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Figure 17 illustrates the individual steps of the modelling procedure in more detail, which will be 
explained in the following chapters. 

 

Figure 17: Individual steps for creating subsector load profiles. Diagram by author, adapted from Gotzens et al. (2020, p. 93) 

Firstly, the selection of model configuration for the multiple regression will be introduced (chapter 
4.2.1.1). The subsequent chapter 4.2.1.2 describes the data preparation and the implementation of 
site-specific regression analyses. Chapter 4.2.1.3 presents the creation of subsector load profiles by 
means of averaging of site-specific models. The last step in the process of subsector load profile 
development is the model evaluation introduced in chapter 4.2.1.4. The evaluation of generated 
subsector load profiles is determined using the performance measures of 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  and MAPE. The model 
evaluation of the multiple regression approach is very similar to the evaluation of ANN-based load 
profiles in order to enable direct comparison. As output, load profiles for 32 subsectors, for 401 
counties and 10 weather years have been generated using the multiple regression approach. In 
addition, prediction intervals were generated by quantile regression. Performance measures were 
determined using 5-fold cross validation. Correlation analysis matrices give an indication as to the 
relevance of demand drivers for individual subsectors.  

4.2.1.1 Selection of the Multiple Regression Model Configuration 
The multiple regression model was determined empirically by comparing a selection of possible 
configurations using three sample locations. Cross validation (cf. chapter 2.5.6) was used for selecting 
the model configuration of sample locations, which avoids overfitting of the model and ensures a 
robust identification of the model’s performance. The data set of the sample locations was 
decomposed in advance by a reproducible random seed into training or validation data (80 %) and test 
data (20 %). The latter decomposition into test data is particularly necessary in the application of 
artificial neural networks in order to avoid their tendency to overfit, which in the case of statistical 
regression analysis should only be of minor importance. Nevertheless, the different model 
configurations were checked for comparison by means of both validation data and test data. 

Table 7 (p. 47) shows the tested model configurations for one of the sample locations (here: Bürgeramt 
Zeil 3, (“Energiemonitoring der Stadt Frankfurt am Main,” n.d.)) each in linear (y) and logarithmic form 
log(y), their cross-validated performance measures MAPE, 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  and nRMSE, the number of 
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Figure 24: Experimental setup for the evaluation of the disaggregator tool applying subsector load profiles (BLP), using real 
load data of selected DSOs and the total load of Germany as per ENTSO-E. Diagram by author. 

In both approaches, normalized load profiles of several years for 11 counties and the whole of 
Germany were created by the disaggregator tool. Similar to the approach in chapter 4.2.1.5, all load 
profiles had to be parametrized according to regional calendar and weather data23. The modelled load 
profiles were then compared with the DSOs’ and ENTSO-E total load profiles to determine MAPE and 
R² performance measures and identify structural deviations with regards to the profile structures. As 
mentioned in chapter 4.1.2, this comparison of model output to real load data was only possible where 
(DSO/ENTSO-E) grid areas were (largely) identical to county areas. In the end, the model output could 
be validated using the data of 11 DSOs and ENTSO-E, both for multiple years (see Figure 24).  

 

 

 

 

                                                           
23 As only TUB BLP consider temperature and solar radiation variables, weather data was neglected for both 
VDEW SLP as well as generic load profiles.  
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For the subsequent economic assessment, Table 25 lists the individual entries for annual costs to 
access these DSF potentials.  

Table 25:  Technical and annual cost parameters for the flexibilization of application technologies, utilized for peak load 
reduction. 

  Cooling, ventilation, AC Heat pumps 
Technical parameters 

  

Flexible capacity [MW] 1,275 1,648 
Shifted energy [MWh] 2,700 14,838 

Annual Costs 
  

Investment costs32  1,416,443 €  3,662,551 € 
Fixed costs 382,460 € 988,942 € 
Variable costs 13,501 € 148,375 € 

Total annual costs per technology 1,812,404 € 4,799,868 € 

Total annual costs 6,612,273 € 
 
As can be seen from Table 25, the exploitation of the utilized DSF potentials is associated with annual 
costs of about 6.6 million €. In the next step, these costs can be compared to potential cost savings 
associated with the peak load reduction. Table 26 brings together costs and cost savings to determine 
the economic value of the peak load reduction using identified DSF potentials.  

As can be read from Table 26, the total savings through peak load reduction (and associated reduction 
of gas turbine PP capacity) significantly exceed the costs associated with exploiting the required DSF 
potentials. In total, cost savings of about 157 million € could be realized annually replacing gas turbine 
capacity by DSF potentials. As a very recent study by Gierkink et al. (2021, p. 11) shows, the early coal 
phase-out by 2030 requires, among other things, a significant expansion of new hydrogen-capable gas-
fired power plants of 23 GW. Part of this expansion of peak load capacity could be avoided by DSF as 
described. 

Table 26: Annual costs and cost savings of peak load reduction measures using flexible application technologies. 

Item Value 
Reduced peak load capacity 2,923 MW 

thereof cooling, ventilation, AC 1,275 MW 
thereof heat pumps 1,648 MW 

Annual costs and savings 
 

Capacity costs of gas turbine PP (cf. Table 12) 56,000 € / MW∙a 
Total annual savings through reduced peak load  163,693,765 €  
Total annual costs (cf. Table 25) 6,612,273 €  

Total annual cost savings 157,081,493 €   
 
The economically attractive application of DSF potentials for peak load reduction or saving of 
corresponding peak load technologies is also confirmed by Misconel et al. (2021, pp. 3, 12). In addition 
to these cost savings, DSF ensures that remaining capacities are better utilised. Moreover, the above 

                                                           
32 As mentioned in chapter 4.7.2, investment costs have been allocated dynamically among an assumed lifetime 
of equipment of 10 years. The investment sums of 12.7 million € (flexibilization of cooling, ventilation, AC) and 
33.0 million € (flexibilization of heat pumps) were converted to annual costs at an interest rate of 1% and an 
average capital commitment of 6.4 million € (flexibilization of cooling, ventilation, AC) and 16.5 million € 
(flexibilization of heat pumps).   
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6. Discussion 
In order to contextualise the main results of this thesis, uncertainties in the analysis and result 
generation of the six consecutive modules should be addressed in this chapter. 

In the first module, 32 subsector load profiles (TUB BLP) were developed and published, based on 1,104 
datasets. In comparison, 607 commercial load profiles have been used to generate VDEW SLP more 
than twenty years ago. While the database for TUB BLP appears larger, VDEW SLP exhibit a higher 
aggregation level of only seven individual SLP in the CTS sector; for industrial electricity demand, no 
VDEW SLP exist. The representativeness of TUB BLP depends on data availability, the limitations of 
which have been thoroughly investigated and described in chapter 2.1. The underlying database of 
TUB BLP can be regarded as good in some subsectors, but not necessarily as representative in others. 
In future research, the database should be enlarged for some subsectors. Also, there is a number of 
especially industrial subsectors which have not been modelled at all, due to data limitations. While 
these subsectors are currently approximated with generic load profiles, there is the possibility to 
expand the database in future research and to model remaining industrial subsectors. Particularly in 
industrial subsectors, however, stochastic effects and the lack of knowledge of production schedules 
poses a considerable challenge to the modelling of subsector electricity demand, as has been described 
for WZ 17 manufacture of paper in chapter 4.2.1.1. While the performance measures for all subsectors 
appear to be a neutral basis for comparison of the TUB BLP’s reliability, performance measures are 
significantly distorted by subsectoral heterogeneity. A heterogeneous subsector will inevitably be 
associated with poorer performance measures. Also, the modelling of holidays is a known challenge in 
the energy demand modelling research. The improvement of modelling holiday load patterns in TUB 
BLP depicts an opportunity for future research. Besides, in the present approach all individual load 
profiles were normalized before the modelling procedure in order to equally consider all different load 
patterns. Another reasonable option would be to assign a weighting to individual models based on 
their electricity consumption level, considering the higher relevance of larger energy consumers. In the 
benchmarking of TUB BLP, the comparison with VDEW SLP only yields an indication for the SLP’s 
inaccuracy as for different aggregation levels.  

In the application and evaluation of TUB BLP, the representativeness of selected DSOs can be 
questioned since all of them are independent cities, only. This goes back to the fact that these 
independent cities depict a separate county and are simultaneously supplied by their own DSO – both 
preconditions in order to compare disaggregator model results (county level) with published real 
metered regional loads (DSO). Notwithstanding, the limited representativeness of selected DSOs was 
compensated evaluating model results with total loads of the Federal Republic of Germany, using 
ENTSO-E data. In the depiction of county loads, TUB BLP are regionalized using county specific weather 
and calendar data. Beyond that, TUB BLP do not offer any regional specification. In that way the 
disaggregator model is limited to depict very specific economic structures in counties, as it maps 
average load patterns of each subsector. Using TUB BLP significantly reduced model deviations for 
most datasets evaluated (DSOs, ENTSO-E), but some deviations remained. In general, with the existing 
database it is not possible to attribute the deviations to individual profiles. However, a considerable 
part of these deviations might be associated with the residential ZVE profile, which has only been 
analysed roughly in the present thesis. The development of a residential profile based on smart meter 
data already improved the model performance significantly. As for its relevance, there are multiple 
approaches to model or simulate residential load profiles (Fraunhofer ISE, 2020; Pflugrath, 2020; 
Ziegler et al., 2020), which could help to further improve model results in the future. For future 
projections, especially the expansion of electric vehicles, PV systems and heat pumps will have 
significant impacts on the load profiles of residential but also commercial consumers (Agora 
Energiewende, 2020; Gobmaier and von Roon, 2010; Hinterstocker et al., 2014, pp. 1–2; Spiegel, 2018, 
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pp. 796–797). In addition, the trends of increasing stand-by loads and simultaneous efficiency 
increases will likely affect load profiles.   

In the development of engineering-based sub-load profiles, five of the six largest CTS subsectors by 
electricity consumption have been modelled with good consistency and plausibility. Nevertheless, 
deviations to subsector load profiles still remain, which could be considered in future research. 
According to Böckmann et al. (2021, p. 19), opportunities for improvement exist in the adjustment of 
heating and cooling limits, a greater consideration of real sub-load profiles (which could not be found) 
and particularly the consideration of a representative German load profile for air conditioning. Also, 
the database of AGEB's application balance (Rohde, 2019) is incomplete with regards to technology 
shares and could be improved. Besides, the subsector load profiles are themselves only models, the 
reliability of which relies on their database. In addition to improving developed engineering-based load 
profiles, the same methodology could be applied to additional subsectors from industry or CTS.  

The projection of energy demand in general and electricity load profiles in particular are naturally 
associated with uncertainties. The uncertainties of the present approach are particularly associated 
with the energy scenarios utilized. Since energy scenarios are a very important basis for decision-
making, they are repeatedly put to the test and updated. In this respect, the existing database for 
projected load profiles in the present thesis should also be updated if possible. Moreover, single 
assumptions are particularly uncertain and can be varied in future research, such as future shares of 
hot water vs. space heating generation of heat pumps. Also, the mapping of electric vehicle charging 
will likely have significant effects on future load profiles in both residential and CTS subsectors, which 
is not depicted as of now (Seim et al., 2021a, p. 18).  

For the identification of technical DSF potentials in high temporal and spatial resolution, the present 
approach relied on generic literature-based assumptions for the shift duration of individual application 
technologies. In contrast to existing literature, newly developed engineering-based load profiles were 
used to get a more robust picture of the temporal availabilities of individual application technologies. 
The existence of a technical control option may be available or may be brought about by investments 
(Kochems, 2020, p. 1). Naturally, the economic DSF potential is a subset of the technical DSF potential. 
Consequently, economic factors or other social and organizational factors must be considered in future 
research in order to determine the economic usability of the technical potential. In the present thesis, 
social and organizational factors have not been considered (Seim et al., 2021a, pp. 5–6). There are 
barriers to tapping into the DSF potentials, however. With a low energy intensity of about 1 %, 
companies in the CTS sector often lack incentives to tap into the savings potential through efficiency 
measures and load flexibilization (Pfluger et al., 2017b, p. 70). Consequently, there is a need for 
research into the technological, regulatory and economic exploitation of these potentials. 

In the economic assessment of applying newly developed subsector load profiles, two use cases were 
presented. In the first use case, a hypothetical procurement strategy was presented which is supposed 
to shed light on trends and potentials as opposed to the exact monetary value. Hourly load and price 
values were used due to data availability, whereas quarter-hourly values would be exact. Actual 
procurement strategies, demand models and data of suppliers, traders and DSOs are all undisclosed 
and not usable for analysis. Also, the extent to which model deviations are actually addressed by 
balancing group management cannot be concluded from the data. According to Beucker et al. (2020b, 
p. 10), an increased use of the intraday market for balancing has been observed in the last few years. 
In any case, replacing SLP reduces the necessary amount of short-term balancing group management 
and shifts it to the suppliers, who procure electricity for their customers. In this way, the management 
requirement of the deviations can be reduced, which generates an advantage with regard to the 
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planning of the necessary generation capacities, the volatility of the imbalance settlement price and 
the price risk on the electricity market.  

In the second use case of economic validation, the peak load reduction potential by load shifting 
through the utilization of DSF potentials has been assessed. Here, solely load shifts to later times have 
been assessed, while load shifts to earlier times are just as well feasible. With shiftable energy 
quantities (i.e. virtual storage capacity) of DSF potentials being the bottleneck, the additional peak load 
reduction through simultaneous load shifts to earlier and later times is likely to be marginal. The 
underlying cost parameters for exploiting the DSF potentials are estimates from the literature that will 
deviate in the real application case based on the scale of the applications. As for a lack of information, 
the life time of ICT components was assumed to be around 10 years, while they could probably live 
longer. Since power generation capacities have very long lifetimes, the savings potentials of reduced 
peak load capacity are of a long-term nature. However, the generation side of the German energy 
sector is undergoing profound change due to the phase-out of nuclear power as well as the medium-
term phase-out of coal power. With the simultaneous expansion of renewable energies, there is thus 
a need for additional peak load power plant capacity at an earlier stage, which could be reduced by 
DSF potentials.  
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7. Conclusion 
The ongoing decarbonisation of the energy system requires far-reaching interventions as well as their 
sound planning to ensure an efficient, safe and sustainable system transformation. As it is a decisive 
building block, the assessment of different transformation pathways requires the application of energy 
demand models in high temporal and spatial resolution. While there were several research projects 
investigating changes of the generation side, the demand side was less considered. Distinct data gaps 
for demand data in high temporal and spatial resolution were identified. Addressing some of the above 
gaps, only recently an openly accessible demand modelling toolset (disaggregator) has been published 
within the research project DemandRegio, from which this thesis emerged. In the electricity sector, 
the use of SLP is still common practice in various contexts, such as the balancing group system, the 
procurement and the load modelling. However, SLP rely on 20- to 40-year-old load data and are 
associated to structural deviations. To address future flexibility needs of the system, technical demand 
side flexibility potentials were assessed using these generic and oftentimes imprecise load profiles. 
Based on the research project DemandRegio, this thesis addressed many of the above research and 
data gaps. Divided into six individual modules, the four central research questions were answered.  

In the first module, 32 subsector load profiles (TUB BLP) of the sectors CTS and industry were 
developed in quarter-hourly resolution using a multiple regression approach. These TUB BLP were 
made publicly accessible and usable, and include a thorough description of the load characteristics and 
demand drivers of each covered subsector. TUB BLP were made available for 10 weather years (2009 
– 2018). In order to evaluate performance and reliability of each subsector load profile, the forecast 
performance measures (MAPE and R²) were determined using a cross validation approach, and 
prediction intervals were identified using quantile regression. The performance of subsector load 
profiles varies greatly between subsectors, which can be traced back to their predictability and varying 
heterogeneity. The modelling of these subsector load profiles required the development of a 
comprehensive database of 1,104 individual real metered load profiles. Potentially sensitive real 
metered load profiles were transformed into usable average characteristic demand patterns. Assessing 
the applied methodology, the multiple regression approach was benchmarked against a feedforward 
ANN, finding that both exhibit similar results for the subsector load profiles while the ANN performs 
slightly better for individual sites. Further, the performance of newly developed TUB BLP was 
benchmarked against existing load profiles such as the VDEW SLP as well as the De Monfort profiles, 
confirming a significant improvement of TUB BLP against SLP, whilst revealing similar structures 
compared to the De Monfort profiles. As the most relevant SLP, the G1 reveals a significant 
overestimation of electricity demand during the day, and a significant underestimation during night 
time. This was traced back to an increased base load level driven by a higher number of applications in 
office buildings and households, as well as a reduced peak load due to a higher energy efficiency of 
used applications. VDEW SLP are still widely used to model the load behaviour of small consumers. 

In module 2, all 32 TUB BLP were applied and evaluated within the DemandRegio toolset 
disaggregator, creating electricity demand forecasts for each county in Germany in high temporal 
resolution. These electricity demand forecasts were evaluated using 11 DSO loads of several years, 
that were suitable for the comparison and published corresponding regional load data. In addition, 
these electricity demand forecasts were evaluated using ENTSO-E loads of five years, representing the 
entire load of Germany. In nearly all cases, the application of TUB BLP once again revealed a significant 
improvement of model performance measures in comparison to the use of VDEW SLP. Remaining 
structural deviations still exhibit an overestimation of electricity demand during the day, and an 
underestimation during night time. These remaining deviations can stem from subsectors that have 
not yet been covered due to data limitations. However, due to its high relevance, the residential load 
profile (ZVE profile) in particular is suspected of showing deviations that are visible in the overall 
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picture. Applying TUB BLP in the disaggregator, the error profile of remaining deviations looks similar 
to the ZVE profile shape. Replacing the ZVE profile with the H0 SLP further deteriorates the forecast, 
whereas replacing the ZVE profile with a newly generated smart meter-based profile yielded significant 
improvements for selected DSOs.  

In module 3, a novel bottom-up approach of developing engineering-based sub-load profiles for five 
selected CTS subsectors offices, trade, accommodation, hospitals and education was introduced. These 
five subsectors represent about 62 % of the total CTS electricity consumption. The approach was made 
publicly accessible in data and code. The methodology can be further developed with regards to future 
technology shifts or applied to additional CTS or industrial subsectors. The alignment with previously 
developed TUB BLP ensured that the engineering-based load profiles can be regarded as consistent 
and valid. Deviations to TUB BLP can be mainly traced back to times of changing occupancy, 
uncertainties for temperatures of heating and air conditioning thresholds as well as a lack of 
characteristic application sub-loads in literature. Engineering-based load profiles enable the projection 
of load profiles and the identification of DSF potentials in high temporal resolution (Böckmann et al., 
2021, p. 19).  

In module 4, developed engineering-based sub-load profiles were projected into the year 2035, using 
two recognized energy scenarios from literature: a baseline scenario (normative) and a reference 
scenario (explorative). Depending on the scenario, the developments of individual application 
technologies was derived and allocated to respective subsectors. While the baseline scenario indicates 
a reduction of electricity demand for four of the five subsectors (except for hospitals) due to efficiency 
gains, the reference scenario projects an increase of electricity demand in each but the education 
subsector. In both scenarios, electricity-based space heating will be partially shifted from night storage 
heaters to heat pumps. Also, the share of electricity demand for lighting decreases in both scenarios, 
whereas the share of both ICT and mechanical energy increases. Resulting projected load profiles 
exhibit similar shapes as compared to the year 2018, whilst revealing a different level of electricity 
demand. Particularly for the trade subsector, more pronounced load peaks are to be expected in the 
future. In hospitals, demand increases are to be expected in both scenarios. In all other subsectors, the 
ratios of peak load to base load show only minor variations within the scenarios (Seim et al., 2021a, 
pp. 17–18). 

In module 5, developed and projected engineering-based sub-load profiles were utilized to derive 
demand side flexibility potentials in high temporal and spatial resolution for the years 2018 and 2035. 
Based on an approach developed by Kleinhans (2014), both switchable loads and shiftable energy 
quantities of five CTS subsectors were quantified and published, covering 74 % of technical DSF 
potentials in the entire CTS sector. In contrast to previous studies, the present analysis used robust 
technology-specific load profiles of high temporal resolution, which have been validated against 
subsector load profiles. Moreover, the spatial resolution of technical DSF potentials can help to reduce 
local grid bottlenecks in future, and thus potentially offer an economic alternative for grid expansion 
projects or short-term storage. Across all scenarios, air conditioning as well as space heating and hot 
water offer high load shifting potentials. Air conditioning, however, is subject to strong diurnal and 
seasonal fluctuations. Space heating and hot water also have immense potential for shiftable energy 
quantities due to high shift durations. Notwithstanding, space heating and hot water fluctuate in most 
subsectors according to the time of day and slightly according to the season. In contrast, hospitals 
provide very constant flexibility potential over time for all technologies except air conditioning due to 
stable occupancy profiles. The potential of process cooling in retail as well as space heating, hot water, 
process cooling and ventilation in accommodation also show temporal stability. A comparison of the 
identified potentials with literature values underlines the plausibility of the present approach. By 


