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Abstract 
Considering uncertainty is crucial for the decision making process in chemical 
engineering. However, when working in optimization under uncertainty a 
systematic selection of relevant uncertain parameters is required. In this 
contribution, an algorithm is presented in which uncertain parameters are 
selected based on their linear-independence to one another, their sensitivity 
towards state variables, and their sensitivity towards a user-defined process 
objective function. This workflow is applied in a case study. To analyze the 
information loss due to the reduction of uncertain parameters, Monte Carlo 
simulations are performed. 
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1. Introduction 
Consideration of uncertainties is generally vital for making decisions in various 
disciplines. This is especially the case in optimization of chemical processes. A 
negligence of uncertainties or a faulty introduction of uncertainties into an 
optimization problem may lead to unrealistic and possibly devastating results 
when implemented into an actual chemical plant (Binder, 2012). Furthermore, 
independent of how uncertainties are introduced into the optimization problem, 
it is known that with a higher number of uncertain parameters, the 
computational complexity for solving the optimization problem increases (Dyer 
et al., 2006). This is especially the case for strategies such as chance 
constrained optimization under uncertainty (Wendt et al., 2002). Adding to this, 
badly estimated uncertainty can add behavior to the system, which is 
unrealistic. Therefore, the question arises if it is possible to assist engineers in 
selecting the most relevant uncertain parameters for optimization under 
uncertainty. 
In optimization under uncertainty it is often assumed that the required 
uncertainties of various parameters are available. This, however, is not always 
the case. Furthermore, a selection of the relevant uncertain parameters is often 
performed with the best knowledge of the process engineer. Whilst this is an 
acceptable method for small systems with a limited number of uncertain 
parameters, for larger systems on the other hand, this becomes questionable. 
In this contribution a method is presented, in which strategies from parameter 
estimation are combined with ideas from optimization under uncertainty in order 
to tackle the problem discussed above. The presented method herein aims 
towards quantifying uncertain parameters in terms of expected values and 
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variances followed by a ranking of their relevance regarding the process model 
equations and the user-defined process objective function. 

2. Workflow for Uncertain Parameter Selection 
In Fig. 1 the entire workflow for the selection of uncertain parameters is 
presented. Of course, all possible sources of uncertainties should be 
considered, but the focus herein is lain on identifying the most relevant 
uncertain parameters. 

 
Figure 1. Parameter selection workflow for optimization under uncertainty. 

Several approaches for parameter estimation exist, some of which are 
described in e.g. (Bard, 1974) and (Binder, 2012). The ideas to incorporate the 
linear independence and identifiability of parameters into the estimation process 
(Burth et al. 1999, Lopez et al. 2013) are exploitable for the purpose of this 
contribution and are shown in Fig. 1. Under the assumption of the availability of 
measurement data and a model with unknown or uncertain parameters, the 
algorithm can be started (Step 1). The initial guess for the uncertain parameters 
p has to be specified (Step 2). This is followed by a loop of parameter 
determinations based on the selection of identifiable parameters (Step 3) as 
described in Lopez et al. (2013). After the first parameter estimation 
(minimization of the sum of least squares method), the sensitivity matrix S (S= 
∂y/∂p) is calculated for the measureable output variables y with respect to the 
estimated parameter values. The sensitivity matrix is analyzed according to the 
linear independence of its columns. Then, a subset of identifiable parameters 
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(active parameters) is selected. Thus, a reduced set of parameters is 
determined. The reduced parameter estimation performed only with the active 
parameters is then guaranteed to be well-conditioned. Parameter estimation 
and subset selection are repeated on the obtained subset, until the number of 
active parameter no longer changes. Estimated values and variances for the 
remaining, identifiable parameters are stored. The non-identifiable parameters 
are fixed at their estimated values. The aim of the algorithm (Fig. 1) is to select 
a sensible set of parameters for optimization under uncertainty. Therefore, the 
effect of each active parameter from step 3 on a user-defined process objective 
function f (Eq. 1) and the model state variables x should be analyzed in greater 
detail (Step 4). The process model is represented by g in Eq. 1. Therein, u is 
the set of control variables and p the set of both fixed and uncertain parameters. 
The standard deviation σ is derived from the results of the parameter 
estimation. For the non-active or fixed parameters σ is set to 0.  

min
𝑢𝑢
𝑓𝑓(𝑥̇𝑥, 𝑥𝑥,𝑢𝑢, 𝑝𝑝)   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎)   

s.t. 𝑔𝑔(𝑥̇𝑥, 𝑥𝑥,𝑢𝑢, 𝑝𝑝) = 0 
(1) 

The model equations g are differentiated with respect to p to derive expressions 
for the time derivative of dx/dp. These sensitivity equations are hence integrated 
simultaneously to the model equations. Thus, dx/dp is available for any point in 
time. The sensitivity of f with respect to p is also calculated as df/dp. This way, 
the gradient of the user-defined objective function with respect to the 
parameters can also be calculated. Those parameters, that have a large 
influence on the objective function, should be selected for optimization under 
uncertainty (subset SsS I). Furthermore, those parameters that greatly influence 
the state variables x of the system, should also be selected for optimization 
under uncertainty (subset SsS II). Here, all states x are considered, which is an 
extension to the first part of the algorithm, where only measurable state 
variables y were analyzed. These two subsets are combined (SsSI U SsS III) to 
form subset SsS III. A further parameter estimation with the remaining subset is 
carried out (Step 5). The results of the different subsets are compared in a 
Monte-Carlo simulation (Step 6), to see, if the information loss due to fixation of 
the parameters is high. 

3. Case Study 
To test the algorithm, a case study is investigated. A heated continuously stirred 
tank reactor (CSTR) with three reactions is presented in Fig. 2. 

 
Figure 2. General scheme of the CSTR including all inputs and outputs. 
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In the first reaction, educt A reacts to product C: A  C. In the second reaction 
B turns into A: B  A. In the third reaction, C’s isomer D is formed from A: A  
D. All reactions adhere to Arrhenius equation. The aim of this CSTR is to 
produce the product C. In general, the differential equations shown in Eq. 3 to 7 
apply. 
𝜕𝜕𝑐𝑐𝐴𝐴
𝜕𝜕𝜕𝜕

=  𝐹̇𝐹
𝑉𝑉

 ∙ (𝑐𝑐𝐴𝐴𝐴𝐴 −  𝑐𝑐𝐴𝐴) −  𝑘𝑘1𝑜𝑜  ∙ 𝑐𝑐𝐴𝐴 ∙ 𝑒𝑒
− 𝐸𝐸1
𝑅𝑅 ∙ 𝑇𝑇 +  𝑘𝑘2𝑜𝑜  ∙ 𝑐𝑐𝐵𝐵 ∙ 𝑒𝑒

− 𝐸𝐸2
𝑅𝑅 ∙ 𝑇𝑇  −  𝑘𝑘3𝑜𝑜  ∙ 𝑐𝑐𝐴𝐴 ∙ 𝑒𝑒

− 𝐸𝐸3
𝑅𝑅 ∙ 𝑇𝑇  (3) 

𝜕𝜕𝑐𝑐𝐵𝐵
𝜕𝜕𝜕𝜕

=  𝐹̇𝐹
𝑉𝑉

 ∙ (𝑐𝑐𝐵𝐵𝐵𝐵 −  𝑐𝑐𝐵𝐵) −  𝑘𝑘2𝑜𝑜  ∙ 𝑐𝑐𝐵𝐵 ∙ 𝑒𝑒
− 𝐸𝐸2
𝑅𝑅 ∙ 𝑇𝑇  (4) 

𝜕𝜕𝑐𝑐𝐶𝐶
𝜕𝜕𝜕𝜕

=  𝐹̇𝐹
𝑉𝑉

 ∙ (𝑐𝑐𝐶𝐶𝐶𝐶 −  𝑐𝑐𝐶𝐶) +  𝑘𝑘1𝑜𝑜  ∙ 𝑐𝑐𝐶𝐶 ∙ 𝑒𝑒
− 𝐸𝐸1
𝑅𝑅 ∙ 𝑇𝑇  (5) 

𝜕𝜕𝑐𝑐𝐷𝐷
𝜕𝜕𝜕𝜕

=  𝐹̇𝐹
𝑉𝑉

 ∙ (𝑐𝑐𝐷𝐷𝐷𝐷 −  𝑐𝑐𝐷𝐷) +  𝑘𝑘3𝑜𝑜  ∙ 𝑐𝑐𝐶𝐶 ∙ 𝑒𝑒
− 𝐸𝐸3
𝑅𝑅 ∙ 𝑇𝑇  (6) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝐹̇𝐹
𝑉𝑉

 ∙ (𝑇𝑇𝑜𝑜 −  𝑇𝑇) +  𝑈𝑈 ∙ 𝐴𝐴
𝜌𝜌∙𝑐𝑐𝑝𝑝∙ 𝑉𝑉

+ −∆ℎ1
𝜌𝜌∙𝑐𝑐𝑝𝑝

 ∙  𝑘𝑘1𝑜𝑜  ∙ 𝑐𝑐𝐴𝐴 ∙ 𝑒𝑒
− 𝐸𝐸1
𝑅𝑅 ∙ 𝑇𝑇   

          + −∆ℎ2
𝜌𝜌∙𝑐𝑐𝑝𝑝

 ∙  𝑘𝑘2𝑜𝑜  ∙ 𝑐𝑐𝐵𝐵 ∙ 𝑒𝑒
− 𝐸𝐸2
𝑅𝑅 ∙ 𝑇𝑇 + −∆ℎ3

𝜌𝜌∙𝑐𝑐𝑝𝑝
 ∙  𝑘𝑘3𝑜𝑜  ∙ 𝑐𝑐𝐴𝐴 ∙ 𝑒𝑒

− 𝐸𝐸3
𝑅𝑅 ∙ 𝑇𝑇  

(7) 

In this system, nine unknown parameters exist. The algorithm is used to select 
the most relevant of these: the activation energies of the three reactions, E1, E2, 
E3, the pre-exponential factors of the three reactions, k1o, k2o, k3o, the heat 
transfer coefficient U∙A, the specific heat cp, and the average density ρ. In order 
to model the system, it is assumed that the volume of the reactor (V = 1m³), the 
mass flow into the reactor (𝐹̇𝐹 = 6.5∙10-4 m³/s), and the heat of each reaction (Δh1 
= 45∙10-4 J/mol, Δh2 = -55∙10-4 J/mol, Δh3 = 45∙10-4 J/mol) is constant. 
Furthermore, the reaction is performed for one hour (3600s), whereby a sample 
is taken every 20 minutes. In this case study, it is only possible to measure the 
concentrations of components A and B as well as the temperature T.  
3.1. Parameter Identification and Subset Selection 
Step 1 of the algorithm is modeling the system and gathering data. The model 
of the system is shown above, therefore measurements are still required. In 
order to obtain these, experiments are simulated. The controls u are the input 
values cAo, cBo, T0, and the jacket temperature Tj. Since four input variables are 
used, 16 + 1 experiments are performed. For this purpose, the following ranges 
of the inputs are applied: cAo 5 to 10 mol/m³, cBo 10 to 14 mol/m³, and T0 and Tj 
273 to 373 K, thus creating an experiment “hypercube” (full factorial design with 
mean-value experiment). For the parameters, the real parameter values shown 
in Tab. 1 are implemented. The measureable variables cA, cB, and T are subject 
to random normal noise with a standard deviation σA/B of 0.5 for the two 
concentrations and σT of 1 for the temperature. Thus, measurement errors are 
simulated. The process is very sensitive to temperature and concentration 
changes. 
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Table 1. True and initial kinetic parameter values. 

 E1 

[J/(molK)] 

E2 

[J/(molK)] 

E3 

[J/(molK)] 

k1o 

[1/s] 

k2o 

[1/s] 

k3o 

[1/s] 

True 69 ∙ 10³ 72 ∙ 10³ 69 ∙ 10³ 5.0 ∙ 106 1.0 ∙ 107 5.0 ∙ 105 

Initial 42 ∙ 10³ 115 ∙ 10³ 42 ∙ 10³ 3.0 ∙ 106 2.0 ∙ 107 3.0 ∙ 105 

 
Table 2. True and initial values for other uncertain parameters. 

 ρ  

[kg/m³] 

cp  

[J/(kg K)] 

U ∙ A  

[kW/K] 

True 800 3.5 1.4 

Initial 500 5.0 0.8 

 
The aim now is to select the relevant uncertain parameters and quantify their 
uncertainty. In Step 2 initial values for the uncertain parameters are defined 
(Tab. 1 and Tab 2.). All initial guesses have an offset of more than 40% to their 
true values. 
In Step 3, parameter estimation and subset selection strategies are used, to 
systematically reduce the number of parameters based on their identifiability 
(linear independence). The subset selection reduces the parameters from nine 
to four (SsS 0 = {E1, E2, E3, k3o}). In Fig. 3 measurement values of a randomly 
chosen experiment are compared to the initial guess and to the subset SsS 0 
after the parameter estimation. It is apparent that the initial guess is strongly off 
target and the trajectory after the parameter estimation fits the experimental 
values quite nicely. For cB the noise is larger than the actual change in the 
variable. Nevertheless, for optimization under uncertainty, a further reduction of 
the amount of parameters is required. 

 
Figure 3. Comparison of measurements, initial guess, and SsS0 for experiment 11. 

First of all in Step 4, the sensitivity of the user-defined objective function to the 
parameters is analyzed. A threshold of 10% of the sensitivity of the most 
sensitive parameter was used for the selection. In this example, three 
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parameters are seen as vital (SsS III = {E1, E2, E3}). From an engineering point 
of view, the results are reasonable. The activation energies of reaction 1 
(product producing reaction) and reaction 3 (byproduct producing reaction) have 
an exponential influence on the production of cA. Analyzing the sensitivity of the 
state variables regarding the parameters also shows a reduction of the subset. 
Again, only the activation energies are selected. The combination of the two 
subsets leads to subset SsS III, which contains only E1, E2, and E3. 
3.2. Monte Carlo Simulation 
A Monte Carlo simulation with 200 simulations is applied to analyze the 
information loss due to the reduced number of parameters. In Fig. 4 the 
concentration for cB is exemplarily analyzed in greater detail for one of the 17 
experiments. It becomes apparent, that the first parameter estimation leads to 
unrealistic results of the state variables x, which are widely off-target regarding 
the experiments. At this point the parameter estimation is still ill-conditioned. 
Using the variances thereof in optimization under uncertainty would therefore 
also lead to unrealistic optimization results and could be devastating if 
implemented into an actual chemical plant. SsS 0 after Step 4 of the algorithm 
leads to better results. These lie closer to the actual experimental values. The 
further reduction of the subset slightly reduces the uncertainty, but still contains 
a large degree of information that is applicable for optimization under 
uncertainty. In Fig. 4 (c) the last measurement point is not in the Monte Carlo 
set. A reason for this could be that the measurement is a stochastic outlier or 
the applied threshold for the final subset selection is too high. Improvements on 
the later are currently under research.  

   
Figure 4. Monte Carlo simulation for the first parameter estimation with all parameters 
(a), with SsS 0 (b), and with SsS III (c) (from left to right) for experiment 7. 

4. Conclusions 
In this contribution an algorithm is shown, in which parameters based on their 
identifiability and their relevance regarding the model state variables and a 
user-defined process objective function are selected for optimization under 
uncertainty. The algorithm was successfully applied to a case study. In future 
investigations, systems will be analyzed, in which the model structurally differs 
from the experimental data. Adding to this, the influence of the thresholds will 
be investigated. Furthermore, this algorithm will be tested on larger models of 
whole chemical plants. Using the determined uncertain parameters, 
optimization under uncertainty of the models of these the chemical plants will be 
carried out. 
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