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Generic Object Categorization

in Polarimetric Synthetic Radar Images

- and beyond

Abstract: Can a single algorithm successfully solve di�erent classi�cation tasks without changing

the algorithm itself? The human visual cortex can - and so can the computer!

In the context of this thesis �generic object categorization� refers to the task of detecting in-

stances of object classes within images. The main focus of this work lies on polarimetric synthetic

aperture radar (PolSAR) images, but it is by no means limited to it. Unlike other works, this thesis

assumes that the �nal categorization problem (i.e. objects of which speci�c classes are searched

for in the images) is not known during the design of the framework. Consequently, any kind of

category-speci�c optimization such as sophisticated feature design or manual selection, top-down

processing, or task-speci�c choice of the classi�er is not possible.

Instead, the proposed system is based on a two-stage framework. The �rst stage uses a large

set of general low-level feature operators, that capture mainly radiometric and textural properties, as

well as a classi�er based on Random Forests, that is able to handle high-dimensional input spaces.

The second stage computes high-level features, which are based on the classi�cation results of the

�rst stage. A second Random-Forest-based classi�er estimates the �nal category posterior distribution.

The exhaustive experimental study of this thesis not only investigates the basic characteristics

of the newly proposed extension of the Random Forest classi�er. It also applies the developed

framework to a vast amount of image data, including PolSAR data, remotely sensed optical images,

and close-range photographs with various categorization tasks ranging from land cover classi�cation,

over building detection, to the localization of cars. Not a single system parameter is adapted to

the problem at hand. The whole framework is evaluated (i.e. trained and applied) without further

optimization. Nevertheless, reasonable classi�cation accuracies are achieved, which partly even

compare favourably with state-of-the-art expert systems.
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Generic Object Categorization

in Polarimetric Synthetic Radar Images

- and beyond

Zusammenfassung: Kann ein einziges System erfolgreich verschiedene Klassi�kationsprobleme

lösen, ohne dass das System selbst geändert wird? Der visuelle Kortex des Menschen kann - und so

der Computer!

Im Kontext dieser Arbeit bezieht sich �generische Objektkategorisierung� auf die Aufgabe, In-

stanzen verschiedener Objektklassen in Bildern zu detektieren. Das Hauptaugenmerk dieser Arbeit

liegt dabei auf Bildern des polarimetrischen Synthetischen Apertur Radar (PolSAR). Aber die Arbeit

ist keineswegs nur darauf beschränkt. Im Gegensatz zu anderen Arbeiten nimmt die vorliegende

Thesis an, dass das eigentliche Kategorisierungsproblem (insbesondere Objekte welcher Klassen in den

Bildern gesucht werden sollen) während des Entwurfs des Systems selbst nicht bekannt ist. Daraus

folgt, dass jede Art kategorie-spezi�scher Optimierung, wie die Benutzung spezialisierter Merkmale,

manuelle Merkmalsauswahl oder die Ausnutzung von Modellwissen, unmöglich ist.

Stattdessen basiert das vorgeschlagene System auf einer Zwei-Stufen-Struktur. Die erste Stufe

nutzt zum Einen eine umfangreiche Menge an Merkmalsoperatoren, welche hauptsächlich ra-

diometrische und texturelle Eigenschaften beschreiben, und zum Anderen einen Klassi�zierer, welcher

auf Random Forests basiert und mit hoch-dimensionalen Eingaberäumen umgehen kann. Die zweite

Stufe berechnet Merkmale auf einem höheren Level, welche auf dem Klassi�kationsergebnis der

ersten Stufe beruhen. Ein zweiter Random-Forest basierter Klassi�zierer schätzt die endgültige

Posteriorverteilung des Klassenlabels.

Die umfangreiche experimentelle Studie dieser Arbeit untersucht nicht nur die grundlegenden

Charakteristika der neu vorgeschlagenen Erweiterung des Random Forest Klassi�zierers. Sie

wendet das entwickelte System auch auf eine groÿe Menge von Bilddaten an, welche PolSAR

Daten, optische Fernerkundungsbilder und Nahbereichsfotogra�en beinhalten, inklusive zahlreicher

Klassi�kationsprobleme, beginnend bei Landnutzungsklassi�kation, über Gebäudedetektion, bis

hin zur Detektion von Autos. Kein einziger Systemparameter wurde für das jeweilige Klassi�ka-

tionsproblem angepasst. Das gesamte System wurde ohne weitere Optimierung ausgewertet (dh.

trainiert und angewendet). Nichtsdestotrotz werden annehmbare Klassi�kationsgenauigekeiten

erreicht, welche teilweise sogar mit den Ergebnissen moderner Expertensysteme vergleichbar sind.
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Chapter 1

Introduction

On Monday, May 12, 2008, at 14:28 local time (06:28 GMT) a terrible earthquake of 7.9 on the

Richter magnitude scale happened in Wenchuan, China. The extent of the a�ected area was 300 km

in east-west, and 250km in south-north direction. 69,170 people died, 374,159 people were injured,

17,428 people were still missing (by noon of July 3, 2008) and 48,270,000 people were severely a�icted.

Figure 1.1 shows Beichuan, a city about 100km north of the epicenter. Both images were taken by

FORMOSAT-2. While the left shows the area two years before the catastrophe, the extreme damage

is visible in the right image, which was taken two days after the main quake.

(a) Before the quake (May 14, 2006) (b) After the quake (May 14, 2008)

Figure 1.1: Images of Beichuan, China, taken by FORMOSAT-2

The disaster management consists of three phases. The goal of the �rst phase (May 12 until May 18,

2008) was the rescue of buried people. For this aim it was necessary to rapidly locate the worst hit

areas, to detect collapsed buildings and to determine routes for rescue. All of this had to be done

very fast, since saved time meant rescued lives. However, manual inspection of the whole area was

impossible due to its extent and the destroyed infrastructure. The a�ected area was largely cut o� by

the quake. Boulders and landslides were blocking roads. Heavy rain hindered helicopters from landing

and enlarged the danger of mudslides. Landslides were blocking rivers, causing them to be dammed

and to generate quake lakes. Their rising water caused upstream �oods, for which Figure 1.2 shows

an example. The whole area was extremely unstable. More land- or mudslides could have happened

every moment - and did. Furthermore, there were several aftershocks, seven of them of a magnitude

larger than 5.5 on the Richter scale. That is why remote sensing played an extremely important role

for disaster management after this earthquake. As soon as possible airplanes and satellites took images

from the most a�ected areas to coordinate corresponding humanitarian help. From those remotely

sensed data of the a�icted region �rst information was gathered which roads and bridges were still

useable, where the largest damage was done, and where was the most urgent need for help.
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(a) Chengdhu before the quake

(May 14, 2006)

(b) Chengdhu after the quake

(May 15, 2008)

(c) Chengdhu after the quake

(May 19, 2008)

Figure 1.2: Images of Chengdhu, China, taken by FORMOSAT-2

Three types of remote sensing techniques were used, namely optical photography, synthetic aperture

radar (SAR), and lidar. As stated in [Shao 2009] SAR has signi�cant advantages in disaster monitor-

ing and is extremely useful for rapid detection of damage conditions of buildings, distributions and

scopes of landslides as well as dammed lakes. Although images obtained by SAR are more di�cult to

analyze and interpret than optical images, the major advantage of SAR is obvious: As active sensor it

is independent from daylight. That is why it is usable as soon as a plane or satellite is available, which

is extremely important in such catastrophic events like the one in Wenchuan. A similar advantage

is caused by dielectric properties of the signal used by SAR sensors: It is less in�uenced by weather

conditions. It penetrates clouds and even dust and smoke to some extent.

The second phase (May 19 until June 12, 2008) was concerned with prevention of secondary

disasters. Aftershocks and heavy rain increased the danger of more land- and mudslides. Quake lakes

were generating upstream �oods. There was a great danger that the water might break through the

natural dam of a landslide, causing extremely high damage downstream. Again SAR played an im-

portant role for identifying, assessing, and decision making regarding potentially endangered locations.

The third phase encompasses the time period of the following �ve to ten years after the quake. It

focuses on disaster assessment and reconstruction. SAR will provide useful information, for example

in the form of interferograms of di�erential interferometric SAR as in [Chini 2010].

Those catastrophic events may be one of the most important examples of the usage of SAR,

but by far not the only one. In fact, the mentioned and further properties have led to a steady

increase concerning the importance of SAR technology. Today, there are several air- and spaceborne

sensors which provide SAR data of di�erent quality and properties for commercial and scienti�c

communities. Contemporary sensors are able to provide data in centimeter resolution. TerraSAR-X,

COSMO-SkyMed, RadarSAT, and ALOS-PALSAR for example delivered several high-resolution SAR

images in the �rst days after the earthquake. Besides the usage of SAR technology during natural

hazard management, it has a wide range of applications including for instance surveillance, change

detection, biomass estimation, environmental monitoring, and generation of digital elevation models.

A lot of e�ort was put into research concerned with automatic analysis of SAR images. In

the last years some important developments could be achieved. New statistical models were developed

to describe SAR data of di�erent acquisition modes or of di�erent image content. Basic operators

like edge detectors, interest point detectors and so on were modi�ed according to the di�erent

characteristics. New feature descriptors were de�ned, which exploit information not contained in any

other remotely sensed image source. Several recognition systems were designed for speci�c object
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classes - mostly for di�erent land uses (e.g. [Esch 2011]), since the low resolution of �rst SAR sensors

did not allow the recognition of smaller objects. This has changed now and there are already some

approaches which try to recognize few speci�c object classes like streets (e.g. [Gamba 2006]) or

individual buildings (e.g. [Sportouche 2011]).

Despite the theoretical and practical progress in SAR data processing, there remain several

unsolved issues. These become most obvious in such scenarios like the actual usage of developed

tools for natural hazard management. One of the �lessons learned�, as stated by Deren Li (Professor

at Wuhan University) in [Li 2010], is that �we need to further improve our ability to process earth

observation data and extract useful information from massive data. It is important to develop

automatic methods for data processing and reduction in real-time or near-real-time (say within

1-2 hours after acquisition) [...]. Also needed are in-depth studies on theories and algorithms for

optical and multi-band and multi-polarization radar data processing and information extraction,

with increased accuracy, speed, and level of automation.�. Similar statements were made by several

of the involved organizations. As well as optical data, SAR images are a very important source

of information and indispensable for rapid disaster management. However, processing as well as

(automatic) analysis and interpretation of SAR data are far from being resolved issues, as for ex-

ample scientists state, who were concerned with damage assessment after the quake (e.g. [Shao 2009]).

Regardless of the area of application, the detail and amount of remotely sensed data make

manual inspection more and more infeasible. Furthermore, some types of SAR data cannot be

visualized to the whole extent, but have to be projected in an at least three dimensional real

domain. Unfortunately, automatic techniques to analyze and interpret images are still far away from a

performance comparable with the human visual system - even for optical images. The image character-

istics of remotely sensed images and the data properties of SAR make the situation even more di�cult.

Systems, which automatically interpret SAR images, have to be designed by experts which

have knowledge about statistics, information theory, and all applied algorithms and are often

optimized for only a few speci�c object classes. The common user of such systems may not have this

kind of background. It cannot be expected, that she knows how to preprocess the data or which

assumptions have to be valid to gain reliable results for a particular problem. Even to expect her to

know how to adjust parameters of the system without any heuristic is rather optimistic. Furthermore,

once designed for one speci�c object class, it is hard to transfer the method to other object classes or

slightly di�erent acquisition modes. On the other hand the end user often possesses another kind of

know-how which is mostly ignored by more general methods. One example is the prior distributions

of object classes in a classi�cation task. A lot of algorithms either estimate this distribution from

the training data or use a uniform distribution. Both choices might be wrong, while the user of the

system might possess knowledge which prior distribution is realistic for the particular application.

This work aims to provide a recognition system, which is able to solve general multi-class

recognition tasks from SAR data relatively fast, accurate and in some sense independent of object

classes and types of data. To this purpose several sophisticated approaches for automatic image

analysis are improved and combined in a general framework, which allows the derivation of high-level

features from low-level image characteristics. Those high-level features are used to obtain the �nal

classi�cation result. The system is neither optimized for any speci�c choice of object categories, scene

contents, or sensors, nor does it depend on prior information. But if such knowledge is available, it

can be exploited by the method. It is trainable to recognize generic object categories since it has to

be trained by examples, and provides robust and accurate results in a wide range of applications.





Chapter 2

Generic Object Categorization

Contents

2.1 From Object Recognition to Object Categorization . . . . . . . . . . . . . . . 5

2.2 Generic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Assumptions and Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The purpose of this chapter is to name basic questions and explain essential de�nitions of this

work. The best way to do this, is to separately discuss the three distinct terms of the title �Generic

Object Categorization in Polarimetric Synthetic Radar Images - and beyond�.

2.1 From Object Recognition to Object Categorization

The general goal of object recognition is to detect objects in images and to assign them to prede�ned

object classes. The process of assigning a categorical label to a given input query is called classi�ca-

tion. In the most simple case that means trying to answer the question �Does the image show the

object?�. Sometimes it is su�cient to distinguish only between two classes, for example �object� and

�non-object�, but many systems are designed for multi-class problems.

For most applications it is not enough to know whether there is the object within the image

or not. Instead, they are also concerned about where exactly it is. Localisation refers to answering

the question �Where is the object within the image?�. One simple way to obtain a localisation system

from a mere classi�cation system is the sliding window approach: The image is divided into a large

set of potentially overlapping, small and often rectangular areas and the classi�cation method is

applied to all of them individually.

The next extension is concerned with the potential number of objects within the image, and

thus with answering the question �How many instances of a class are there?�. Exploitation of the

knowledge that only one single object instance is visible in one image can signi�cantly simplify the

recognition problem.

In the most general case object recognition is concerned with the process of answering the

questions �Is there the object?�, �What kind of object?�, �Where is it?� and �How many objects?�.

Although, the di�erent questions might seem to be only slightly di�erent problem de�nitions, they

have serious consequences. Firstly, if one only wants to answer the question whether a particular

image shows an object instance or not, one mostly assumes that the object is the main part of the

image. That means, it covers a signi�cant amount of space within the image and it is more or less

centered. Furthermore, once one has found the object, one can stop, since either there is only one

object or the number of remaining objects does not matter. The answer of the question �Is there an

object?� is �yes� or �no� and therefore independent of the number of objects.
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However, if object recognition means determining not only the pure existence of an object in the

image, but in addition also position and number of all objects, those assumptions are clearly no longer

valid. If nothing is known about the position of the object, one has to search all positions. If nothing

is known about the scale of the object, one has to search for all scales. If nothing is known about

the number of objects one cannot stop as soon as one has found the �rst one, but has to �nish the

search until the last possible position and scale have been investigated. Although those facts do not

necessarily change the di�culty of the recognition task, they cause a combinatorial explosion of the

search space. That is even more true, if one has to deal not only with �nding object instances of one

class but with multi-class problems, where the number of classes can be signi�cantly larger than two.

Applications of object recognition can basically be divided into two distinct groups which cor-

respond to two di�erent objectives or levels of abstractness: speci�c Object Recognition (sOR) and

generic Object Recognition (gOR) [Pinz 2006]. All of the above mentioned comments are valid for

both groups.

Speci�c object recognition is concerned with individual instances (e.g. �Find Albert Einstein!�).

Applications are for instance biometric authentication via iris or face recognition. Similar tasks arise

in image retrieval, where one speci�c image is searched in a large image database. The query image

is mostly distorted, for example very noisy, of lower resolution, or only one part of the original image.

Techniques of sOR can also be used for localisation from images, where knowledge about objects

within the scene is exploited to derive information about the scene itself (like �I see the Ei�el Tower,

thus I am in Paris.�).

Generic object recognition tries to determine the category of an object instance (e.g. �Find

the human!�). Applications include image retrieval (where, in contrast to sOR, similar images are

searched instead of the original, undistorted version), image database annotation, video annotation,

surveillance, systems for driver assistance, interactive games, and optical character recognition (OCR).

Since gOR has to deal with object categories rather than speci�c object instances, it is often

called object categorization (OC). A broad discussion of related problems, building blocks of OC

frameworks, as well as an example of an OC method can for instance be found in [Pinz 2006].

The di�erent problem de�nition of OC in contrast to sOR has a couple of implications: Ob-

ject categories can for example be organized in hierarchies and might overlap. Furthermore, the

term stresses that corresponding methods have to deal with a large intra-class variability while the

inter-class di�erences might be very small.

Hence, within the context of this work the term �object categorization� means detection, local-

ization and categorization of instances of multiple object categories.

2.2 Generic Categories

All arti�cial object categorization frameworks are designed or at least trained for a speci�c subset

of all possible object categories, which depends on the �eld of application. Two popular examples

are for instance optical character recognition (OCR) that tries to determine which letter of a certain

language-speci�c alphabet is shown, or face detection which localizes the position of human faces

within images.
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Most sophisticated methods learn the appearance of object instances from a number of exam-

ples. Several features are extracted from a given raw image. This preprocessing reduces the amount of

data while it has to maintain the major part of discriminative information. Object-category-speci�c

knowledge is often already exploited during the design of corresponding systems.

One possibility is called top-down processing, that explicitly uses an a priori de�ned object

model for which evidence is searched within the data. Streets for instance are often assumed as

homogeneous regions between two parallel lines ([Vosselman 1995]). Other models, describing for

example buildings ([Thiele 2008]) or faces ([DeCarlo 1996]), are often more complicated. Clearly,

those algorithms heavily depend on knowledge about the searched object category.

The alternative to top-down approaches is called bottom-up processing: mostly task-speci�c

features are used to learn the object model from data. Indeed, that is what most classical classi�ers

assume: A feature vector that is as descriptive as possible is generated from the data and is used

by a classi�er that is as powerful as possible to derive the object class label. The dependency on

knowledge about the object category is twofold: Firstly, a set of features has to be chosen, which is

descriptive for the object categories at hand. Secondly, a classi�er has to be selected, which is able to

e�ectively exploit the properties of those features.

A lot of work has been done for speci�c object classes like streets (e.g. [Gamba 2006]), land

use (e.g. [Esch 2011]), or buildings (e.g. [Sportouche 2011]). The approach to concentrate only on

speci�c prede�ned object categories has the advantage that it enables the usage of prior information

during the design of the classi�er. However, it has the drawback, that the developed method is

object category speci�c. Therefore, it is only seldom usable for other recognition tasks. That is quite

contrary to the human way of object recognition, where the same system is used to recognize all

thinkable types of object categories.

The term "generic" object categorization shall stress, that there is no object-category-speci�c

knowledge during the design of the system. Instead of designing expert systems, which are able to

recognize only a small subset of object categories, this work aims to develop a system which is able

to solve general recognition tasks with good performance on average. Such a system has several

advantages. First of all it renders the development of new classi�ers for each new classi�cation

problem nearly obsolete. If there is a new classi�cation task, the proposed algorithm is directly

applicable without any change as long as there is training data available. This allows a rapid reaction

in situations where time is very crucial. During disaster management of natural hazards time should

be spent for more important things than thinking about a good choice of preprocessing methods,

feature operators, dimensionality reduction techniques and classi�ers. Furthermore, the system

provides a kind of a baseline performance. Instead of being an expert in only one single particular

problem, it is far more general and designed to perform well on average. That means, that every

expert system optimized for one speci�c problem should perform at least as well as the proposed

system. The demand of generic object categorization has a couple of serious consequences for the

design choices of the object categorization system in this work.

If the object categories are not known during the design process of the classi�er, there cannot

be any manually designed object models. Therefore, pure top-down processing methods are not

applicable, but the system has to rely on bottom-up approaches to a larger extent. A priori

optimization due to preselection of features is not possible, because the descriptive power of any given

feature can only be measured with respect to a particular object category.
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There are two possibilities regarding the selection of features: On the one hand, features could be

used, which are very descriptive for at least the majority of existing object categories. The fact that

even �nding good features for a small number of very speci�c object categories is a very active �eld

of research, makes it hard to believe that there is one small subset of features, which is su�ciently

descriptive for all possible categories. On the other hand, all available features could be used. Since

there is a (practically) in�nite amount of features, it is not possible to use all of them. However, a

very large amount of features could be used, which are shown to possess descriptive power in a wide

range of classi�cation tasks.

The usage of a high-dimensional feature space casts the next serious problem, which is known

as the curse of dimensionality: Under the assumption of correlated dimensions, the amount of data

needed to train a robust as well as accurate classi�er grows exponentially with the number of used

features. This problem is ampli�ed, if the spatial neighbourhood of a pixel is used instead of one pixel

alone. Even medium sized square-shaped patches of size ten times ten pixels and only one hundred

features would result in a corresponding feature space of ten thousand dimensions, which are in

addition highly correlated. Most contemporary classi�cation methods are strongly negatively a�ected

by this e�ect. Some methods make strong simplifying assumptions about the data to circumvent this

problem. Naïve Bayes ([Hand 2001]) for examples models all features as statistically independent.

Although this is clearly not valid most of the time, such methods can perform surprisingly well.

Nevertheless, they rather represent a baseline of what is at least possible, instead of an extraordinary

goal. The �rst demand on the classi�er for generic object categorization is therefore, that it is able to

handle high dimensional feature spaces without relying on strong simplifying assumptions about the

data.

Di�erent classi�ers have di�erent ways to model the decision boundaries within the feature

space. That is why a particular choice for a classi�cation method might be more suited for a speci�c

classi�cation task than for another. Since within the context of this work the actual classi�cation

problem is not known during the design of the system, the second demand on the classi�er is, that it

has to perform very well on average. A system, which is able to solve some tasks extraordinary well

while failing on others can not be used.

2.3 The Data

The last part of the title (�PolSAR images�) is the most exchangeable one, which is even more stressed

by the addition �and beyond�.

The speci�c characteristics of (polarimetric) Synthetic Aperture Radar (SAR) data are explained in

Section 3. At this point, only some facts shall be brie�y discussed to further specify the scope of

this work. SAR is an imaging technique that utilizes a microwave signal, while polarimetric SAR

(PolSAR) refers to a speci�c kind using polarized electromagnetic waves.

Due to di�erent electromagnetic properties of light and microwaves as well as di�erent percep-

tion geometries of optical and radar sensors, the statistical characteristics of photographies and SAR

images are quite di�erent. This causes the majority of common operators for analysis of optical

images to perform suboptimal if applied to SAR data.

In addition, the appearance of objects in radar images is strongly dependent on the circum-

stances of the reception, like look angle and object orientation. That is why objects of one class
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naturally possess a large variability in PolSAR images. Furthermore, the descriptive power of speci�c

features varies more strongly between di�erent classes. That makes it even more di�cult to de�ne

features, which are useful for generic object categories.

There exist several variants of PolSAR data, which do not contain the whole polarimetric in-

formation. Some features can only be calculated for fully-polarimetric SAR data. Furthermore, it is

notable that humans are able to recognize a lot of object categories by a simple visual representation

of PolSAR data, without the usage of complex-valued information.

Additionally to the independence on object category related knowledge this work aims to be

data independent as well, in the sense that the system is applicable to several types of data including

di�erent kinds of PolSAR images.

Since no category-speci�c knowledge is included during the design of the categorization frame-

work, it relies on reference data during the training phase. Therefore, besides the actual image

data there is a strong-supervision signal in form of additional images, where objects are categorized

manually (see Section 4 for more details).

2.4 Assumptions and Demands

The assumptions made by this work are very basic and almost trivial: Firstly, it has to be generally

possible to recognize objects from the available data. Secondly, the provided data are some kind of

images. Thirdly, there is reference data available during the training phase.

As mentioned in the previous subsections the proposed system does not assume any object

category or data related knowledge during the design of the classi�er. However, this knowledge is

often available during application. To heavily rely on this information would be a mistake as serious

as disregarding it completely. A sophisticated system should enable the usage of such knowledge if

available, but should also be able to perform well if not.

The following demands on a successful algorithm for object categorization from PolSAR im-

ages are summarizing the last paragraphs. Firstly, in order to keep the system general enough to be

applicable to a large scope of tasks:

� Fast, to be able to explore a large search space

� Capable of dealing with high intra-class and low inter-class variability

� Capable of dealing with a very high-dimensional input space

� No usage of prior knowledge about object categories during classi�er design

� No usage of prior knowledge about the data type during classi�er design

Secondly, in order to optimize the system for a speci�c task:

� Possible exploitation of prior knowledge during training and application

� Possibility to easily add new categories, features, and data types
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