAS for the multicommodity flow probtime-expanded networf A/, denotedV” is obtained by
lem over time. This new FPAS is faster than the previoaseatingl’ copies of V, labeledV, through Vr_q, with
FPAS [2] by a factor of roughlp) (| A|Sk*). the 9™ copy of nodev denotedvy, §# = 0,...,7 — 1. The

In Section 5, using very different techniques, we délew that passes through, corresponds to flow over time in
scribe a new and simple capacity scaling FPAS for the mihe intervalld, 0+ 1). For every are = (v, w) in A and0 <
imum cost flow over time problem when costs are propdt—< T — 7., there is arnransit arcey from vy to wy-, with
tional to transit times. The FPAS does not use intermetlie same capacity and cost as ar€or each terminat € S
ate node storage, and runsdr{|A|?e ! logU) time, on a there is an additional infinite capacityldover arcfrom vy
network with integer capacities bounded by This is a tovy,1, forallv € V and0 < 6 < T — 1, which models
speed up of roughlyA|® over the general FPAS describethe possibility to hold flow at node in the time interval
in [2] and a significant reduction in the dependenceaf [0,0+1). We assume without loss of generality that a source
the simpler general FPAS we provide here. In contrast(gnk) has no incoming (outgoing) arcM. Thus, a terminal
the preceding algorithms which require constructing a larggnever an intermediate node on a path flow. We treat the first
time-expanded network, this FPAS runs directly on the origepy v, of a sourcev € S™ as the corresponding source in
inal network . Our algorithm builds on a connection we\V'™'; and treat the last copy;_; of a sinkv € S~ as the
establish between minimum cost flow over time problenssrresponding sink itV In the model with intermediate
when costs are proportional to transit times, and the univeterage of flow at nodes, we introduce holdover arcs for all

sally maximal flow over time problem. nodesv € V.

Any static flow in this time-expanded network corre-
2 Preliminaries sponds to a flow over time of equal cost: interpret the flow
21 Static Flows on arcey as the flow rate entering aec= (v, w) in the time

A static flowz on A\ assigns every are a non-negative interval(¢, ¢ + 1). Similarly, any flow over time completing

2Klinz and Woeginger [10] claim a special case of this result: the single- *We will show in section 3 that the path decompositions we obtain
source, single-sink, minimum cost flow over time does not require storagmntain only paths, no cycles.



by timeT corresponds to a flow iv? of the same value andin the time intervalf, 6 + 1):

cost obtained by setting the flow epto be the average flow

rate intoe over the interval¢, 6+4-1). Thus, we may solve any z(6(z9)) = Z Teg — Z Tegre
flow-over-time problem by solving the corresponding static e€dt(2) e€d™ (2)

flow problem in the time-expanded network.

. ) ] . Since X is compact, there exists an X minimizin
One problem with this approach is that the size\6f b < 9

. g the convex functiorF(z) := Y__, S5~ |2(d(z20))|. We
depends_ Iln_early o', so that '.fT. Is not bounded. by.ashow thatz does not send flow along holdover arcs of
polynomial in the input size, this is not a p0|yn0m'al't'm€7ertices iV \ S

method of obtaining the required flow over time. However, By contradiction, letu, be the earliest copy of node

if all arc lengths are a multiple ah > 0 such that{7/A] v ¢ S to send flow along a holdover arc. We have that
is bounded by a polynomial in the input size, then instea%(v ) = —a < 0. Let[p + ) gt )

of using theT-time-expanded network, we may rescale’ " ¢/~ | ”g”‘f’ﬁl i =S P Iq,g: 9 '
time and use a\-condensed time-expanded netwaohlat g > U Integral, be the first time Interva até@,p + 1) .
contains onlyT/A] copies ofy’. In theA-condensed, time- in which v has more flow Ieavmg it than_entenng it; that is,
expanded network, there afé&'/A] copies ofV. Cop;yvg 2(0(Vpq)) > 0. We show in the following thaf(z) can
corresponds to flow throudhi in the intervalfA, (+1)A). be decreased by auTg;meqt|ng flow ann_g a cycle in the time-
Thus, the capacity of transit azg is u,A Othér capacities expanded network/?. This is a contradiction to the choice

. ey . f 2.
and costs are the same as in the unit-interval, tlme-expangeg Consider a time-expanded network that is infinite in

netwgrk. We denote this condensed, time-expanded netWB{)lfh directions\/(—>+) Note that\"(—>+>) looks the

by N/A. same aw,, as it does ab,,,. However,z in this network
looks different at each of these copieswf We indicate

LEMMA 2.1. ([2], LEMMA 4.1) Suppose that all arc this difference by coloring the arcs 4f(—°°+>) as follows.

lengths are multiples of and7'/A is an integer. Then, any Color transit arqiy— ., jo)

flow over time that completes by tirfie corresponds to a

static flow of equal cost iV’ /A, and any flow inV7? /A red it 2, o) < Tlioory,gudod)
corresponds to a flow over time of equal cost that completes blue if T, . o) > Tlio_r _ao—a)
by timeT. , N Y
y no color if Tlio_rside) = Tlio—r,—qrio—q) -
3 Min-Cost Flows without Storage All holdover arcs remain colorless. Note that there are no

In this section we show that the ability to store flow dilue arcs leaving/, for @ > T — 1, and there are no red arcs

intermediate nodes does not help reduce the cost of a néinteringl for § < q.

cost transshipment-over-time. This result also holds if the Let P be a simple path consisting of backward red

cost on an arc is an arbitrary convex function of the floarcs and forward blue arcs from,, to a nodew, with

rate into the arc. As mentioned in Section 2.2, whéhe property that:(d(w,)) < z(d(wu—g)). We claim that

transit times are integers, the min-cost transshipment-ovgiteh aP exists: Sincer(6(vy4q)) — z(4(v,)) > 0, node

time problem with or without intermediate storage can bg,, has either a red arc entering it or a blue arc leaving

solved by solving the corresponding static flow problem ih Consider the set of all nodes which can be reached from

the time-expanded netwoyk™ . Vy44 ON a path consisting of backward red arcs and forward
blue arcs. Since(d(vy4q)) — 2(d(vy)) > 0, it follows

THEOREM 3.1. The cost of a minimum convex cost tranétom flow conservation that 'thert.a must exist a negewith
— z(0(wu—q)) < 0inthis set.

shipment over time that does not use intermediate node s%@(w“)) T—1 . .
age is no more than the cost of a minimum convex cost trans- NOteé thatV(P) < U,_, Ve. We define the capacity
shipment over time using intermediate node storage. ~ “(£’) of P tobe

u(P) = min |z

(i9,d0+r;; JEP G0sjotri;) I(ie’q’j"*q+7ij)| ’
oty

Proof. Consider a minimum cost transshipment over time

with intermediate node storage and a corresponding stgfjg modifyinga: to reducez(6(v,))| and|z(8(vy4q))|- Let
min-cost flowz in the time-expanded network’”. Notice

that the setX of all min-cost solutions: is the intersection  x = min{u(P), —2(5(v,)), 2(6(vpq)),

of the polytope formed by all feasible solutlor_13 with a cl_osed 2(5(wu_q)) — x(é(wu))} > 0.
convex set given by the convex cost constraint. In particular,

X is convex and compact. If an arc (ig, jo4+r,;) € P is red, then we modify

Foranode: € V, letz(d(zy)) be the net flow leaving z on (ig, jo1-,,) and (io—q, jo—q+r,;) 1O T(igjosry,) =



x(i97j9+fij) +r andx(iﬁ—qvje—q+ﬂ'ij) = x(is—(]7j€—q+7'lj) — K.
If (40, jo1r.,;) € P is blue, thenr
K andx(iﬁ_q’ie_q¥rf|j) :? x(iiﬁq’je_qtﬁ”]z:g Finally, v]\(/e s "A/2 AJ2] v t
removex units of flow from the path of holdover arcs from

b O ——0

v, t0 v,44 and addk to the path of holdover arcs from

\:
wy—q to w,. Notice that we have augmented flow on a WJ [A/3] Oﬁ
A/4]

i0Jo+r;;) — L(iodotr;)

cycle in N'T by . Since the domain of is restricted to |A/4]
V(P) C Uy, Ve, the flowz is still a feasible solution to
our problem. [A/4] |A/4]
We next argue that the cost ofis not increased such .
thatz is still in X: Since the flow augmentation transfers an .
equal amount of flow from one copy of an arc to a parallel *

copy, if flow costs are linear, this does not change the Cosigf e 1: In this partially drawn unit capacity network, there

our solution. Since the sum of flow on these two arcs do&%A paths froms to v. Theit" path contains arcs, each
not change, and we simply move flow so that the flow Q@h transit time roughly? /i.

each is closer to the average flow on each, if our flow costs
are convex, then the cost of our solution does not increase.
Finally, the augmentation by ensures thafz(d(v,))|
and|x(d(v,14))| are each reduced by, and|x(5(w,))| + chosem), solve the static flow problem in the corresponding
|2(0(wu—q))| is not increased (either:(6(w,—q))| > K, A-condensed, time-expanded network, and then translate
|z(6(wp))| < —&, or, sincex < x(5(w,u—q)) — x(d(wy)), this flow back to the setting of the original transit times.
|z(6(w,))| and |z(6(wu—q))| exchange values). Thus, |n order to obtain provably good solutions in this way,
F(x) = > .oy ZZ;OI |z(d(29))| is decreased by at leasbne has to make sure that the following two conditions are
2k > 0. This concludes the proof. O fulfilled: (a) the value of an optimal solution to the instance
. ) .. with increased transit times (obtained in the condensed time-
Theorem 3.'1 'mp“es t_hat we can find a m'n'murgxpanded network) approximates the value of an optimal
cost flow over “”?e in the _tlme-expanded netwasithout solution in the original setting; (b) the solution to the instance
holdover arcs for intermediate nodes. We can even state increased transit times can be transformed into a flow

following stronger result. over time with original arc lengths without too much loss in

COROLLARY 3.1. For every instance of the minimum conflow value.
vex cost transshipment-over-time problem, there exists an Before discussing how to fulfill these conditions, we
optimal solution without intermediate storage such that aifiyst give a simple example to show that non-trivial problems
infinitesimal unit of flow visits every node at most once. have to be dealt with to address both (a) and (b).
Consider first a (sub)network consisting of four nodes

Proof. We first consider the case that there is no cycle of zefp o 3 4} and three arcél, 3), (2,3), (3,4). All capacities
costin\. If some path flow in an optimal flow visits a Nodye 1. The transit times are, 5y = A/2, 723 = A, and
v more than once, it travels along a cycle\ih Therefore the ., 5 = 0. Aflow in the graph without rounded transit
cost of the solution can be decreased by letting the flow Wgifes can send\ /2 units of flow in interval[0, A/2) on
atv. This is a contradiction to the optimality of the solutionaach path?, = 1 — 3 — 4andP, = 2 — 3 — 4. Path

If there exist zero cost cycles ji, we can increase the p, will use arc(3,4) in interval [A/2, A) and pathP will
cost of every arc by a small amount such that an optimgle arc(3, 4) in interval [A, 3A/2). However, if we send
solution to the modified problem always yields an optimghy simultaneously on path® and P in the network with
solution to the original problem. This eliminates cycles @fansit times rounded up to the nearest multipledofthen

zero cost and thus concludes the proof. O this will cause a bottleneck on af8, 4).
S Now consider the unit capacity (sub)network depicted
4 Approximation Schemes in Figure 1. If all transit times are rounded to the nearest

In this section we present a fully polynomial time approxmultiple of A, we may send\ units of flow simultaneously

mation scheme for the quickest transshipment problem with each path from to ¢, and each path will use afe, ¢) in a

bounded (linear) cost which does not use storage at intermistinct interval of time. If we try to interpret this flow in the

diate nodes. We also discuss a generalization of our approaetwork with original transit times, however, each path-flow

to the multicommodity flow setting at the end of this sectiomill try to use arc(v, t) in the same time interval, causing a
The basic idea of our algorithm is to round up tranderge bottleneck.

times to the nearest multiple oA for an appropriately As pointed out in [2], condition (b) can be enforced by



allowing storage of flow at nodes. If aic = (v,w) has find T such thatl™ < T' < (1 + ¢)T*. We can begin
length increased b\’ < A, then this can be emulated irwith standard binary search to find lower and upper bounds
the original network by holding flow arriving ab for A’ onT that are within a constant multiple of each other. This
time units. IfA’ is large, then this requires a large amoumnéquireslog T* iterations. Alternatively, it follows from [2,
of additional storage. Here, we present a new approach tBattion 3] that there is a constant factor approximation algo-
works if storage of flow at nodes is not allowed. rithm for the quickest transshipment problem with bounded

There are two main steps to the approach: First, west which yields a lower bound and an upper bound
chooseA small enough so that we can increase the tinoa 7 such that/ € O(L). Using this, then the estimafe
horizon by a sufficiently large amount relative th to can be obtained withi®(log(1/<)) geometric mean binary
account for bottlenecks caused by problems of type (agarch steps.
Second, we average the flow computed in the rounded The condensed time-expanded network (without
network over sufficiently large intervals relativeoso that holdover arcs) constructed in step 3 contaifién?/c?)
bottlenecks caused by problems of type (b) are averaged owedles and)(mn/s2) arcs. Thus the static flow’ in step 4
a sufficiently long time to make the flow almost feasiblean be computed in polynomial time. The corresponding
This second step also increases the total time horizon of floev over time f can be decomposed into flows over time
flow, but again, by careful choice ak, by a sufficiently on at mostO(mn/e?) simple pathsP € P such that the
small amount. flow rate f; on each pathP is zero except for an interval

In the following, letT™ be the makespan of a quickestf lengthe? T'/n where f}, attains a positive constant value
transshipment with cost bounded l6y. We start with a (notice that a path? can occur up taO(n/s2?) times in
description of the algorithm in Figure 2. The exact choidhis decomposition). Thus, computingin step 6 takes
of the time horizonT” will be given in the analysis of the O(mn/e?) time. To outputf requiresn work per path, so
algorithm. (See Lemma 4.1.) O(mn?/£?) time.

We next discuss the choice &f in the algorithm.

INPUT: network A/ with capacities, linear costs, and
transit imes, demand vectdr, cost bound”, ande > 0; | LEMMA 4.1. If 7" is chosen to be at leadt(1+&+¢2) (1+

OuTPUT: feasible flow over timg satisfying demand® | ¢)?, then there exists a static flowi as described in step 4.
at cost at most;

1. guessT such thal™ < T < (1 + £) T*; Proof. _Cpnsider a_qgickest transs_hipmg”ﬁ_ton netwquA/
with original transit times.. The time horizon off* is T*

2. round transit times up to nearest multiple &f := | and its cost is at most’. By Corollary 3.1, there exists a
e2T/n; decomposition off* = (f})pep+ into flows over timef;

. on simple pathg € P*.
3. construct A-condensed time-expanded network  consider an arbitrary are = (v,w) € A. The total

(without holdover arcs for intermediate nodes) Withflow into arce at time# in f* is
time horizonT” = (1+ O(¢e)) T
43)  f20) = D> [p0-7(Pe) < ue.

4. compute static flowz’ in this network satisfying Peprech

(1+¢)D atcostatmostl + ¢) C;

. . ) Here,r (P, e) denotes the length of the subpathfoivhich is

5. interpretz’ as flow over timef” with path decompor  gptained by removing areand all its successors. We obtain
sition (fp) pep; a ‘smoothed’ flow over timg fp)pep- With time horizon

1 T by defini
6. setfp(0) == T % faefan}’(f) dcforall P e P (1+¢) T by defining
andd € [0,T" +¢T). .

el 0—eT

(4.4) fr(0) = fo(€)d¢

Figure 2: A fully polynomial time approximation scheme.
ford € [0,(1+¢)T) andP € P*. An illustrative example
The flow over timef’ lives in network/\/ with transit is given in Figure 3. It is easy to check thabbeys capacity
times rounded up to multiples @ = 2 T'/n. In contrast, constraints and the total amount of flow sent on a gath
the flow over timef is defined on\" with original transit P* is the same inf* andf. In particularc(f) = ¢(f*) < C
times. It uses the same set of simple pathsHowever,f andf satisfies demands.
flows through these paths at a faster pace tHan Notice that( fp) pep+ Still describes a (not necessarily
We start by discussing the running time of this algdeasible) flow over time itV when transit times are rounded
rithm. Using geometric mean binary search in step 1, wp to multiples ofs2 T//n. We denote the rounded transit



G
T50) We show that increasing demands and supplies by a

factor of 1 + § requires an increase in time and cost by at
most1 + 6.

LEMMA 4.2. Consider a flow over timg with time horizon

T and costc(f), satisfying a vector of demands and sup-
ip (6) plies D. Then, there exists a flow over tinfé satisfying
demands and suppli€¢d + ¢) D within time (1 + §) T’ and
with cost(1 + §) e(f).

Proof. By rescaling time, we can assume without loss of
generality thatl” and all transit times are integral. Let

be the static flow in thel-time-expanded network which
corresponds tgf. Consider a modified instance where all

Figure 3: The ‘smoothed’ path flow over tinfe in compar- fransit times of arcs are increased by a factorlof 4.
ison to the original flow over timg sent into pathP. Then, the(1 + ¢)-condensed time-expanded network of the
madified instance with time horizofl + ¢) T is identical

to the T-time-expanded network of the original instance,
but with arc capacities multiplied by a factor bf+ 6. In
time of arce € A by 7.. Since every pati” € P* is simple, particular,(1 + §) = defines a feasible flow over time with
it contains at most — 1 arcs; therefore, time horizon (1 + 6) T and cost(1 + §) c(f) satisfying
demands and suppli€s + ¢) D for the modified instance.
Since transit times in the original instance are smaller, it can
be seen as a relaxation of the modified instance. This yields
the existence of’ and concludes the proof. O

} 6
0 eT

(4.5) 7(P) < #(P) < 7(P)+¢&*T

andr(P,e) < 7(P,e) < 7(P,e)+&2T,foralle € P. Thus,
in the setting with rounded transit times we get, foreadl A

2
andf € [0, (1 +¢e) T+ 1), It remains to show that the flow over timfecomputed

fe(0) = E fp(6— 7(P,e)) in step 6 of the algorithm is feasible and satisfies the vector
PepriecP of demands and supplid3 at cost at mos€'. The result on
@a 1 0=7(Pye) § the demand and cost follows from the definition fokince
T T /9—%(Pe>—sr fp(€) dg f! satisfies demandd + ) D with cost at mos{1 + ¢) C.
PeP*:ecP ' The feasibility off follows from the same line of arguments
46 < = /Q_T(P’e> Fo(€) de given in the proof of Lemma 4.1 for the flow over tinfe
. = P . . . . . .
el i cplo—r(Pe)—e2T—2T This yields the following main result of this section.
(sincer(P,e) < 7(P,e) < 7(P,e) +£2T) THEOREMA4.1. For an arbitrary e > 0, a (1 + ¢)-

approximate solution to the quickest transshipment problem

1 0 . with bounded cost can be obtained franilog(1/¢)) static
T R pe; EPfP (€—-7(Pe))d€  min-cost flow computations in a condensed time-expanded
0 o network withO(n? /s?) nodes and)(mn/e2) arcs (without
@3 1 £ (€) de holdover arcs). In particular, this solution does not use in-
52T 0—c2T—eT termediate node storage.
eT+eT
“.7) = T te T (1+2)ue. For the case of the quickest transshipment problem with-

out costs, the min-cost flow computations in the condensed
Thus, if we scalef by a factor ofl/(1 + ¢), we get a time-expanded network can be replaced by max-flow com-
feasible flow over time for the setting with rounded trandputations.
times. The time horizon of this flow i§ = (1+ ¢ +¢*)T, Quickest Multicommodity Flows. The quickest multicom-

its costisc(f)/(1+¢) < C/(1+¢) and it satisfies demandsmodity flow problem with costs is defined as follows. We are

D/(1+e¢). given a network\" = (V, A) with capacities, transit times,
In step 3, we require a flow to satisfy demardsl +¢). and costs on the arcs. Moreover, there areommodities
To obtain this, we use Lemma 4.2 below with= (1 +¢)2, i = 1,...,k, each given by a source-sink péir;, ;) € V>

to see that it [s sufficient to start with a time horizon adnd a demand valuB;. We are looking for;-t;-flows over
T = (1+¢e)?T =(1+e+e?)(1+¢)*T. O time with time horizonT' and valueD;, fori = 1,....k



that share the arc capacities: the sum of flow values otiene it takes to travel from the source to the sink. The last
all commodities on an arc must never exceed the capacityegpression is minimized whefiis an earliest arrival, latest

the arc. The sum of the costs of thdlows over time must departure flow. O
not exceed a given budgétand the task is to minimize the
common time horizofT". Together with Theorem 3.1 this implies the equivalence

In [2] we discuss an example which shows that an opetween minimum length-proportional cost flows and uni-
timal solution to this problem must use intermediate storagersally quickest flows (i.e. earliest-arrival, latest-departure
of flow at nodes. On the other hand, if storing at intermedidtews).
nodes is not allowed, then the optimal solution may contain
non-simple flow paths. The analysis in (4.6) relies on t§&OROLLARY 5.1. Let D be the value of a maximum flow
fact that one can restrict to simple flow paths, since it usas\" with time horizonI". A minimum length-proportional
(4.5). However, if intermediate storage is allowed, its easgst flow over time of valu® completing by timéd" is also
to see that one can restrict to simple paths. In this case,avwniversally quickest flow completing by tiffie
can generalize the approach given above to get the following
theorem. In the discrete time model, a universally maximal

flow over time can be computed in the time-expanded net-
THEOREM4.2. Consider an instance of the quickest multivork by using lexicographically maximal flows introduced
commodity flow problem with bounded cost and intermetdly Minieka [11]. A lexicographically maximal flowis
ate node storage. For ary> 0, a (1 + ¢)-approximate flow defined in a static network with multiple sources and/or
over time with bounded cost can be found®flog(1/c)) sinks. There is a strict ordering on the sources and sinks,
static multicommodity flow computations with bounded castg. {v;, s, ..., v}, Wherey; is used here to denote ei-
in a condensed time-expanded network Wiltn? /%) nodes ther a source or a sink. A lexicographically maximal
andO(mn/e?) arcs (including holdover arcs). flow is a flow that simultaneously maximizes the flow
leaving each ordered subset of sources and sBiks=
5 Length-Proportional Costs {v1,v2,...,v;}. A universally maximal flow over time with

In this section, we describe a simple and fast FPAS féme horizonT' is a lexicographically maximal flow in the
the minimum cost flow over time problem when costs aténe-expanded network with ordering of sources and sinks
proportional to transit times. This FPAS will also not use ardp {s7-1,87-2,...,51,80,t7—1,t7_2,...,t1,to}. HoOw-
intermediate storage. We begin by establishing a connect®§r, due to the exponential size of the time-expanded net-
between this version of the minimum cost flow over tim&ork, this insight does not lead to an efficient algorithm for

problem and an earliest-arrival, latest-departure flow. ~ the problem.
Wilkinson and Minieka also describe algorithms that

5.1 Universally Quickest Flows use only the original network/. They are not polynomial,
but only pseudo-polynomial, as they are based on the suc-
THEOREMS.1. Let D be the value of a maximum flowM cessive shortest path algorithm. The algorithm presented
with time horizon7". A minimum, length-proportional costin Figure 4 is a slight modification of an interpretation by
flow over time of valué) completing by tim&” that uses no Hoppe and Tardos [8, 7] of algorithms by Wilkinson [14] and
intermediate node storage is also a universally quickest flginieka [11] for the universally maximal flow problem. Be-
completing by tim€”. fore discussing the algorithm, it is necessary to define some

o concepts and notation.
Proof. The cost of the flow over time is ) . )
Chain Decompositions.Let v = (P,w) be the static flow

of valuew along pathP. For a givenl" > 7(P), the static
Z / e (fe(0 / Z Te fe(0 flow ~ inducesa flow over time with time horizofi", which
e€A e€A sends flow at ratev into path P during the time interval
[0,T — 7(P)) such that all flow reaches the endBfoefore
/ / ( Z felo Z felo = ) timeT'. The value of this flow over time i€’ — 7(P)) w.
€ (s) €0 (s) Consider a path decompositidh= {v1,...,7.} of a

static flowz in NV, that is,x = Zle ~;. If the transit times
/ Z felp =) Z fe(p) | dp db. of all underlying paths ii* are bounded by, thenI" (and

thusx) induces @emporally repeated floW']” which is the
sum of all flows over time induced by, = (P;,w;), for
The last equality follows since if there is no storage of flow= 1, ..., k. The value of this flow over time is denoted by
then the time a unit of flow spends in transit is equal to tmE]T| and equaliizl( —7(P;))w;.

eco— e€dt(t



We also consider path® in the bidirected network | MCFT (T, D):
corresponding ta\ where, for eachforward arc e =

(v,w) € A, there is also &ackward arce = (w,v) ['~0,D <D

with transit timer(,,,) = —7(,.,). FOr such a pathp | < zeroflow

containing backward arcs, the corresponding generalizd¢hile d.(s,t) <T andD’ > Q{
path flowy = (P, w) in \ assigns the non-positive valuey P « shortest(s, t)-path in/\,

to the corresponding forward arcs, that is, it pumps flow in v < min{ residual capacity o, %;p)}
the wrong direction through these forward arcs. A collection  augment: by v along P

I' = {v,...,7} of generalized flows on paths yields a LT+ {{v,P)}
feasible static flowr = Y, +; if, for any arce € A4, D' — D' —o(T —7(P))
the sum of the flow values on this arcin, ..., 7 is non- | }

negative; i.e ", . wi— > e, wi > 0. returnl’

Establishing the feasibility of the corresponding flow
over time [I')7 is considerably more complicated. First  Figure 4: Algorithm for universally maximal flow.
consider the case of only one generalized path flow-
{(P,v)} where P contains a backward artw,v) with
(v,w) € A. Then, flow sent byi[']? into arc (w,v) at
time @ arrives inv at timef + 7, ,) = 0 — 7, ). Thus, Proof Sketch.We prove this by interpretingl']” in the
the flow travels backwards in time. This is of course néime-expanded network and producing dual variakid¢kat
feasible. However, if at timé — 7, .,y flow at the same or demonstrate the optimality f ] by satisfying complemen-
a higher rate was sent into afe, w), thus arriving inw at tary slackness conditions in the time-expanded network.
time 6, it can cancel the flow offw, v). Thus, for a set of We start by determining the flow ifT'] on arc(y, 2)
path flowsT, the resulting flow over timél']” is feasible if at timed, i.e. £y Z)(0). In the time-expanded network, this
for any pointé in time and for any backward afe, v) the corresponds to the flow on afgo, z0+r,.,)- Let
flow sent throughw, v) is canceled by flow sent ofv, w), ’
arriving inw at time#. Such a flow over timél')” is called I := {y €| dy(s,y) < 0andd,(y,t) <T —06}.

chain-decomposabjlén particular, any temporally repeatej_| . :
flow is chain-decomposable. For an elaborate discussio &rg,x” _denptes t_he static flow in MCFT(T’ D) before
the iteration in which the path flow is added tol". Let

this topic we refer to [9, 7]. ;o . o
Given a feasible static flow in AV, define\, to be the * 2 yer - .Thenf(y_yz)(e) = Ty,2) )
residual graph ofr. For nodess, y € V, defined,(s,y) We determine the dual variabi€y,) of nodey, in the

to be the shortest path distance with respect tiom s time-expanded network by
to y in NV,. (If there is no path froms to y in A, then {

over time in\ of valueD.

_d$'(57y) if dT’(S7y) < 9’

dr s, = 0. = .
(5,9) ) (o) . otherwise.

The Successive Shortest Path AlgorithmThe algorithms

described by Wilkinson and Minieka are variants of the wellhe proof concludes by showing that the vectoand the

known successive shortest path algorithm. A restatemenflofv corresponding tdI']” in the time-expanded network

their algorithm appears in Figure 4. satisfy standard complementary slackness conditions for
minimum cost flows. The details are technical and are

THEOREM5.2. (WILKINSON [14] AND MINIEKA [11]) contained in the full paper. 0

Let D be the value of a maximum flow & with time
horizonT. LetT be the set of chain flows returned by
MCFT(T, D). Then,[T']" is a universally quickest flow overg 5 o Capacity-Scaling FPAS

time in\ completing by timé". The successive shortest path algorithm described in the pre-

Theorem 5.2 and Corollary 5.1 imply that whén is the vious section requires an exponential number of iterations in
value of a maximum flow in\" with time horizonT’, then the worst case; see, e.g., Zadeh [15]. For the universally
MCFT (T, D) returns a set of chain flowssuch thaf[]” is maximal flow problem, Hoppe and Tardos [8, 7] present a
a minimum cost flow over time for cost vector—= . The fully polynomial time approximation scheme based on suc-
following theorem states a stronger result: whaea 7, [[]T cessive shortest paths in a capacity scaling framework. For

is a minimum cost flow over time faill feasibleD. everye > 0, their algorithm efficiently computes a flow
over time whose value is within a factor ¢1 — ¢) of

THEOREM5.3. For cost vector = 7 and set of chain flows the universally maximal dynamic flow over any time inter-
I returned byMCFT(T, D), [[']T is a minimum cost flow val[0,6],6 = 0, ..., T, and the same performance guarantee



holds for the departure schedule. Their result, however, digat least the cost of the flow paths in the previous iteration,
not imply that the same algorithm is an FPAS for the min&nd thus the cost of the new flow is at most the cost of the
mum length-proportional-cost flow over time problem, sina@iginal. The full proof is technical and is contained in the

they approximate flow value, not flow cost.
Tardos algorithm is presented in Figure B asversal(T, ¢).

Universal(T, ¢):

I —0;A «—1;9« u, z < zero flow
while (3(s, t)-path inN; , of length< T) {
p—0
while (p < mA/e) and
(3(s, t)-path inN ., of length< T') {
P — shortes{(s, t)-path inN ,
v « residual capacity of
augment: by v along P
LT+ {{v,P)}

p—p+v
}
A — 2A
Vyz € E iy, « Ty, — (4, mod A)
}
returnl’

Figure 5: FPAS for universally maximal flow.

The Hoppdull paper.

The run time is dominated by the run time of

Universal(T,e) for which each path calculation takes
O(m + nlogn) time, and there are at mostn/c paths per
iteration. SinceA is doubled each iteration, the number of

iterations is bounded b§ (log U).

O
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