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Zusammenfassung

In der vorliegenden Dissertationsschrift werden quasi-lineare Differential-Algebraische
Gleichungen (DAE), wie sie in der Schaltungssimulation auftreten, untersucht. Dabei
wird von einer Beschreibung der Schaltung als Netzliste, d.h. als Liste aller in der Schal-
tung enthaltener Bauteile sowie deren Verschaltung, ausgegangen. An Hand dieser Net-
zliste wird dann mit Hilfe der klassischen oder der ladungsorientierten Modifizierten
Knotenanalyse eine DAE gewonnen. Ein Schwerpunkt der Arbeit liegt auf der graphen-
theoretischen Struktur der Schaltung, die sich in den Eigenschaften der Schaltungs-
DAE widerspiegelt. So ist zum Beispiel bekannt, dass sich der Differentationsindex
einer solchen DAE unter bestimmten Voraussetzungen aus dem Netzwerkgraphen der
Schaltung bestimmen läßt. Weiterhin ist bekannt, dass sich im Zuge dieser graphen-
theoretischen Indexbestimmung ebenso die Gleichungen bestimmen lassen, aus deren
Ableitungen sich versteckte Zwangsbedingungen ergeben.

Im Rahmen dieser Arbeit wurden zwei Verfahren entwickelt, die diese strukturellen
Informationen nutzen, um den Differentationsindex zu reduzieren, falls die betrachtete
Schaltungs-DAE Differentationsindex 2 hat. Dazu werden die graphentheoretischen
Grundlagen erarbeitet und auf bestehende Ergebnisse angewandt. Es wird gezeigt, dass
auf Grund dieser graphentheoretischen Grundlagen beide Verfahren zur Indexreduk-
tion ohne rechenaufwendige Rangbestimmungen auskommen und somit auch für größere
Schaltungen geeignet sind. Zu dem läßt das zweite Indexreduktionsverfahren, das für
DAEs aus der ladungsorientierten Modifizierten Knotenanalyse entwickelt wurde, eine
physikalische Deutung als Modifikation der zu Grunde liegenden Schaltung zu. Daher
kann dieses Indexreduktionsverfahren nicht nur als rein numerisches Verfahren, das die
bestehende Schaltungs-DAE verändert, sonder auch als Verfahren, welches die der DAE
zu Grunde liegende Schaltung verändert, realisiert werden kann. Dieses Vorgehen hat
den Vorteil, dass bestehende Simulationssoftware nur wenig angepasst werden muss.

Da in der Industrie die ladungsorientierte Modifizierte Knotenanlyse gegenüber der
klassischen Variante bevorzugt wird, wurde der akademische Schaltungssimulator Psim

von Robert Melville so modifiziert, dass die ladungsorientiere Formulierung zur Mod-
ellierung der Schaltung verwendet wird. Danach wird der Differentationsindex der
erzeugten DAE mit Hilfe graphentheoretischer Methoden bestimmt und anschliessend
die in dieser Arbeit vorgestellte Indexreduktion für diese Art von DAEs durchgeführt.
Tests anhand von einigen Beispielen zeigen die Effizienz und Robustheit dieser Methode
im Vergleich zur Simulation der Schaltungen ohne Indexreduktion.
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Abstract

In this thesis, quasi-linear Differential-Algebraic Equations (DAE) as they arise in circuit
simulation are examined. The circuit is described with help of a netlist, e.g. a list which
contains the information about all devices in the circuit and the way these devices are
connected to each other. With the help of this netlist a DAE is created by using either
the classical or the charge oriented Modified Nodal Analysis. One focus of this thesis
is the graph theoretical structure of the circuit, which is reflected in the properties of
the circuit DAE. For example, it is known that it is possible under certain conditions
to determine the differentiation index of such a DAE based on the graph of the circuit.
Moreover, it is possible to determine the derivatives of equations which yield hidden
constraints.

In the course of this work, two methods have been developed that use this structural
information to reduce the differentiation index of a circuit DAE if the DAE has differen-
tiation index 2. To this end the graph theoretical foundations are laid out and applied to
the existing results. It is shown that because of the graph theoretical results both index
reduction methods work without time consuming rank decisions. Therefore these meth-
ods are applicable to large circuits. Moreover, the second method which was developed
for DAEs arising from the charge oriented Modified Nodal Analysis allows for a physical
interpretation. Hence this method not only can be realized as a numerical method that
alters the DAE in order to reduce the differentiation index, but also as a method that
alters the circuit itself. The second approach has the advantage that existing software
for circuit simulation only has to be adapted slightly to use the index reduction method.

Since the charge oriented Modified Nodal Analysis is preferred in industrial circuit
simulation, the academical circuit simulator Psim by Robert Melville has been adapted
to use this variant to produce the circuit DAE. Following this step the differentiation
index of the resulting DAE is determined by graph theoretical algorithms and the index
reduction method for DAEs from charge oriented Modified Nodal Analysis as proposed
in this thesis is applied. The method has been tested on various examples. A comparison
with the numerical results obtained without reducing the differentiation index shows the
robustness and efficiency of the method.
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1. Introduction

Many modern industries like automobile or telecommunication industry depend on the
development of new electronic chips. One important step in the design of a VLSI chip
is the simulation of its transient behavior. Since the corresponding circuits usually
contain several millions of elements, structured approaches are necessary to set up the
equations that describe the behaviour of the circuits. The classical and the charge-
oriented Modified Nodal Analysis are two such approaches which are widely used in
industrial circuit simulation. Both methods combine ordinary differential equations,
which model the dynamics of a circuit, with nonlinear algebraic equations, which arise
from the Kirchhoff’s Laws as well as from the characteristic equations of certain elements
in the circuit. Such mixed systems of differential and algebraic equations are referred to
as differential-algebraic equations or DAEs.

Although there are well-developed analytical and numerical theories for both ordinary
differential equations and nonlinear algebraic equations, the analytical and numerical
treatment of DAEs causes problems. For example, initial values for a given DAE may
not be chosen arbitrarily since they have to fulfill the algebraic equations. This is quite
different from the case of ordinary differential equations where the initial values can be
chosen arbitrarily. Moreover, even if initial values which fulfill the algebraic equations
are given for a DAE, a solution of the initial value problem does not need to exists or
if a solution exists, then it may not be unique. Again, this differs from the behavior
of ordinary differential equations where the choice of the initial values usually fixes a
unique solution.

Another problem consists in finding a numerical solution for a given uniquely solvable
DAE initial value problem. For ordinary differential equations there exists a plethora
of numerical methods which are adapted to the various kinds of ordinary differential
equations. Of these methods those that are suited for the treatment of stiff ordinary
differential equations often have been proven to be applicable for the numerical treatment
of DAEs. However, there are many cases in which these methods fail to compute a
numerical solution of a uniquely solvable DAE initial value problem.

In order to classify DAEs, various so-called index concepts have been defined. All
of these index concepts try to measure in one way or another, how far the behavior of
a DAE is from the behavior of a related ordinary differential equation. A well-known
index is the so-called differentiation index. In terms of the differentiation index, index
1 DAEs are close to ordinary differential equations. It is known how to find suitable
initial values for DAEs with differentiation index 1 and there are results concerning the
convergence of those discretization methods which are used for DAEs. For DAEs with
differentiation index higher than 1, such results may not exist.

With these difficulties in mind, attempts have been made to reduce the differentiation

17



1. Introduction

index of a DAE to 1 in order to be able to apply the existing theory of DAEs with
differentiation index 1 [15,30,46,48,50,55,64]. For general nonlinear DAEs, these index
reduction methods usually either lead to an overdetermined system or involve several
rank decisions which make those methods prohibitively expensive for large DAEs.

For DAEs that arise from circuit simulation, there are results that show that under
certain conditions the differentiation index of the DAEs is ≤ 2. Moreover, these re-
sults allow for a determination of the differentiation index and those equations, which
are needed to reduce the differentiation index, based on the graph of the circuit. Up
to now, this information has been used to determine consistent initial values for the
simulation of the transient behavior of a given circuit [26, 28, 29]. In this thesis, index
reduction methods are proposed that are tailored to DAEs arising from classical and
charge-oriented Modified Nodal Analysis. Since the DAEs arising in industrial circuit
simulation consist of several millions of equations and unknowns, index reduction meth-
ods that use methods like singular value decomposition or the QR algorithm to perform
rank decisions are too costly. The same holds for index reduction methods that attempt
to solve overdetermined systems. The index reduction methods proposed in this thesis
however are based on the information contained in the graph of the circuit. This allows
to determine the equations which are needed in order to reduce the index efficiently.
Moreover, the structural information also can be used to transform the original DAE in
such a way that a DAE with differentiation index 1 results which has the same properties
as the original DAE. In particular, the resulting DAE can be interpreted as a circuit
DAE again. It can be shown that the efficiency of standard discretization methods for
DAEs can be increased if the proposed index reduction method is applied to a given
circuit DAE with differentiation index 2.

This thesis is organized as follows. In Chapter 2 we will give a short introduction
into the theory of nonlinear DAEs. Section 2.1 contains the basic definitions which are
needed later on. Section 2.2 presents three index concepts which are important in the
field of DAEs from circuit simulation. Two numerical integration methods which are
suited for the treatment of DAEs are introduced in Section 2.3. Finally, an overview of
index reduction methods for general nonlinear DAEs is given. Of these index reduction
methods the index reduction by minimal extension [48] plays an important role in the
development of the index reduction methods for DAEs from circuit simulation presented
in this thesis. Section 2.5 gives an overview over existing software for the numerical
solution of DAEs.

Chapter 3 focuses on DAEs that arise from classical or charge-oriented Modified Nodal
Analysis. Since both variants of the Modified Nodal Analysis are strongly based on the
graph that represents a circuit, Section 3.1 introduces the graph theoretical background.
This background are not only needed to derive a DAE that describes a circuit in Section
3.2, but they also play an important role in the index reduction methods proposed in
this thesis. As another important ingredient of the index reduction methods, the results
from [28, 29] concerning the determination of the differentiation index of a circuit DAE
and the computation of derivatives needed for the index reduction are summarized in
Section 3.3.
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In Chapter 4, two methods to reduce the differentiation index of a circuit DAE with
differentiation index 2 are proposed. Section 4.1 examines the influence of controlled
sources on the proposed index reduction methods. The first index reduction method is
presented in Section 4.2. It is tailored to DAEs arising from the classical Modified Nodal
Analysis. The second index reduction method as presented in Section 4.3 is adapted
to the charge-oriented Modified Nodal Analysis. Section 4.4 examines the possibility
to modify a given circuit in such a way that the DAE that results from either the
classical Modified Nodal Analysis or the charge-oriented Modified Nodal Analysis has
differentiation index 1. This approach is based on joint work with Falk Ebert.

In the first part of Chapter 5, the academic circuit simulator qPsim is presented. This
circuit simulator is based on the charge-oriented Modified Nodal Analysis and includes
the index reduction for the resulting DAEs as proposed in Chapter 4. In the second part
of this chapter, several examples are considered and the impact of the index reduction
on the performance of the DAE solvers implemented in qPsim is studied.

Finally, the results are summarized and some open questions are pointed out.
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2. Differential-algebraic equations

Differential-algebraic equations or DAEs in short arise in many application areas such
as the simulation of multibody systems, chemical reactions or the transient behavior of
circuits. All these applications share the property that a mathematical model consists
of both differential equations, that describe the dynamics of the system under consid-
eration, as well as algebraic equations, which model constraints such as mass or energy
conservation.

Although there are comprehensive theories for the analytical and numerical treatment
of ordinary differential equations (ODE) as well as general nonlinear algebraic equations,
the situation is much more complex in the case of DAEs. Whereas linear DAEs with
constant coefficients are well understood, even the case of linear DAEs with time-variant
coefficients poses some difficulties. For general nonlinear DAEs without special structural
properties, many questions are still unanswered.

This chapter gives an introduction to the theory of general nonlinear DAEs. We start
by giving the basic definitions in Section 2.1. Section 2.2 will introduce various index
concepts which are used to classify DAEs and describe their analytical and numerical
properties. Section 2.3 presents two widely used families of discretization methods which
are suitable for the numerical integration of DAEs. Section 2.4 presents several methods
to reduce the index of DAEs in order to improve their numerical properties. Section 2.5
gives an overview over existing software for the numerical treatment of DAEs.

2.1. Basic definitions

We will start by presenting the basic terminology. The following definitions are taken
from [50].

Definition 2.1. (Differential-algebraic equation, DAE) A general nonlinear differential-
algebraic equation (DAE) is given by an equation

f(t,x, ẋ) = 0 (2.1a)

with f : I×Dx ×Dẋ → R
m. Here, I ⊆ R is a compact interval and the domains Dx and

Dẋ are open subsets of R
n.

If, in addition, the initial values

x(t0) = x0 ∈ R
n (2.1b)

are given, we call (2.1) an initial value problem.
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2. Differential-algebraic equations

If ∂
∂ẋ

f is nonsingular, then (2.1a) is an implicit ODE and the existing theory and
numerical methods for ODEs can be applied. This includes the well-known theorem of
Picard and Lindelöf [39] which guarantees the existence and uniqueness of the solution
of (2.1) on an interval I if f is Lipschitz continuous with respect to ẋ and x on I.

If on the other hand ∂
∂ẋ

f = 0, then we are faced with a nonlinear algebraic equation in
t and x. In this case, a solution of (2.1a) may not exist. Moreover, if a solution exists,
then it may not be unique regardless of the initial values (2.1b) (cf. [67]). In addition,
we are not free to choose the initial values arbitrarily, since they are already determined
by (2.1a).

Hence, if ∂
∂ẋ

f 6= 0 is singular, we may have to deal with some problems regarding the
choice of the initial values (2.1b) and the solvability of the initial value problem (2.1),
since the problem (2.1) is a mixed system of both differential and algebraic equations.

Example 2.2. Consider the DAE

0 = ẋ1 + x1 − x2,

0 = x1 + x2 + x3,

0 = x2 + cos(t),

(2.2)

which consists of one differential and two algebraic equations. Obviously, a solution of
(2.2) will only exist if the initial values satisfy both

x1,0 + x3,0 = cos(t0) and x2,0 = − cos(t0),

which leaves one degree of freedom in the choice of initial values. If we choose for example

x1,0 = 0, x2,0 = − cos(t0), x3,0 = cos(t0)

as initial values, then we obtain the unique solution

x1 =
1

2

[
cos(t) + sin(t)− e−t

]
,

x2 = − cos(t),

x3 =
1

2

[
cos(t)− sin(t) + e−t

]
.

Example 2.3. Consider the DAE

0 = ẋ1 + x1 − x2,

0 = x1 − cos(t).
(2.3)

Initial values have to fulfill the equation x1,0 = cos(t0). However, a closer look at the
DAE reveals that we cannot choose an arbitrary initial value for x2 since we have

x2,0 = ẋ1,0 + x1,0 = − sin(t0) + cos(t0).

Hence, despite the fact that (2.3) includes one differential equation, no initial values can
be chosen.
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2.1. Basic definitions

Example 2.3 shows that the properties of DAEs may differ greatly from the properties
of ODEs. These differences motivate the following definitions.

Definition 2.4. (Solution, solvability, consistency) Let Ck(D, Rm) be the vector space
of k-times continuously differentiable functions from a domain D ⊂ R

n into R
m.

1. A function x ∈ C1(I, Rn), I ⊆ R is called a solution of the DAE (2.1a), if it satisfies
(2.1a) pointwise.

2. A function x ∈ C1(I, Rn) is a solution of the initial value problem (2.1), if x is a
solution of (2.1a) and in addition satisfies (2.1b).

3. The initial values (2.1b) are called consistent initial values, if the initial value
problem (2.1) has at least one solution.

4. The initial value problem (2.1) is called solvable, if it has at least one solution.

In the following, we will only consider the case of m = n and assume that (2.1) has a
unique solution. We will call such DAEs regular.

Definition 2.5. (Quasi-linear DAE) A quasi-linear DAE has the form

E(t,x)ẋ + g(t,x) = 0, (2.4)

where E(t,x) ∈ C(I× Dx, Rn×n) and g(t,x) ∈ C(I× Dx, Rn).

Quasi-linear DAEs arise in many applications in engineering science. For example, [72]
treats DAEs that arise from mechanical multibody systems. As we will see in Chapter 3,
the DAEs that arise in circuit simulation also can be written as quasi-linear DAEs.
Sometimes it is possible to rewrite (2.4) as


E1(t,x1,x2) 0

0 0





ẋ1

ẋ2


 +


g1(t,x1,x2)

g2(t,x1,x2)


 = 0, (2.5)

where E1(t,x) ∈ C(I × Dx1 × Dx2 , R
m1×m1) is pointwise nonsingular, gi(t,x1,x2) ∈

C(I × Dx1 × Dx2 , R
mi) and xi ∈ R

mi , i = 1, 2 with m1 + m2 = n. DAEs of the form
(2.5) are called semi-implicit DAEs. Semi-implicit DAEs form an important subclass of
quasi-linear DAEs and are studied widely because of the additional structure present in
(2.5).

Another way to describe DAEs is the concept of DAEs with properly stated leading
term [60–62]. A nonlinear DAE (2.1a) has a properly stated leading term if it can be
written as

f(t,x, ẋ) = A(t,x)
d

dt
d(t,x) + b(t,x) = 0,

A ∈ C(I× Dx, Rn×m),

D :=
∂

∂x
d ∈ C1(I× Dx, Rm×n),

(2.6)
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2. Differential-algebraic equations

with kerA(t,x)⊕rangeD(t,x) = R
m and there exists a projector R ∈ C1(I, Rm×m) such

that

kerR(t) = kerA(t,x),

rangeR(t) = rangeD(t,x)

for all t ∈ I. This formulation has the advantage that a solution x of (2.6) needs less
smoothness than a solution of (2.1a). Due to the splitting of the leading term, the parts
of x that need to be differentiable are clearly visible. This in turn leads to a different
definition of the solution of a DAE with properly stated leading term.

Definition 2.6. (Solution of a DAE with properly stated leading term)(cf. [53]) A
function x is called a solution of (2.6), if

x ∈ C1
D(I, Rn) := {x ∈ C(I, Rn) : D(t,x)x ∈ C1(I, Rm)} (2.7)

and satisfies (2.6) pointwise.

2.2. Index concepts

As we have already seen in Example 2.3, the mix of differential and algebraic equations
in a DAE may lead to some problems concerning consistent initialization of a given DAE.
Moreover, if we take a closer look at (2.3), we see that we have used the derivative of
x1 = cos(t) to determine a consistent value for x2. This shows that some variables of a
DAE may require higher smoothness than other parts. In addition, the same derivative is
necessary to compute a solution of (2.3). Since these derivatives usually are not explicitly
part of the DAE, they are computed implicitly during the numerical integration of the
DAE as Example 2.7 shows.

Example 2.7. If we apply the backward Euler method to discretize (2.3), we obtain

0 =
x1,n+1 − x1,n

h
+ x1,n+1 − x2,n+1,

0 = x1,n+1 − cos(tn+1).

Solving this for xn+1, we have

x1,n+1 = cos(tn+1) and x2,n+1 =
cos(tn+1)− cos(tn)

h
+ cos(tn+1).

From this we see that the derivative of x1 that we need in order to compute the solution
for x2 is approximated by a finite difference that uses the same step size h as the backward
Euler method.

These differences in the analytical and numerical properties of DAEs and ODEs led to
the development of various index concepts. These concepts can be seen as methods to
measure the distance of a DAE to an ODE with a solution set that includes the solution
set of the DAE. In the following, several index concepts that are of importance in the
discussion of DAEs from circuit simulation will be introduced.
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2.2. Index concepts

2.2.1. Differentiation index

One of the first index concepts that has been developed for general nonlinear DAEs is
the differentiation index [20, 30, 31]. Its definition has been motivated by the attempt
to transform a given DAE with consistent initial value x0 into an ODE which has the
same analytical solution for the initial value x0 and to apply the existing theory and
numerical methods to this ODE. In order to perform this transformation the derivatives
of (2.1a) are necessary.

Definition 2.8. (Derivative array)(cf. [18, 20, 21, 30, 31]) Let f : I × Dx × Dẋ → Rn,
I ⊆ R, Dx, Dẋ ⊆ R

n be a function in Cs (I× Dx × Dẋ, Rn). Then, the derivative array of
order l ≤ s of f is given by

Fl

(
t,x, ẋ, . . . ,x(l+1)

)
:=




f(t,x, ẋ)

d
dt f(t,x, ẋ)

...

dl

dtl
f(t,x, ẋ)




. (2.8)

Definition 2.9. (Differentiation index) [15] Let (2.1a) be a regular DAE and assume
that f is sufficiently smooth. The differentiation index νd is the smallest integer l such
that

Fl

(
t,x, ẋ, . . . ,x(l+1)

)
= 0 (2.9)

uniquely determines ẋ as a function of x and t. The resulting ODE is called underlying
ODE of (2.1a).

Definition 2.9 basically means that we try to transform the DAE (2.1a) into an ODE

ẋ = f̄1(t,x) (2.10a)

which has a solution set that includes the analytical solution of (2.1a). During this
transformation we may encounter algebraic constraints

0 = f̄2(t,x) (2.10b)

which have not been explicitly present in the original DAE. These constraints that
are only revealed by differentiations and algebraic transformations, are called hidden
constraints. DAEs with differentiation index νd ≥ 2 are often referred to as higher index
DAEs.

2.2.2. Tractability index

The tractability index originally has been developed for linear DAEs with time-variant
coefficients [32] and was later generalized to nonlinear DAEs [58]. However, recently the
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2. Differential-algebraic equations

definition has been adapted to DAEs with properly stated leading terms (2.6) [59,61–63].
Here, we will present this newer version of the tractability index as proposed in [63].

Let Dy × D̄x ⊆ R
m × R

n be an open subset with D̄x ⊆ Dx and Dy ⊆ R
m such that

Dy ∩ rangeD(t,x) 6= ∅ for t ∈ I and let D−(t,x) ∈ R
n×m be a generalized inverse of

D(t,x) that satisfies

D−(t,x)D(t,x)D−(t,x) = D−(t,x),

D(t,x)D−(t,x)D(t,x) = D(t,x),

D(t,x)D−(t,x) = R(t)

for all t ∈ I. Furthermore, we define the matrices

G0(t,x) := A(t,x)D(t,x),

B0(t,y,x) :=
∂

∂x
b(t,x) +

∂

∂x
[A(t,x)y] .

(2.11a)

These matrices are the starting point for a matrix chain that is used to characterize the
tractability index of a DAE (2.6). To be able to define the matrices in the next step of
this chain, we introduce two projector functions

P0(t) := D−(t,x)D(t,x) and Q0(t) = I−P0(t).

From the definitions of D−(t,x) and G0(t,x) we see that Q0(t) is a projector onto
kerG0(t,x). With these projector functions we are able to define

G1(t,y,x) = G0(t,x) + B0(t,y,x)Q0(t). (2.11b)

Now, we choose Q1(t,y,x) to be a projector onto kerG1(t,y,x) and set P1(t,y,x) =
I−Q1(t,y,x), y ∈ R

m, x ∈ D̄x, t ∈ I. Note that these projectors both depend on y and
x. However, we will assume that the product

D(t,x)P0(t)P1(t,y,x)D−(t,x) = D(t,x)P1(t,y,x)D−(t,x)

is independent of y. We will drop this argument in the following and write (DP1D
−) (t,x).

With this we are able to introduce

B1(t, ẋ,y,x) := B0(t,y,x)P0(t)−G1(t,y,x)D−(t,x)
d

dt

[(
DP1D

−)
(t,x)

]
D(t,x)

(2.11c)

and

G2(t, ẋ,y,x) := G1(t,y,x) + B1(t, ẋ,y,x)Q1(t,y,x). (2.11d)

For the subsequent matrix pairs Bi(t, ẋ,y,x) and Gi+1(t, ẋ,y,x) we choose Qi(t, ẋ,y,x)
as a projector onto kerGi(t, ẋ,y,x) and set Pi(t, ẋ,y,x) = I−Qi(t, ẋ,y,x). With this
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2.2. Index concepts

and in analogy to (2.11c) and (2.11d) we define for i > 1

Bi(t, ẋ,y,x) := Bi−1(t,y,x)Pi−1(t, ẋ,y,x)

−Gi(t, ẋ,y,x)D−(t,x)
d

dt




D




i∏

j=1

Pj


D−


 (t,x)





D

i−1∏

j=1

Pj


 (t,x)

(2.11e)

and

Gi+1(t, ẋ,y,x) := Gi(t, ẋ,y,x) + Bi(t, ẋ,y,x)Qi(t, ẋ,y,x), (2.11f)

pointwise for ẋ ∈ R
n, y ∈ R

m, x ∈ D̄x, t ∈ I.

Definition 2.10. (Tractability index) The DAE (2.6) has tractability index νt if there
is a sequence of matrices defined by (2.11a)–(2.11f) such that for i ≥ 0, t ∈ I, x ∈ D̄x,
y ∈ Dy, ẋ = D−(t,x)(y−D′(t)x) + z, z ∈ kerG0(t,x) it holds that

1. rankGi(t, ẋ,y,x) = ri,

2. Qi(t, ẋ,y,x)Qj(t, ẋ,y,x) = 0 for j = 0, . . . , i− 1,

3. Qi is continuous and D
(∏i

j=1 Pj

)
D−, i ≥ 1 is continously differentiable and does

not depend on ẋ and y,

4. r0 ≤ r1 ≤ · · · ≤ rνt−1 < m and rνt = m.

Remark 2.11. In contrast to the definition of the differentiation index, the tractability
index does not require higher derivatives of the respective DAE. However, the projectors
Pi may depend implicitly on derivatives of P0 and may be hard to actually compute.
For DAEs with tractability index greater than 2, these derivatives may be difficult to
determine in practice.

A numerical algorithm to determine the tractability index of linear DAEs is described
in [56]. The same algorithm can be applied to linearized nonlinear DAEs to compute the
tractability index.

2.2.3. Strangeness index

The strangeness index is a generalization of the differentiation index that also allows the
treatment of over- and underdetermined DAEs [47,49]. Moreover, existence and unique-
ness results for the solution of (2.1) require less smoothness of (2.1) in the strangeness
index framework than in the differentiation index framework [43, 44, 46]. At the same
time the strangeness index approach can be used to derive numerical methods to treat
higher index DAEs [45, 52, 55].
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2. Differential-algebraic equations

To define the strangeness index we consider again the derivative array (2.8). In addi-
tion to this we define the Jacobians

Ml = Ml(t,x, ẋ, . . . ,x(l+1)) = Fl;ẋ,...,x(l+1)(t,x, ẋ, . . . ,x(l+1)) (2.12a)

and

Nl = Nl(t,x, ẋ, . . . ,x(l+1)) = −
[
Fl;x(t,x, ẋ, . . . ,x(l+1)) 0 · · ·0

]
(2.12b)

of size ln× ln.
The strangeness index concept relies on some constant rank assumptions that are

summed up in Hypothesis 2.12. The solution set

Ll := {(t,x, . . . ,x(l+1)) ∈ R
(l+2)n+1 : Fl(t,x, . . . ,x(l+1)) = 0}

which will be used in the hypothesis is associated with the derivative array Fl of f of
order l.

Hypothesis 2.12. (cf. [46, 50]) Consider a regular DAE (2.1a). There exist integers

ν, a, and d such that Lν is nonempty and that for every (t0,x0, . . . ,x
(ν+1)
0 ) ∈ Lν there

exists a neighborhood in which the following conditions are satisfied.

1. The Jacobian Mν has constant rank (ν + 1)n − a on Lν such that there exists a
smooth matrix function Z2 : R

(ν+2)n+1 7−→ R
(ν+1)n×a which has pointwise maximal

rank and which satisfies ZT
2 Mν = 0 on Lν .

2. The matrix function Â2(t,x, . . . ,x(ν+1)) = ZT
2 Nν [In 0 . . .0]T has constant rank a

on Lν such that there exists a smooth matrix function T2 : R
(ν+2)n+1 7−→ R

n×d,
d = n− a which has pointwise maximal rank and which satisfies Â2T2 = 0.

3. The matrix function fẋ(t,x, ẋ)T2(t,x, . . . ,x(ν+1)) has constant rank d on Lν such
that there exists a smooth matrix function Z1 : R

(ν+2)n+1 7−→ R
n×d which has

pointwise maximal rank and which satisfies rank Ê1T2 = d, where Ê1 = ZT
1 fẋ.

Remark 2.13. It is possible to generalize Hypothesis 2.12 to more general DAEs (cf.
[47,50]).

Definition 2.14. (Strangeness index, strangeness-free) Consider a regular nonlinear
DAE (2.1a). The smallest integer νs for which (2.1a) satisfies Hypothesis 2.12 is called
the strangeness index of (2.1a). If νs = 0, then (2.1a) is called strangeness-free.

2.3. Numerical integration methods for DAEs

In this section, we consider the numerical integration of semi-explicit DAEs (2.13)

0 = ẋ + g1(t,x,y), (2.13a)

0 = g2(t,x,y), (2.13b)
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2.3. Numerical integration methods for DAEs

with consistent initial values (x(t0),y(t0)) = (x0,y0) over the integration interval I =
[t0, tN ] ⊂ R. For the most part we will restrict the discussion to DAEs with differentiation
index 1.

Considering the numerical integration of initial value problems in the case of ODEs

ẋ = f(t,x),

x(t0) = x0,
(2.14)

existing methods include one-step methods and multi-step methods which we will discuss
in this section in more detail.

We consider an equidistant discretization of the integration interval I with stepsize
h = tN−t0

N and write ti = t0 + i ·h. The exact solution x(ti) at ti is denoted by xi and the
numerical approximation to xi by ξi. A one-step method tries to advance the numerical
solution from ξi to ξi+1 by only using the previous step ξi. Generally, these kinds of
methods can be written as

ξi+1 = ξi + hφ(ti, ξi; h; f), i = 0, . . . , N − 1 (2.15)

with an increment function φ = φ(t,x; h; f) = φ(t,x; h) [73]. An important class of
one-step methods is given by Runge-Kutta methods. The properties of these methods
and their application to DAE initial value problems will be discussed in Subsection 2.3.1.

Multi-step methods on the other hand not only use the approximated solution ξi of the
last step to compute ξi+1, but include past values ξi, ξi−1, . . . , ξi−r+1. In Subsection 2.3.2
we will discuss BDF methods which are linear multi-step methods of the form

r∑

j=0

αr−jξi+1−j = h
r∑

j=0

βr−jf(ti+1−j, ξi+1−j), (2.16)

with coefficients αj , βj and αr 6= 0.

Before we start the discussion, we give some basic definitions. To do so, we note
that for a fixed stepsize h both one-step and multi-step methods generate sequences of
approximations to the solution of (2.14) that satisfy an iteration

Xi+1 = Ψ(ti,Xi; h) (2.17)

with Xi ∈ R
N (cf. [50]). The actual solution at ti is given by X(ti) ∈ R

N . For general
one-step methods, we are able to set Xi = ξi and Ψ(ti,Xi; h) = ξi + hφ(ti, ξi; h) to
write equation (2.15) in the form (2.17). If we consider linear multistep methods (2.16),
then we set

Xi =




ξi

ξi−1

...

ξi−r+1




and X(ti) =




xi

xi−1

...

xi−r+1




.

29



2. Differential-algebraic equations

Moreover, we are able to solve (2.16) for ξi+1 by the Implicit Function Theorem. With
this we obtain

ξi+1 = S(ti+1, ξi, ξi−1, . . . , ξi−r+1; h),

which allows us to define

Ψ(ti,Xi; h) :=




S(ti+1, ξi, ξi−1, . . . , ξi−r+1; h)

ξi

ξi−1

...

ξi−r+2




and to rewrite equation (2.16) in terms of (2.17).
Therefore it is possible to consider general discretization methods of the form (2.17)

in the following. The local discretization error of a general discretization method

τ(x, ti+1; h) := ‖X(ti+1)−Ψ(ti,X(ti); h)‖ (2.18)

is a measure for how well the exact solution x(t) of (2.14) satisfies (2.17).

Definition 2.15. (Consistency of order p) [50] A general discretization method (2.17)
is consistent of order p if there exists a constant C such that

τ(x, ti+1; h) ≤ Chp+1.

The constant C does not depend on the stepsize h.

The global discretization error at ti of (2.17) is given by

ǫ(x, ti; h) := ‖Xi −X(ti)‖. (2.19)

Definition 2.16. (Convergence of order p) [50] A general discretization method (2.17)
is convergent of order p if there exists a constant C such that

ǫ(x, tN ; h) ≤ Chp,

provided that the initial error ǫ(x, t0; h) satisfies

ǫ(x, t0; h) ≤ C̃hp

with a constant C̃ independent of h.

Definition 2.17. (Stability) [50] A general discretization method is stable if there exists
a constant K such that for some vector norm ‖ · ‖

‖Ψ(ti,X(ti); h)−Ψ(ti,Xi; h)‖ ≤ (1 + hK)‖X(ti)−Xi‖

with K being independent of the stepsize h.
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2.3. Numerical integration methods for DAEs

Stability will be discussed in greater detail for Runge-Kutta methods later in this
section.

Theorem 2.18. Consider a general discretization method (2.17). If the method is stable
and consistent of order p, then the method is convergent of order p when applied to an
ODE (2.14).

Proof. A proof of this theorem can be found in [50].

2.3.1. Runge-Kutta methods

Discretization of DAEs by Runge-Kutta methods

The discretization of an ODE (2.14) with an s-stage Runge-Kutta method takes the
form

ξn+1 = ξn + h
s∑

i=1

βjΞ
′
ni, n = 0, . . . , N − 1, (2.20a)

where the internal stages Ξni are given by

Ξni = ξn + h
s∑

j=1

αijΞ
′
nj , i = 1, . . . , s, (2.20b)

with stage derivatives Ξ′
ni defined as

Ξ′
ni = f(tn + γih,Ξni), i = 1, . . . , s. (2.20c)

If we define β := [β1, . . . , βs]
T , γ := [γ1, . . . , γs]

T and A = (αi,j)i,j=1,...,s, then the
method can be written in a compact way as a Butcher tableau (2.21).

γ A

βT
(2.21)

It is possible to construct various Runge-Kutta methods by choosing A, β and γ. As
a first restriction to the choice of coefficients we compare the solution of ODE (2.14)
with the solution of an equivalent autonomous problem

˙̃x = f̃(x̃), (2.22a)

x̃(t0) = x̃0. (2.22b)
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2. Differential-algebraic equations

To obtain (2.22) from the ODE (2.14), we need to add the trivial equation ṫ = 1 and
the initial value t(t0) = t0 to (2.14). This yields

˙̃x =:


ẋ

ṫ


 =


f(t,x)

1


 := f̃(x̃), (2.23a)

x̃(t0) =:


x(t0)

t(t0)


 =


x0

t0


 := x̃0, (2.23b)

which has the same analytical solution for x as (2.14). A Runge-Kutta method for (2.23)
takes the form


xn+1

tn+1


 =


xn

tn


 + h

s∑

i=1

βj


Ξ′

ni

T ′
ni


 , n = 0, . . . , N − 1, (2.24a)


Ξni

Tni


 =


ξn

tn


 + h

s∑

j=1

αij


Ξ′

nj

T ′
nj


 , i = 1, . . . , s, (2.24b)


Ξ′

ni

T ′
nj


 =


f(Tni,Ξni)

1


 , i = 1, . . . , s. (2.24c)

Using (2.24c) and (2.24b), it is possible to compute the stage variables

Tni = tn + h
s∑

j=1

αij .

Inserting this into the first component of (2.24c) yields

Ξ′
ni = f(tn + h

s∑

j=1

αij ,Ξni),

and we see that we will only obtain the same numerical solution for x in (2.14) and
(2.23), if

γi =
s∑

j=1

αij , i = 1, . . . , s (2.25)

holds. Hence, we will assume that the Runge-Kutta methods that we consider in the
scope of this section satisfy (2.25). The remaining freedom in the choice of coefficients is
used to produce methods with specific consistency, convergence and stability properties.
This will be discussed later.

If an implicit equation of the form f(t,x, ẋ) = 0 is considered, then the stage deriva-
tives cannot be computed by (2.20c). Instead, (2.20b) and (2.20c) are replaced by the
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2.3. Numerical integration methods for DAEs

nonlinear system

0 = f(tn + γih, ξn + h

s∑

j=1

αijΞ
′
nj ,Ξ

′
ni), i = 1, . . . , s. (2.26)

Obviously, the stage derivatives can be computed in the same way in the case that
∂
∂ẋ

f is singular, such that (2.20a) together with (2.26) yields a way to apply Runge-
Kutta methods to DAEs. However, in the DAE case the solvability of (2.26) has to be
ensured. It has been shown in [35,38,50] that for regular, strangeness-free DAEs where
f is sufficiently smooth, the nonlinear system (2.26) is uniquely solvable for sufficiently
small stepsizes h, if A is nonsingular, i.e. the applied method is implicit.

Stability of Runge-Kutta methods

In the discussion of numerical integration methods for DAEs, stability is an important
issue. Roughly speaking stability of a system means that small errors in the input
data to the system will result in small errors in the output data. When discussing the
stability behavior of one-step methods such as Runge-Kutta methods, Dahlquist’s test
equation [22]

ẋ = λx, x(t0) = x0, λ ∈ C, Re(λ) < 0. (2.27)

plays an important role.

Remark 2.19. • In [73] the test equation is given as a system of ordinary differen-
tial equations

ẋ = Ax, x(t0) = x0,

where all eigenvalues λj , j = 1, . . . , n of A ∈ C
n×n have negative real parts.

However, this is just a generalization of (2.27) to an ODE system.

• In [51] the test equation


1 −ωt

0 0





ẋ1

ẋ2


 =


 λ ω(1− λt)

−1 1 + ωt





x1

x2


 (2.28)

for DAEs is defined. Again, we have λ ∈ C, Re(λ) < 0. The nullspace of lead-
ing term of (2.28) is rotating with frequency ω. Hence, (2.28) allows to study
instabilities of Runge-Kutta methods that are caused by such rotating nullspaces.

Definition 2.20. (Stability function of a discretization method) The stability function
R(z) of a discretization method (2.17) is given by

xi+1 = R(z)xi (2.29)

where (2.29) is obtained by applying the method (2.17) to Dahlquist’s test equation
(2.27) with z = hλ.
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Proposition 2.21. The stability function of an implicit s-stage Runge-Kutta method is
given by

R(z) = 1− zβT (Is − zA)−11

with 1 = [1 . . . 1]T ∈ R
s.

Proof. See [36].

Definition 2.22. (A-stability) An implicit Runge-Kutta method whose stability func-
tion R(z) satisfies

|R(z)| ≤ 1 for all z ∈ C with Re(z) ≤ 0

is called A-stable.

Definition 2.23. (L-stability) An implicit Runge-Kutta method that is A-stable and
whose stability function in addition satisfies

lim
Re(z)→−∞

R(z) = 0.

is called L-stable.

Proposition 2.24. If an implicit Runge-Kutta method with nonsingular A satisfies one
of the conditions

αsj = βj , j = 1, . . . , s, (2.30a)

αi1 = β1, i = 1, . . . , s, (2.30b)

then R(∞) = 0. This makes A-stable methods L-stable.

Proof. See [36].

Methods for with (2.30a) holds are called stiffly accurate. Condition (2.30a) means
that

Ξns = ξn + h
s∑

j=1

αsjΞ
′
nj

= ξn + h
s∑

j=1

βjΞ
′
nj

= ξn+1,

i.e. the last stage Ξns coincides with the numerical approximation of the solution ξn+1.
If we consider semi-explicit DAEs (2.13)

0 = ẋ + g1(t,x,y),

0 = g2(t,x,y),
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2.3. Numerical integration methods for DAEs

and apply an implicit Runge-Kutta method, then the internal stages Ξni, Θni, i =
1, . . . , s are computed by

Ξni = ξn + h
s∑

j=1

αijg1(tnj,Ξnj,Θnj),

0 = g2(t,Ξnj ,Θnj).

Hence, the internal stages are consistent. However, a linear combination of the stages as
in (2.20a) is not necessarily consistent. Since for stiffly accurate Runge-Kutta methods
the numerical approximation is not a linear combination but equal to the last stage Ξns,
this ensures the consistency of the numerical solution if stiffly accurate Runge-Kutta
methods are used for the discretization. [38, 50].

Convergence of Runge-Kutta methods

Up to now the only restriction for the coefficients of an implicit Runge-Kutta method
is given by (2.25). Now, we use the remaining freedom to obtain methods of a certain
order of convergence. The following order conditions and Theorem 2.25 are due to
Butcher [16].

B(q) :

s∑

j=1

βjγ
p−1
j =

1

p
, p = 1, . . . , q (2.31a)

C(η) :
s∑

j=1

αijγ
q−1
j =

γq
i

q
, i = 1, . . . , s, q = 1, . . . , η (2.31b)

D(ϑ) :
s∑

i=1

βiγ
q−1
i αij =

βj

q

(
1− γq

j

)
, j = 1, . . . , s, q = 1, . . . , ϑ (2.31c)

The order conditions (2.31a) and (2.31b) can be interpreted in the following way [35]:

• B(q) means that polynomials up to degree q−1 are integrated exactly on the inter-
val [0, 1] by the quadrature formula with weights β1, . . . , βs and nodes γ1, . . . , γs.

• C(η) means that for each i = 1, . . . , s polynomials up to degree at least η − 1 are
integrated exactly on the interval [0, γi] by the quadrature formula with weights
αi1, . . . , αis.

Theorem 2.25. If the coefficients of an implicit Runge-Kutta method satisfy (2.31) with
p ≤ 2η + 2 and p ≤ ϑ + η + 1, then the method is consistent of order p when applied to
ODEs. Hence the method also is convergent of order p.

Proof. See [16, 17] and also [36].
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1
2

1
2

1

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Table 2.1.: Butcher tableaus for Gauss methods of order 2, 4 and 6

Table 2.1 shows the Butcher tableaus of the 1-, 2- and 3-stage Gauss methods. These
methods satisfy B(2s), C(s) and D(s) and are of order 2s.

The methods shown in Table 2.2 belong to the group of Radau IA methods which
satisfy B(2s− 1), C(s− 1), D(s) and γ1 = 0. Moreover, we have (2.30b) and hence the
methods are L-stable.

If we require B(2s− 1), C(s), D(s− 1) and γs = 1 to be satisfied, we obtain methods
of the Radau IIA type. By Theorem 2.25, these methods are of order 2s−1. In addition,
the methods are A-stable and stiffly accurate since the coefficients also satisfy (2.30a).
Table 2.3 shows the Butcher tableaus of the 1-, 2- and 3-stage Radau IIA methods.

0 1

1

0 1
4 −1

4

2
3

1
4

5
12

1
4

3
4

0 1
9

−1−
√

6
18

−1+
√

6
18

6−
√

6
10

1
9

88+7
√

6
360

88−43
√

6
360

6+
√

6
10

1
9

88+43
√

6
360

88−7
√

6
360

1
9

16+
√

6
36

16−
√

6
36

Table 2.2.: Butcher tableaus for Radau IA methods of order 1, 3 and 5

1 1

1

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Table 2.3.: Butcher tableaus for Radau IIA methods of order 1, 3 and 5

The order of convergence for ODEs is also called classical order of the method. If
we apply Runge-Kutta methods to DAEs, then the convergence behavior may change
drastically. Here, we only consider DAEs of the from (2.13) with differentiation index
νd = 1. For these DAEs the order of convergence of implicit Runge-Kutta methods is
given by the following theorem.
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2.3. Numerical integration methods for DAEs

Theorem 2.26. Consider a DAE (2.13) with differentiation index νd = 1 and consistent
initial values (x0,y0). Assume that ∂

∂y
g2(x,y) has a bounded inverse in the neighborhood

of the solution (x∗,y∗). Consider, furthermore, an implicit Runge-Kutta method with
classical order p that satisfies C(q) with p ≥ q + 1.

• The order of convergence for the x-component is p.

• If the method is stiffly accurate, then the order of convergence for the y-component
is also p.

• If −1 ≤ R(∞) < 1, then the order of convergence for the y-component is q + 1.

• If R(∞) = +1, then the convergence order for the y-component is q.

• If |R(∞)| > 1, then the numerical solution diverges.

Proof. See [35, 36, 50].

Theorem 2.26 shows that stiffly accurate Runge-Kutta methods not only compute an
approximation to the analytical solution that is consistent. These methods also show
the same convergence behavior for DAEs of the form (2.13) with differentiation index 1
as for ODEs. Hence, stiffly accurate Runge-Kutta methods like the Radau IIA methods
are of special interest for the numerical solution of DAEs.

2.3.2. BDF methods

General linear multistep methods

As mentioned in the introduction to this section, general linear multistep methods ap-
plied to ODEs take the form

r∑

j=0

αr−jξi+1−j = h
r∑

j=0

βr−jf(ti+1−j, ξi+1−j), (2.32)

with coefficients αj , βj ∈ R, j = 0, . . . , r and αr 6= 0. If additionally α2
0 + β2

0 6= 0
holds, i.e. the method uses r steps to compute an approximation of the solution for
the next step, then (2.32) is called a linear r-step method. Since we are able to scale
the coefficients by multiplying (2.32) with an arbitrary scalar 6= 0, we may assume that
either αr = 1 or βr = 1. The method (2.32) is called a corrector method or an implicit
method if βr 6= 0. The method is an explicit or a predictor method if βr = 0.

To examine the consistency, convergence and stability of linear multistep methods, we
define the characteristic polynomial of a linear multistep method as follows.

Definition 2.27. (Characteristic polynomial of a linear multi-step method) The char-
acteristic polynomial of a linear r-step method with coefficients α0, . . . , αr is given by

ρ(λ) = αrλ
r + αr−1λ

r−1 + · · ·+ α0. (2.33)
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Theorem 2.28. A linear r-step method is consistent of order p if the coefficients
αj , βj, j = 0, . . . , r satisfy

r∑

j=0

αjj
q = q

r∑

j=0

βjj
q−1, q = 0, . . . , p. (2.34)

Proof. See [36] or [50].

Theorem 2.29. The multistep method (2.32) is stable, if the roots of its characteristic
polynomial (2.33) satisfy the following root or stability condition:

• The roots of (2.33) lie inside the unit disk.

• The roots of (2.33) with modulus 1 are simple roots.

Proof. A proof of this theorem can be found in [50] or [73]. The proof in [73] uses the
theory of difference equations, whereas the proof in [50] uses a more direct approach.

With these two results, Theorem 2.18 now yields the convergence of order p of linear
multistep methods with coefficients that satisfy (2.34) and the stability condition.

BDF methods

Backward difference formulae methods or BDF methods are linear r-step methods that
are defined by the coefficients β0 = · · · = βr−1 = 0 and βr = 1. The remaining coefficients
αj , j = 0, . . . , r are chosen such that the method achieves a high order of consistency.
With Theorem 2.28 and the convention that 00 = 1, we get a system of linear equations




00 10 20 . . . r0

01 11 21 . . . r1

02 12 22 . . . r2

...
...

. . .
...

0p 1p 2p . . . rp




︸ ︷︷ ︸
=:V




α0

α1

α2

...

αr




=




0

1

2r
...

prp−1




. (2.35)

For r = p the matrix V is just the (r + 1) × (r + 1) Vandermonde matrix which is
nonsingular. Hence, the linear system (2.35) is uniquely solvable for p = r and we will
always be able to find coefficients αj , j = 0, . . . , p such that the resulting BDF method
is consistent of order p. Table 2.4 shows the coefficients for the BDF methods up to
order 6.

In order to apply Theorem 2.18 we also need the stability of the BDF methods.
Unfortunately, the next theorem shows that we will not be able to obtain BDF methods
with arbitrary high order of convergence.
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p α0 α1 α2 α3 α4 α5 α6

1 −1 1

2 1
2 −2 3

2

3 −1
3

3
2 −3 11

6

4 1
4 −4

3 3 −4 25
12

5 −1
5

5
4 −10

3 5 −5 137
60

6 1
6 −6

5
15
4 −20

3
15
2 −6 147

60

Table 2.4.: Coefficients of BDF methods for 1 ≤ p ≤ 6

Theorem 2.30. An r-step BDF method is stable for 1 ≤ r ≤ 6 and unstable for r ≥ 7.

Proof. A proof can be for example found in [36] or [37].

An easy and natural way to apply this method to a semi-explicit DAE is given in [15]
by

r∑

j=0

αr−jξi+1−j = hf1(ti+1, ξi+1, ηi+1)

0 = f2(ti+1, ξi+1, ηi+1).

(2.36)

Essentially this means that we require that the algebraic constraints are satisfied at
each time step, i.e. the numerical solution is consistent for semi-explicit DAEs with
differentiation index 1.

We have seen in Theorem 2.26, that the order of convergence may be reduced if we use
an implicit Runge-Kutta method to discretize a semi-explicit DAE with differentiation
index 1. As the next theorem shows this is not true for stable BDF methods.

Theorem 2.31. Consider a BDF method of order p applied to a semi-explicit DAE
(2.43) with differentiation index 1 as in (2.36). If the roots of the characteristic poly-
nomial (2.33) of the BDF method satisfy the stability condition, then the method is
convergent of order p.

Proof. The theorem follows from Theorem 5.26 in [50] and the fact that for BDF methods
β0 = . . . = βp−1 = 0 and βp = 1.

2.4. General index reduction methods

DAEs with higher index are known to cause problems during the numerical integration
with BDF methods or implicit Runge-Kutta methods, even though these methods work
well for DAEs with differentiation index 1 and consistent initial values.
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With this in mind, Section 2.4.1 will give a general overview of methods that reduce
the index of a given DAE to 1. Section 2.4.2 then will discuss the index reduction by
minimal extension which will be adapted to the special structural properties of DAEs
from circuit simulation in Chapter 4.

2.4.1. Overview

Consider a quasi-linear DAE of the form


E1(t,x1,x2) 0

0 0





ẋ1

ẋ2


 +


g1(t,x1,x2)

g2(t,x1,x2)


 = 0, (2.37)

with E1(t,x1,x2) pointwise nonsingular. The easiest way to reduce the index of (2.37)
by 1 would be to replace the constraints

g2(t,x1,x2) = 0 (2.38)

by their derivatives, obtaining the system


 E1(t,x1,x2) 0

∂
∂x1

g2(t,x1,x2)
∂

∂x2
g2(t,x1,x2)





ẋ1

ẋ2


 +


 g1(t,x1,x2)

∂
∂tg2(t,x1,x2)


 = 0. (2.39)

However, this replacement would lead to the loss of information due to the differentiation.
Hence, the numerical solution of (2.39) may not fulfill the original constraints (2.38).
As these constraints often represent physical laws like conservation of mass or energy
or Kirchhoff’s Laws in case of DAEs from circuit simulation, the numerical solution of
(2.39) may be physically meaningless.

Because of this, various suggestions have been made to conserve the original con-
straints while taking the derivatives into account. For example in [30], an approach is
considered that transforms general nonlinear DAEs (2.1a) with differentiation index νd

to ODEs (2.10) with help of the derivative array (2.8) of order νd. Under the assumption
that the Jacobian of the hidden constraints (2.10b) ∂

∂x
f̄2(t,x) has full row rank nµ the

hidden constraints are coupled to (2.10) by an additional Lagrangian multiplier µ of size
nµ. This leads to the system

ẋ = f̄1(t,x) +
∂

∂x
f̄2(t,x)T µ

0 = f̄2(t,x).
(2.40)

Theorem 2.32. Consider a general nonlinear DAE (2.1a) with differentiation index
≥ 2 and the corresponding system (2.40). Then, (2.40) has differentiation index 2 and
for every solution (x∗, µ∗) of (2.40) it holds that µ∗ = 0 and x∗ is a solution of (2.1a).
Moreover, every solution x∗ of (2.1a) together with µ∗ = 0 is a solution of (2.40).

Proof. Cf. Theorem 2.5.1 and Theorem 2.5.2 in [15].
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Although the differentiation index of (2.40) still is equal to 2, the special structure of
the system allows for a better numerical treatment of this system in comparison with
the original system (2.1a).

Other approaches omit the introduction of the Lagrangian multiplier µ and rather try
to find a solution to the overdetermined system

0 = f(t,x, ẋ),

0 = f̄2(t,x),
(2.41)

cf. [13, 19]. All of these approaches are more or less based on the definition of the
differentiation index.

If we consider a DAE (2.1a) that satisfies Hypothesis 2.12, then we are able to use the
transformations Z1 and Z2 defined in the hypothesis to derive the equivalent strangeness-
free formulation

0 = ZT
1 f(t,x, ẋ),

0 = ZT
2 Fνs(t,x, ẋ, . . . ,x(νs+1)).

(2.42)

Note that due to the definition of Z1 and Z2 in Hypothesis 2.12, (2.42) only depends on
t, x and ẋ, but not on the higher derivatives of x [50].

2.4.2. Index reduction by minimal extension

The index reduction methods presented in the previous section are suitable for a wide
range of nonlinear DAEs. However, they suffer from several drawbacks. As a start, the
determination of the hidden constraints requires the computation of the derivative array
which becomes computationally expensive especially for DAEs with high index. After
the computation of the derivative array, the information about the hidden constraints
has to be extracted. In case of the strangeness-free formulation (2.42) this is done
by several rank-revealing singular value decompositions. If that information is finally
available, then one of the index reduced systems (2.40), (2.41) or (2.42) has to be solved.
In both cases (2.40) and (2.41), the index reduced system is larger than the original one
which may add considerably to the computational costs if the original DAE is large and
contains many hidden constraints.

In view of these issues, attempts to lower the computational cost were made. In [68]
it is suggested to use only those derivatives that are actually needed to determine the
hidden constraints instead of the full derivative array. Also, the Pantelides algorithm
proposed in [68] to compute these derivatives is based on a combinatorial method rather
than on algebraic methods to further lower the computational costs. Based on this ap-
proach, an index reduction method was proposed in [64]. Instead of explicitly computing
the hidden constraints, the set of necessary derivatives which have been determined by
the algorithm from [68] are added to the original problem. To avoid having to deal with
the overdetermined system that arises, certain derivatives of the unknowns are replaced
by new algebraic variables. The variables that have to be replaced are again determined
by the Pantelides algorithm.
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Unfortunately, there is no relation between the so-called structural index determined
by the algorithm proposed in [68] and the differentiation index [40]. Moreover, the
algorithm may not determine a minimal set of derivatives. However, in [48] the basic idea
of the index reduction method introduced in [64] was used to reduce the differentiation
index of DAEs with additional structural properties.

Since the index reduction by minimal extension actually needs a high amount of
structural information about the considered DAE, we will not present this technique
for general nonlinear DAEs. Instead, we will demonstrate the method by considering a
quasi-linear DAE of the special form

0 = ẋ + g1(t,x,y), (2.43a)

0 = g2(t,x), (2.43b)

where x ∈ Dx ⊆ R
nx , y ∈ Dy ⊆ R

ny and g1 ∈ C1 (I× Dx × Dy, Rnx), g2 ∈ C2 (I× Dx, Rny).
In addition we assume again that (2.43) is regular. In this case, ∂

∂x
g2(t,x) has full row

rank. This DAE has differentiation index 2 if ∂
∂x

g2
∂
∂y

g1 is nonsingular. This is easy to
see, since from the differentiation of (2.43b) we get

0 =
∂

∂x
g2(t,x)ẋ +

∂

∂t
g2(t,x), (2.44)

which together with (2.43a) leads to the hidden constraint

0 = − ∂

∂x
g2(t,x)g1(t,x,y) +

∂

∂t
g2(t,x). (2.45)

Since ∂
∂x

g2
∂
∂y

g1 is nonsingular, the differentiation of equation (2.45) finally leads to a
differential equation for y

ẏ = −
[

∂

∂x
g2

∂

∂y
g1

]−1 [
∂

∂x

[
∂

∂x
g2(t,x)g1(t,x,y)

]
ẋ +

∂

∂t

[
∂

∂x
g2(t,x)g1(t,x,y)

]

− d

dt

∂

∂t
g2(t,x)

]
.

Hence the differentiation index is indeed equal to 2.

The derivative needed for the index reduction is given by (2.44) which is added to the
original DAE system (2.43) to yield the overdetermined system

0 = ẋ + g1(t,x,y), (2.46a)

0 = g2(t,x), (2.46b)

0 =
∂

∂x
g2(t,x)ẋ +

∂

∂t
g2(t,x). (2.46c)

Now, the variables that need to be replaced have to be determined. To do so, we
examine the derivative (2.46c) and split the variable x into x1 and x2 such that g2,x2
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is nonsingular. This splitting is locally possible due to the regularity of (2.43). From
equation (2.46c), we thus obtain

0 =
∂

∂x1
g2(t,x1,x2)ẋ1 +

∂

∂x2
g2(t,x1,x2)ẋ2 +

∂

∂t
g2(t,x1,x2). (2.47)

The derivatives of x2 in (2.47) can be computed once the derivatives of x1 are given.
Thus, ẋ2 acts more like an algebraic than a differential variable in (2.46). Hence, to make
this fact visible in the extended system, ẋ2 is replaced by an algebraic variable z. This is
the crucial point of the index reduction by minimal extension. From a numerical point of
view, the consequence of this replacement is that x2 will be excluded from discretization
in a numerical integration method and hence not influenced by discretization errors.
This guarantees that the hidden algebraic constraint will be fulfilled up to round-off and
truncation errors if the system is numerically integrated with an appropriate method
(cf. Section 2.3).

In order to be able to replace ẋ2 by z in (2.46), we also have to split (2.46a) into two
equations

0 = ẋ1 + g11(t,x1,x2,y), (2.48a)

0 = ẋ2 + g12(t,x1,x2,y) = z + g12(t,x1,x2,y). (2.48b)

Note that the replacement yields a new algebraic equation (2.48b). The DAE obtained
in this way from (2.46) is given by

0 = ẋ1 + g11(t,x1,x2,y), (2.49a)

0 = z + g12(t,x1,x2,y), (2.49b)

0 = g2(t,x1,x2), (2.49c)

0 =
∂

∂x1
g2(t,x1,x2)ẋ1 +

∂

∂x2
g2(t,x1,x2)z +

∂

∂t
g2(t,x1,x2), (2.49d)

where xi ∈ Dxi
⊆ R

nxi , i = 1, 2, y ∈ Dy ⊆ R
ny and g1i ∈ C1 (I× Dx1 × Dx2 × Dy, Rnxi ),

i = 1, 2, g2 ∈ C2 (I× Dx1 × Dx2 , R
ny). The system (2.49) has differentiation index 1 since

we only need to differentiate (2.49b) and (2.49c) once to get an expression for ż and ẋ2.
An expression for y is obtained by inserting (2.49b) into (2.49d) and differentiating the
resulting equation once.

2.5. Numerical software for DAEs

As we have seen in the previous sections of this chapter, the analytical as well as the
numerical properties of DAEs may differ greatly from those of ODEs. Therefore not
every method that is suitable for the numerical solution of ODEs is suitable for the
treatment of DAEs. In Section 2.3, one-step methods and linear multistep methods
have been discussed.
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Among one-step methods, implicit Runge-Kutta methods of Radau IIA type are well
suited for the numerical solution of DAEs (cf. Section 2.3.1). These methods are L-
stable and stiffly accurate. The code Radau5 [8] uses the Radau IIA method of order
5 for the discretization of a quasi-linear DAE

Eẋ = f(t,x) (2.50)

with constant leading term E [38]. It has been shown in [35] and [38] that the method
converges for DAEs (2.50) with differentiation index 1 and 2. The method converges
even for DAEs of differentiation index 3 if the DAEs are in a Hessenberg form

ẋ1 = f1(t,x1,x2,x3),

ẋ2 = f2(t,x1,x2),

0 = f3(t,x2),

where ∂
∂x2

f3
∂

∂x1
f2

∂
∂x3

f1 is nonsingular. A direct application of Radau5 to more general
quasi-linear DAEs with non-constant leading term as in (2.4) is not possible, since the
code exploits the special structure of (2.50) to split the linear system of size 3n that
arises during the integration into two smaller systems of sizes n and 2n. However, it is
possible to transform (2.4) into a system of the form

ẋ = y,

0 = E(t,x)y + g(t,x),
(2.51)

and apply Radau5 to (2.51) instead of the original system (2.4). One drawback of this
approach is that the differentiation index of (2.51) is one higher than the differentiation
index of (2.4) [15, 30]. Hence, Radau5 can be applied to general quasi-linear systems
(2.4) of differentiation index up to 2. Another code that uses Radau IIA type methods
is RadauP [9]. The available methods are of order 5, 9 and 13 [38] and are suitable for
DAEs (2.50) up to differentiation index 3 or DAEs (2.4) up to differentiation index 2.
Both Radau5 and RadauP include an efficient and flexible stepsize control.

Codes that use BDF methods include Dassl [3], Daspk [2] and Ida, which is part of
the Sundials package [10]. BDF methods are rather easy to implement, even for general
DAEs (2.1a). The nonlinear systems that arise during integration are of size n. However,
the development of a step size control proves to be difficult and the convergence behavior
of BDF methods with variable step size is not completely understood [15]. Moreover,
BDF methods cannot achieve an arbitrary high order of convergence as methods of
consistency order ≥ 7 become unstable (cf. Section 2.3.2).

All codes presented previously attempt to integrate a given DAE ”as it is” and do
not attempt to reduce the index of the DAE. Codes that include an index reduction
technique are Gelda [4] for linear DAEs with variable coefficients [52]

E(t)ẋ = A(t)x + f(t),

Genda [5] for general nonlinear DAEs (2.1a) [55] and Geoms [6] for DAEs that arise in
the simulation of multibody systems [72]. The index reduction in Gelda and Genda
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is based on Hypothesis 2.12. Instead of integrating the original DAE, the DAE is trans-
formed to the equivalent strangeness-free form (2.42) which is then integrated with BDF
methods. In Gelda it is also possible to use the Radau IIA method of order 5 as imple-
mented in Radau5. Both codes are available in the Matlab [7] toolbox Daesolve [54].
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3. DAEs in circuit simulation

The simulation of electrical circuits is an important part of the development of VLSI
chips for various applications. The circuits involved may contain several millions of
circuit elements. Hence a systematic way to generate the equations that describe such a
circuit is essential. Since the behaviour of an electrical circuit is defined by the elements
which it contains and the way in which the elements are connected with each other,
graph theory, combined with Kirchhoff’s Laws and the characteristic equations which
describe the circuit elements offers such a systematic approach.

In this chapter, some basic definitions concerning the description of general oriented
graphs will be given Section 3.1. Section 3.2 presents the Modified Nodal Analysis and
the charge-oriented Modified Nodal Analysis as a systematic way to derive a DAE which
models the behavior of a circuit from a graph theoretical description of the circuit. Sec-
tion 3.3 presents the main results concerning the index determination for DAEs arising
from both Modified Nodal Analysis and charge-oriented Modified Nodal Analysis.

3.1. Introduction to graph theory

Most of the definitions and results given in this section have been taken from [14,23,41,
75], where an in-depth treatment of general graph theory [14,41] or graph theory applied
to circuit simulation [23, 75] can be found. However, the notation used in the following
has been adapted to the notation that is used in circuit simulation.

In addition to the fact that the notation in graph theory is often ambiguous there
is also the problem of the correct graph theoretical description of circuits. On one
hand, the currents through the elements as well as the voltages across the elements
are directed quantities. Hence, their orientations should be considered in the graph
theoretical description. However, since currents and voltages are allowed to be negative,
the direction of the currents and voltages only determines the sign of these quantities
but not the topology of the circuit itself. This implies that we are able to neglect the
orientations when we are only interested in the topology and not in the actual values.

3.1.1. Basic definitions

Definition 3.1. (Oriented graph) An oriented graph G is a pair (N, B), where N =
{n1 . . . nN} is a finite set and B a set of ordered pairs of elements of N. The elements
nk, k = 1, . . . N of N are called nodes and the elements bk1,k2 = < nk1 , nk2 >, nk1 6=
nk2 , nk1 , nk2 ∈ N are called branches of G. The number of branches |B| will be denoted
by B. The graph G is also denoted by G(N, B).
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Note that in an oriented graph a branch bk1,k2 means that there is a connection leading
from nk1 to nk2 . However, the connection cannot be used in the other way. If we drop
this restriction and define the branches of a graph such that the order of the nodes does
not matter, then we obtain a non-oriented graph. In general, non-oriented graphs are
referred to as graphs. Note that for most definitions and results presented in this section
there also exist analogous definitions and results for graphs, cf. [41].

Definition 3.2. (Incidence relation) Consider an oriented graph G. The branch bk1,k2 =
< nk1 , nk2 > is incident with the nodes nk1 and nk2 . The branch bk1,k2 leaves node nk1

and enters node nk2 .

If a node is not incident with any branch, then the node is called an isolated node. If
for each pair of nodes there is at most one branch which is incident with the nodes, then
the graph is simple. If multiple branches, i.e. sets of branches that are incident with the
same pair of nodes, are allowed, then G is called a multigraph. In this section, we will
only consider simple graphs.

Definition 3.3. (Degree of a node) The degree d(nk) = dk of a node nk is the number
of branches that are incident with nk.

Lemma 3.4. In any graph the number of nodes with odd degree is even.

Proof. Since any branch in a graph is incident with exactly two nodes, each branch is
counted exactly two time when summing up the degrees of the nodes, hence

N∑

k=1

dk = 2B. (3.1)

Since the righthand side of (3.1) is even, the number of odd terms dk in the sum must
be even, too.

Definition 3.5. (Path, simple path) A path of length p between two nodes nj0 , njp of
a graph G is a sequence of nodes nj0 , . . . , njp such that for every two consecutive nodes
njk−1

6= njk
, k = 1, . . . , p in this sequence either bjk−1,jk

∈ B or bjk,jk−1
∈ B. If in

addition, njk
6= njl

, k, l ∈ {0, . . . , p− 1}, k 6= l, then the path is simple.

Consider a path nj0 , . . . , njp in an oriented graph G. Denote by bjk
the branch that

connects node njk−1
and node njk

, k = 1, . . . , p. If bjk
= bjk−1,jk

, the branch is called
a forward branch of the path. If, conversely, bjk

= bjk,jk−1
, then the branch is called a

backward branch of the path.

Definition 3.6. (Connected graph) An oriented graph G is connected if for every pair
of nodes there exists a path between them.

Definition 3.7. (Subgraph, isolated node) Consider a connected graph G = G(N, B).
A subgraph G̃ = G̃(Ñ, B̃) of G is a graph such that Ñ ⊆ N, B̃ ⊆ B and b̃ =< ñ1, ñ2 >
with ñ1, ñ2 ∈ Ñ for all branches b̃ ∈ B̃. A connected component which consists of only
one node is called isolated node.
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If G is not connected, it consists of at least two separate connected subgraphs. These
subgraphs are usually called components of G.

Lemma 3.8. A connected graph with N nodes has at least N − 1 branches.

Proof. A proof of this lemma can be found in [41].

Definition 3.9. (Loop, cutset) Let G be an oriented graph. A loop is a simple path
such that nj0 = njp . A cutset is a set Bc of branches of G such that the graph Gc that
results when the branches in Bc are deleted from G has one more component then G,
but adding any branch in Bc to Gc would result in a graph with the same number of
components as G.

A branch in a loop is said to be oriented in the same way as the loop if it is a forward
branch of the loop. To define the orientation of a branch in a cutset Bc, we consider
a connected component G̃ = G̃(Ñ, B̃) of an oriented graph and a cutset Bc ⊂ B̃.
By removing the branches in Bc, the node set Ñ of G̃ is split into Ñ1 and Ñ2 with
Ñ1, Ñ2 ⊂ Ñ, Ñ1 ∩ Ñ2 = ∅. A branch b that belongs to Bc is said to have the same
orientation as the cutset if b =< n1, n2 > with n1 ∈ Ñ1 and n2 ∈ Ñ2, otherwise it has
opposite orientation.

Lemma 3.10. A graph with N nodes that does not contain loops has at most N − 1
branches.

Proof. A proof of this lemma can be found in [41].

Definition 3.11. (Tree, forest) Consider a connected graph G = G(N, B). A tree
T = T(NT , BT ) of G is a subgraph with NT = N which is connected but does not
contain any loops. If G is not connected and consists of F components, then it is
possible to find a tree Tj = Tj(NTj

, BTj
), j = 1, . . . , F in each of the components of G.

These trees form a forest which will also be denoted by T = T(NT , BT ). In this case,
NT and BT are given by

NT = NT1 ∪ · · · ∪NTF
,

BT = BT1 ∪ · · · ∪BTF
.

For a given tree T in G, the branches b̃1, . . . , b̃Bt of T are referred to as tree branches
where Bt denotes the number of tree branches. Those branches b̂1, . . . , b̂Bc of G that
are not contained in T are called connecting branches. Here, Bc denotes the number of
connecting branches.

It is possible to construct a tree T in every connected graph G. For details on the
algorithms see for example [14, 41].

Theorem 3.12. A tree T with N nodes has exactly N − 1 branches.
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Proof. Since T is defined as a connected graph that does not contain loops, Lemma 3.8
and Lemma 3.10 imply that T has exactly N − 1 branches.

Remark 3.13. If T is a forest with N nodes and F components, then T has exactly
N −F branches. The statement can be proved by considering each component separately
and summing up the number of branches in each component.

Lemma 3.14. A tree T with N nodes, N ≥ 2 contains at least two nodes with degree 1.

Proof. By Lemma 3.12, a tree T with N ≥ 2 nodes contains N − 1 branches. Since T is
connected, dk ≥ 1, k = 1, . . . , N . Assume that there is only one node n with d(n) = 1.
Then, the remaining N − 1 branches have degree ≥ 2 and summing up the degrees of
all nodes yields

N∑

k=1

dk ≥ 1 + 2(N − 1), (3.2)

which contradicts (3.1).

Corollary 3.15. A graph in which every node has degree ≥ 2 is not a tree.

For the remainder of this section, we will only consider non-oriented graphs. Again,
there are similar results for oriented graphs. However, we will only need the results as
they are presented in the following.

Definition 3.16. (Complete graph) A complete graph with N nodes is a connected
graph in which every node has degree N − 1.

Definition 3.17. (Connectivity, k-connected graph) The connectivity κ(G) of a graph
G = G(N, B) is defined as follows. If G is a complete graph, then κ(G) = N − 1.
Otherwise, κ(G) is the number of elements of the smallest subset N∗ of N such that
G∗(N \ N∗, B \ B∗) is not connected. Here, B∗ denotes the subset of B that only
contains the branches that are incident with nodes in N∗.

A graph G is called k-connected if κ(G) ≥ k.

Example 3.18. Figure 3.1 shows some graphs with connectivity 1. The possible choices
for the subset N∗ are marked in the figure by a circle around the nodes.

Figure 3.1.: Graphs with κ(G) = 1
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(a) (b) (c) (d)

Figure 3.2.: 2-connected graphs

Example 3.19. Figure 3.2 shows some 2-connected graphs. The connectivity of 3.2(a)
is 2, since it is a complete graph with three nodes. The connectivity of the graphs 3.2(b)
and 3.2(c) is also 2. For both graphs, the nodes that disconnect the graphs are marked
by circles. The connectivity for 3.2(d) is 3, since it is a complete graph with four nodes.
Hence, by Definition 3.17, the graph 3.2(d) is 2-connected as well as 3-connected.

Lemma 3.20. Let G be a graph with at least three nodes and with no isolated nodes.
Then the following conditions are equivalent:

1. G is 2-connected.

2. For every pair of nodes of G, there exists a loop containing both of them.

3. For each node n and every branch b of G, there exists a loop containing both n and
b.

4. For every pair of branches of G, there exists a loop containing both of them.

5. For every pair of nodes n1, n2 and every branch b of G, there exists a path from n1

to n2 containing b.

6. For every triple of nodes n1, n2, n3 of G there exists a path from n1 to n2 containing
n3.

7. For every triple of nodes n1, n2, n3 of G there exists a path from n1 to n2 not
containing n3.

Proof. A proof of this lemma can be found in [41]. A slightly different version of this
lemma with proof can also be found in [71].

Definition 3.21. (2-connected component, block) A subgraph of G that is 2-connected
is called a 2-connected component or a block.

Remark 3.22. Although we have restricted the discussion to simple graphs, the defini-
tions and results given throughout this section can be extended to multigraphs by consid-
ering the subgraphs that result from removing multiple branches in multigraphs.
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3.1.2. Graph related matrices

In this section we will not restrict the discussion to simple graphs. Rather, we will
include multigraphs as the network graphs of circuits are multigraphs in general.

The incidence relation defined in Definition 3.2 may be used to fully describe G.

Definition 3.23. (Incidence matrix) Consider an oriented graph G and let the branches
be numbered arbitrarily, e.g. B = {b1, . . . , bB}. The coefficients of the incidence matrix
Ã ∈ R

N×B of G are given by

akl =





1, if branch bl leaves node nk,

−1, if branch bl enters node nk,

0, if branch bl is not incident with node nk.

Lemma 3.24. A graph G with incidence matrix Ã is a forest if and only if the columns
of Ã are linearly independent.

Proof. The proof will be given by showing that G contains a loop if and only if the
columns of Ã are linearly dependent.

Assume that G contains the loop nj0 , . . . njp with the branches bjk
, k = 1, . . . , p con-

necting the nodes in the loop. Let ãjk
, k = 1, . . . , p be the columns of Ã that correspond

to those branches and set

αk =

{
1, if bjk

is a forward branch,

−1, if bjk
is a backward branch,

(3.3)

k = 1, . . . , p. Then α1ãj1 + · · · + αkãjp = 0, since each node that belongs to a loop is
incident with exactly two branches in the loop and the signs of the corresponding entries
in Ã depend on whether the branches are forward or backward branches.

On the other hand, assume that the columns of Ã are linearly dependent. Then,
there exists a subset of columns ãj1 , . . . , ãjp and integers αk 6= 0, k = 1, . . . , p such that
α1ãj1 + · · ·+ αpãjp = 0. Let B′ be the set of branches that correspond to the columns
ãjk

, k = 1, . . . , p and N′ the set of nodes that is incident with the branches in B′. Due to
the fact that the columns are linearly dependent, every node in N′ has at least degree 2.
Then, Corollary 3.15 shows that G′(N′, B′) is not a tree and hence G is not a forest.

Lemma 3.25. Let G be a connected graph with N nodes. Then rank Ã = N − 1.

Proof. Since every branch in G is incident with exactly two nodes, there are exactly
two nonzero entries in each column of Ã, namely one equal to +1 and one equal to
−1. Hence, summing up the rows of Ã yields a row with all entries equal to zero and
therefore rank Ã ≤ N − 1.

On the other hand it is possible to construct a tree T in G. By Lemma 3.12, T has
N − 1 branches. Consider the incidence matrix ÃT ∈ R

N×(N−1) of T. This matrix is
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a sub-matrix of Ã and is made up of the columns that correspond to the tree branches
b̃1, . . . , b̃Bt . Due to Lemma 3.24, rank ÃT = N − 1 and hence rank Ã ≥ N − 1.
Therefore, rank Ã = N − 1.

Remark 3.26. If G is not connected but consists of F components, then rank Ã =
N − F . As in Remark 3.13, this follows if Lemma 3.25 is applied to the components of
G.

If the incidence matrix of a connected graph is formed considering all branches of the
graph and all its nodes except for a reference node, this results in a reduced incidence
matrix A which has full row rank.

In view of Section 2.2, the kernels of A and AT are important. Lemma 3.24 gives a
characterization of the kernel of the reduced incidence matrix A which is stated in the
following corollary.

Corollary 3.27. Let G be an oriented graph with incidence matrix A and m an arbitrary
loop in G. Define the row vector m = (mk)k=1,...,B in analogy to (3.3) as follows.

mk =





1, if branch bk is a forward branch in the loop m,

−1, if branch bk is a backward branch in the loop m

0, if branch bk does not belong to the loop m,

(3.4)

k = 1, . . . , B. Then, by Lemma 3.24

mT ∈ kerA.

Moreover the kernel of A is exactly spanned by the vectors mT that are defined by the
loops in G.

Remark 3.28. In the course of the discussion of graph theoretical properties of network
graphs we may encounter branches that are incident with the same node at both ends.
Such branches are called self loops and are not included in Definition 3.23. However, the
definition can be extended to include self loops by setting the column of Ã that corresponds
to a self loop to zero.

Since a self loop consists of just one branch which corresponds to a zero column in the
incidence matrix A, Lemma 3.27 can be extended to graphs with self loops in a straight
forward way.

Later in this section, we will consider a set of loops that defines a basis of kerA, but
first we will give a characterization of the kernel of AT . To do so, we first consider the
complete incidence matrix Ã. By Remark 3.26, Ã has rank N − F if the corresponding
graph G has N nodes and consists of F components. Define the coefficients of the matrix
Z̃ =∈ R

N×F by

z̃kl =

{
1, if node nk belongs to component l,

0, else.
(3.5)
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Since every node in G belongs exactly to one component, there is only one nonzero
element in each row of Z̃ and the columns of Z̃ are linearly independent. Moreover,
since Z̃T Ã sums up the rows of Ã, we have

ÃT Z̃ = 0B×F ,

where 0B×F denotes the zero matrix in R
B×F . Hence the columns of Z̃ form a basis of

ker ÃT . To obtain a basis of kerAT , we have to remove the column of Z̃ that corresponds
to the component of G that contains the reference node and the row of Z̃ that corresponds
to the reference node. The resulting matrix will be denoted by Z ∈ R

(N−1)×(F−1). Note
that we allow Z ∈ R

(N−1)×0. The following lemma summarizes this result.

Lemma 3.29. Let G be a graph and A its incidence matrix. Define Z by (3.5) for all
nodes except the reference node and for all components except the one that includes the
reference node. Then the columns of Z form a basis of kerAT .

Remark 3.30. It is possible to interpret the product ZTA as the graph GZ which is
obtained from G by replacing each connected component by a single node. The branches
of G are transformed into self loops of GZ . Hence, using the extended definition of
the incidence matrix as introduced in Remark 3.28, the incidence matrix of GZ is a
zero matrix. We will call this transformation a contraction. Note that this definition is
different from the definitions given in for example [14,41] since we allow the contracted
graph to have self loops.

Even though the incidence matrix is the most common way to describe the topology
of a graph in circuit simulation, it is not the only one. There are two other frequently
used matrices that represent a graph, namely the loop matrix and the cutset matrix.
The following definitions will allow for a description of a directed graph in terms of a
minimal set of loops or cutsets.

Definition 3.31. (Fundamental loop, fundamental cutset) Let G be a connected graph
and T a tree of G. Then

1. every connecting branch closes a unique loop that consists of that connecting
branch and tree branches only. These loops are called fundamental loops.

2. every tree branch defines a unique cutset that consists of that tree branch and
connecting branches only. These cutsets are called fundamental cutsets.

A consequence of Definition 3.31 is the fact that there are exactly Bc fundamental
loops and Bt fundamental cutsets in a graph G where Bc is the number of connecting
branches and Bt is the number of tree branches in G. Note that both fundamental loops
and fundamental cutsets depend on the choice of the tree T in G. However, as will be
shown in the following, once a tree T is chosen and the sets of fundamental loops and
fundamental cutsets have been determined it is possible to express every other loop or
cutset in G in terms of fundamental loops or cutsets.
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3.1. Introduction to graph theory

Definition 3.32. (Loop matrix) Let G be an oriented graph and T a forest in G.
Consider all fundamental loops mj , j = 1, . . . , Bc in G that are defined by T. Let the

orientation of the loops be defined such that the connecting branches b̂j , j = 1, . . . , Bc

are forward branches in the loops that they define. The coefficients of the (fundamental)
loop matrix M ∈ R

Bc×B are given by

mkl =





1, if branch bl belongs to loop mk and is a forward branch,

−1, if branch bl belongs to loop mk and is a backward branch,

0, if branch bl does not belong to loop mk.

(3.6)

Definition 3.33. (Cutset matrix) Let G be an oriented graph and T a forest in G.
Consider all fundamental cutsets si, i = 1, . . . , Bt in G that are defined by T. Let the
orientation of the cutsets be defined such that the tree branches b̃i, i = 1, . . . , Bt have
the same orientation as the cutsets they define. The coefficients of the (fundamental)
cutset matrix S ∈ R

Bt×B are then given by

skl =





1, if branch bl belongs to cutset sk and is oriented in the same way,

−1, if branch bl belongs to cutset sk and is oriented in the opposite way,

0, if branch bl does not belong to cutset sk.

(3.7)

Lemma 3.34. Let G be an oriented graph and T a forest of G. If the branches of G are
ordered such that B = {b̂1, . . . , b̂Bc , b̃1, . . . , b̃Bt} then

M =
[
IBc G

]
, (3.8a)

S =
[
−GT IBt

]
, (3.8b)

where Ik denotes the k × k identity matrix and G ∈ R
Bc×Bt .

Proof. A proof of the lemma can be found in [23, 75].

Remark 3.35. 1. The definitions for the coefficients mkl and skl can be used for any
set of loops or cutsets. However the resulting loop or cutset matrix does not have
to have full row rank, whereas the loop and cutset matrices defined by fundamental
loops and cutsets do have full row rank.

2. Fundamental loops and fundamental cutsets are not the only sets of loops and
cutsets that define full rank matrices. It is for example possible to determine a set
of loops in such a way that

M =
[
M̃Bc M̃Bt

]
, (3.9)

where M̃Bc is a triangular matrix [57,77].
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3. DAEs in circuit simulation

Lemma 3.36. Let G be an oriented graph with incidence matrix A and T a forest in G.
Let m1, . . . , mBc be the fundamental loops in G that are defined by T and let m1, . . . ,mBc

be the corresponding rows of the loop matrix M. Then, for every loop in G the vector
m defined by (3.4) is a linear combination of m1, . . . ,mBc .

Proof. From Lemma 3.34, it is obvious that the loop matrix M has full rank. Hence the
rows m1, . . . ,mBc are linearly independent.

Let m̃ be an arbitrary non-fundamental loop and define the vector m̃ by (3.4). Without
loss of generality the branches are ordered as in Lemma 3.34. Consider the matrix

M+ =


 M

m̃




and assume that M+ has full row rank Bc + 1. Then, there exists an equivalence
transformation such that

M+ ∼


 IBc M̄

0 . . . 0 1 ∗ . . . ∗




The last row would yield a loop in T which leads to a contradiction.

Lemma 3.37. Let G be an oriented graph with incidence matrix A and T a forest in G.
Let s1, . . . , sBt be the fundamental cutsets in G that are defined by T and let s1, . . . , sBt

be the corresponding rows of the cutset matrix S. If for an arbitrary cutset s in G the
vector s is defined in analogy to (3.7), then s is a linear combination of s1, . . . , sBt .

Proof. The lemma follows by an argument similar to the proof of Lemma 3.36.

Remark 3.38. Consider a graph G which contains self loops. These self loops cannot
be part of a tree in G. Since self loop only consist of the branch that closes the loop, Def-
initions 3.31 and 3.32 can be extended to include self loops. Moreover, self loops cannot
be part of any cutset in G, hence the column in any cutset matrix which corresponds to
a self loop will be zero. Thus, Lemmas 3.34, 3.36 and 3.37 still hold.

3.2. Circuit equations

In the following, circuits with general nonlinear capacitances, resistances, inductances
and voltage and current sources that satisfy the restrictions given in [25, 28] (cf. Ap-
pendix I), will be considered. For those circuits the charge and flux oriented modified
nodal analysis as modeling method will be presented. For a more detailed introduction
to circuit modeling methods see [23].

Consider a circuit. Its topology is completely described by its reduced incidence matrix
A. Let i be the vector of all branch currents, v the vector of all branch voltages and
e the vector of node potentials in the circuit. Since we will use parts of the vector i as
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3.2. Circuit equations

unknowns in our circuit model, we will denote the derivative of x with respect to time
rather by d

dtx than by ẋ for the remainder of this chapter in order to keep the notation
unambiguous.

The currents and voltages of a circuit are related by Kirchhoff’s Current Law (KCL)
and Kirchhoff’s Voltage Law (KVL). The KCL states that the sum of all currents that
enter a node is equal to zero, or for the whole circuit,

Ai = 0. (3.10)

The KVL on the other hand states that the sum of the voltages over branches that
form a loop in the circuit is equal to zero. This translates into a relation between the
branch voltages and the node potentials of the circuit

v = ATe. (3.11)

We now split the circuit into its capacitive, resistive and inductive subgraphs and into
those subgraphs that are defined by voltage and current sources. For these subgraphs,
we define the vectors of branch currents i∗, branch voltages v∗ and the incidence matrix
A∗, ∗ ∈ {C, R, L, V, I} for the capacitive, resistive and inductive part and the parts that
are defined by voltage and current sources. The respective terms for the whole circuit
can be written as

i =
[
iTC , iTR, iTL, iTV , iTI

]T
, (3.12a)

v =
[
vT

C ,vT
R,vT

L ,vT
V ,vT

I

]T
, (3.12b)

A = [AC ,AR,AL,AV ,AI ] . (3.12c)

Thus, (3.10) together with (3.12a) and (3.12c) yields

Ai = AC iC + ARiR + ALiL + AV iV + AI iI = 0, (3.13)

and (3.11) together with (3.12b) and (3.12c) yields

v =




vC

vR

vL

vV

vI




=




AT
Ce

AT
Re

AT
Le

AT
V e

AT
I e




. (3.14)

To derive (3.13) and (3.14), we have only used information about the topology of
the circuit. Now, we try to describe the relations between the current through and the
voltage across a branch by the behavior of the element that defines this branch. For the
resistive branches of the circuit, i.e. the branches that are defined by resistances, we get
the relation

iR = g(vR, t), (3.15)
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3. DAEs in circuit simulation

The relations for the capacitive and the inductive branches, i.e. the branches that are
defined by capacitances and inductances, are given by

iC =
d

dt
q, q = qC(vC , t) (3.16)

and

vL =
d

dt
Φ. Φ = ΦL(iL, t) (3.17)

Here, q is the vector of charges of the capacitances and Φ is the vector of magnetic fluxes
in the inductances of the circuit. For further use, we will define the partial derivatives

C(vC , t) :=
∂

∂vC
qC(vC , t), L(iL, t) :=

∂

∂iL
ΦL(iL, t), G(vR, t) :=

∂

∂vR
g(vR, t),

q′
t(vC , t) :=

∂

∂t
qC(vC , t), Φ′

t(iL, t) :=
∂

∂t
ΦL(iL, t), g′

t(vR, t) :=
∂

∂t
g(vR, t).

(3.18)
The matrix C(vC , t) is called the capacitance matrix, L(iL, t) is the inductance and
G(v, t) the conductance matrix of the considered circuit. Finally, the current and voltage
sources are given by

iI = is

(
ATe,

d

dt
qC

(
AT

Ce, t
)
, iL, iV , t

)
=: is(∗, t) (3.19)

and

vV = vs

(
AT e,

d

dt
qC

(
AT

Ce, t
)
, iL, iV , t

)
=: vs(∗, t) (3.20)

(cf. [27]). For the remained of this thesis, we will assume that Assumption A1 holds.

Assumption A1. For the circuit under consideration it holds that

1. the controlled sources in the circuit fulfill the conditions which are displayed in
Appendix I.

2. the matrices C(v, t), G(v, t) and L(i, t) are positive definite for all v, i and t.

Combining the branch relations (3.15), (3.16) and (3.17) and the description of the
sources (3.19) and (3.20) with the information about the topology of the circuit, which
is given by (3.13) and (3.14), yields the following system

0 = AC
d

dt
q + ARg

(
AT

Re, t
)

+ ALiL + AV iV + AI is(∗, t), (3.21a)

0 =
d

dt
Φ−AT

Le, (3.21b)

0 = AT
V e− vs(∗, t), (3.21c)

0 = q− qC

(
AT

Ce, t
)
, (3.21d)

0 = Φ−ΦL(iL, t), (3.21e)

58



3.3. The index of circuit equations

where q, Φ, e, iL and iV are the unknowns of the system. The procedure outlined
above is the charge and flux oriented modified nodal analysis (MNA c/f). It yields a
mixed system of differential and algebraic equations (DAE). If the equations (3.21d) and
(3.21e) are used to eliminate the charges q and the fluxes Φ from system (3.21), then
this yields

0 = AC
d

dt
qC

(
AT

Ce, t
)

+ ARg
(
AT

Re, t
)

+ ALiL + AV iV + AI is(∗, t), (3.22a)

0 =
d

dt
ΦL(iL, t)−AT

Le, (3.22b)

0 = AT
V e− vs(∗, t) (3.22c)

with the unknowns e, iL and iV . System (3.22) represents the circuit in the case that it
is modeled by the standard modified nodal analysis (MNA). It is usually much smaller
due to the fact that the conservation laws for the capacitive charges q and the inductive
fluxes Φ have been omitted. However, this also may lead to numerical instabilities during
the integration due to the possible non-conservation of charges and fluxes.

Theorem 3.39. Both (3.21) and (3.22) have properly stated leading terms.

Proof. Cf. [59].

3.3. The index of circuit equations

Due to the special structure of electrical circuit equations, it is possible to determine
the differentiation index and those parts of the system that lead to the so called hidden
constraints by graph theoretical considerations. In order to be able to apply results
from graph theory, we identify each element of a circuit with a branch in a graph. The
resulting graph is called the network graph of the circuit. The first part of this section
gives the results of [28]. In the second part, these results will be examined more closely
from a graph theoretical point of view.

3.3.1. Index determination

We start by briefly summarizing the results of [28]. To this end, the following definitions
are given.

Definition 3.40. (LI cutset, CV loop) Consider a circuit graph.

1. A cutset which consists of branches of inductances and which may also contain
branches of current sources is called LI cutset.

2. A loop which consists of branches of capacitances and branches of voltage sources
and which contains at least one voltage source is called CV loop.
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3. DAEs in circuit simulation

To identify certain loops and cutsets of the circuit we define the following matrices
(cf. [28, 48]).

Definition 3.41. Consider either the system (3.21) or the system (3.22) with component
related incidence matrices AC , AR, AV and AL. Then, ZC , ZV −C and ZR−CV are bases
of kerAT

C , kerAT
V ZC and kerAT

RZCZV −C , respectively. The matrix Z̄V −C is a basis of
kerZT

CAV and the product ZCZV −CZR−CV is denoted by ZCRV .
Here, a matrix is said to be a basis of a subspace, if this is true for the columns of the

matrix (cf. [50]).

Remark 3.42. Note, that the matrices defined in e.g. [25, 28] are projectors onto the
subspaces, instead of bases of these subspaces.

The circuit is assumed to contain neither loops that consist only of voltage sources nor
cutsets that consist only of current sources, because both configurations may contradict
Kirchhoff’s laws. Furthermore, controlled sources are not allowed to be part of CV loops
or LI cutsets. The controlling elements of both kinds of controlled sources have to fulfill
the conditions given in Appendix I. Under these assumptions, it is possible to show
that the differentiation index of the DAE (3.21) or (3.22) is always less than or equal to
2. The following theorem of [28] now provides information about the relation between
the network graph of a circuit and the differentiation index of the DAE arising from
either MNA or MNA c/f and shows which part of the systems (3.21) or (3.22) have to
be differentiated to obtain the hidden constraints.

Theorem 3.43. (cf. [28]) Consider a DAE that arises either from MNA or from MNA
c/f and assume that Assumption A1 holds.

1. If the circuit does neither contain CV loops nor LI cutsets, then the differentiation
index of the DAE is equal to 1 and the algebraic constraints are given by

0 = ZT
C

[
ARg

(
AT

Re, t
)

+ ALiL + AV iV + AI is(∗, t)
]
,

0 = AT
V e− vs(∗, t),

in case of MNA and

0 = ZT
C

[
ARg

(
AT

Re, t
)

+ ALiL + AV iV + AI is(∗, t)
]
,

0 = AT
V e− vs(∗, t),

0 = q− qC

(
AT

Ce, t
)
,

0 = Φ−ΦL(iL, t),

in case of MNA c/f.

2. If the circuit contains CV loops, but no LI cutsets, then the differential index
is equal to 2, Z̄V −C is a non-zero matrix and the derivatives that are needed to
determine the hidden constraints are

0 = Z̄T
V −C

(
AT

V

d

dt
e− d

dt
vs(∗, t)

)
(3.23)
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in case of MNA and

0 = Z̄T
V −C

(
AT

V

d

dt
e− d

dt
vs(∗, t)

)
, (3.24a)

0 =
d

dt
q− d

dt
qC

(
AT

Ce, t
)

(3.24b)

in case of MNA c/f.

3. If the circuit contains LI cutsets, but no CV loops, then the differentiation index
is equal to 2, ZCRV is a non-zero matrix and the derivatives that are needed to
determine the hidden constraints are

0 = ZT
CRV

(
AL

d

dt
iL + AI

d

dt
is(∗, t)

)
(3.25)

in case of MNA and

0 = ZT
CRV

(
AL

d

dt
iL + AI

d

dt
is(∗, t)

)
, (3.26a)

0 =
d

dt
Φ− d

dt
ΦL(iL, t) (3.26b)

in case of MNA c/f.

4. If the circuit contains both CV loops and LI cutsets, then both matrices Z̄V −C and
ZCRV are non-zero matrices and the differentiation index is equal to 2, independent
of the formulation. To derive the hidden constraints, (3.23) and (3.25) are needed
in case of MNA and (3.24) and (3.26) in case of MNA c/f.

Remark 3.44. If the DAE (3.22) has differentiation index 2, then we see from equations
(3.23) and (3.25) that in order to be able to compute the hidden constraints the functions
of the sources that belong to CV loops or LI cutsets have to be differentiable. Moreover,
if we consider a DAE of the form (3.21) with differentiation index 2, then also the
functions qC(vC , t) and ΦL(iL, t), that describe the capacitive charges and the inductive
fluxes, have to be differentiable.

3.3.2. The matrices Z̄C−V and ZCRV

The matrices Z̄V −C and ZCRV will play an important role in the following sections,
so it is advantageous to express them in terms of matrices that are related to graphs.
To be able to find such a characterization, we will take a closer look on the actions
of the matrices ZC , ZV −C and ZR−CV on the network graph G of the circuit under
consideration.

The matrix ZC

The matrix ZC is defined to be a basis of kerAT
C . Consider the subgraph of G that

contains all nodes and all capacitive branches of G. We will call this subgraph the C-
subgraph of G and denote it by GC . Then, AC is the incidence matrix of GC and we
can define ZC by applying Lemma 3.29 to GC .
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3. DAEs in circuit simulation

The matrices ZV −C and ZCZV −C

The matrix ZV −C is defined to be a basis of kerAT
V ZC , hence we need to find a graph

theoretical interpretation of AT
V ZC . In order to find such an interpretation we consider

again ZC . With Remark 3.30, we are able to interpret ZT
CA as the incidence matrix of

the graph G−C that results from G if the GC is contracted. If GV −C is the part of G−C

that contains all nodes of G−C and all branches that are defined by voltage sources, then
ZT

CAV is the part of the incidence matrix ZT
CA that belongs to GV −C and ZV −C can

be determined by applying Lemma 3.29 to GV −C .

Moreover, it is possible to determine the product ZCV := ZCZV −C directly. To see
this, we consider the graph GCV which is the subgraph of G that contains all nodes and
all branches that are either defined by capacitances or by voltage sources. Multiplying
A from the left first by ZT

C and then by ZT
V −C is then equivalent to contracting the

subgraph GCV . Hence, we obtain ZT
CV if we apply Lemma 3.29 to GCV .

Example 3.45. To illustrate the effect of the contraction of the C-subgraph, we consider
the circuit that is shown in Figure 3.3.

10 2 3

C4

C1 C2

C3L

R1 R2 C5

4

5679 8

R3

R4

V1 V2

I

Figure 3.3.: Example circuit

In Figure 3.3, the capacitances C2, C3 and C5 form a component of the C-subgraph
GC . Two more components consist of the capacitances C1 and C4. In addition, the
nodes 4 and 5 have to be considered as components of GC . Since C1 is incident with
the reference node, the corresponding component will not be taken into account for the
determination of ZC . Therefore, ZC is given by

ZC =




0 1 1 0 0 1 1 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1




T

.

To determine ZV −C , we apply the contraction to the network graph in Figure 3.3 and
obtain the network graph shown in Figure 3.4 where capacitive self loops have been
omitted for clarity reasons.
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R1 R2

L

I

R4

R3

V2

0’ 2’

3’4’

1’ V1

Figure 3.4.: Example circuit after contraction of the C-subgraph

The subgraph GV −C consists of the remaining voltage source V2 and of the nodes 0′,
1′ and 4′. Again, the node 0′ is omitted and we obtain ZV −C as

ZV −C =




1 0 0 0

0 1 1 0

0 0 0 1




T

.

Hence, the product ZCZV −C is given by

ZCZV −C =




0 1 1 0 0 1 1 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1




T

.

If we consider the subgraph GCV in Figure 3.3, then we obtain the same matrix ZCV .

The matrices ZR−CV and ZCRV

Let GR−CV be the subgraph of G−CV that consists of all nodes of G−CV and all resistive
branches. The matrix ZR−CV can be derived from GR−CV in the same way as ZV −C is de-
rived from GV −C . Alternatively, we can determine the product ZCRV = ZCZV −CZR−CV

by applying Lemma 3.29 to the subgraph GCRV of G that contains all nodes and all
branches that are either defined by resistances, capacitances or voltage sources. As be-
fore, the multiplication of A with ZT

CRV from the left is then equivalent to contracting
the subgraph GCRV and ZT

CRV A is the incidence matrix of the resulting graph G−CRV .
The branches in graph G−CRV that are not self loops have to be inductive branches and
branches that are defined by current sources. The nodes of G−CRV are the components
of GCRV . The reference node of G−CRV corresponds to the component of GCRV that
contains the original reference node.

We will now examine ZT
CRV [AI AL] closer. This is the non-trivial part of the incidence

matrix of G−CRV . Each row contains information about which branches enter or leave
the respective node. On the other hand, all branches that enter or leave a node belong to
the cutset that separates the node from the remaining graph. If G−CRV contains N−CRV
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3. DAEs in circuit simulation

nodes, then ZT
CRV [AL AI ] yields NLI := N−CRV − 1 such cutsets. Since ZT

CRV [AL AI ]
has row rank NLI , the rows are linearly independent and we are able to choose ZCRV

such that

ZT
CRV [AI AL] = SLI , (3.27)

where SLI is a fundamental cutset matrix of G−CRV . Every cutset in G−CRV is an LI
cutset in G, which clarifies the connection between ZCRV and the LI cutsets in G that
lead to hidden constraints.

To further examine the structure of SLI , we first note that cutsets that consist of
current sources exclusively are not allowed. We also know from the conditions in Ap-
pendix I that only independent sources are allowed in LI cutsets. Hence we can always
find a tree of inductive branches in G−CRV and the reordering from Lemma 3.34 can be
done in such a way, that

SLI =
[

SI,ind︸ ︷︷ ︸
independent
current
sources

0I,contr︸ ︷︷ ︸
controlled
current
sources

S̃L︸︷︷︸
inductive
connecting
branches

0L︸︷︷︸
inductive
branches
outside
LI cut-
sets

INLI︸︷︷︸
inductive
tree
branches

]
. (3.28)

This special reordering induces a splitting of the incidence matrices AI and AL. We
will assume without loss of generality that the respective branches are already ordered
such that AI and AL can be written as

AI = [AI,ind AI,contr] , (3.29a)

AL =
[
ÃL ĀL ÂL

]
, (3.29b)

such that the parts of the incidence matrices are defined by the sets of branches that
define the splitting in (3.28). Now, (3.27) together with (3.29) yields the following
identities which will be crucial for the following index reduction method.

SI,ind = ZT
CRV AI,ind, 0I,contr = ZT

CRV AI,contr, (3.30a)

S̃L = ZT
CRV ÃL, 0L = ZT

CRV ĀL, INLI
= ZT

CRV ÂL. (3.30b)

The matrix Z̄V −C

The matrix Z̄V −C is rather easy to characterize. We have already stated that ZT
CAV

is the incidence matrix of the subgraph GV −C . Since Z̄V −C should span the kernel of
ZT

CAV , we can use Corollary 3.27 and choose Z̄V −C ∈ R
NV ×NCV to be the (fundamental)

loop matrix of GV −C . Here, NV is the number of voltage sources in the circuit and NCV

is the number of fundamental loops in GV −C . We know that G does not contain any
loops that only consist of voltage sources (V loop) and that the nodes of G−C are the
components of GC . Therefore, any V loop in GV −C is a CV loop in G, which again shows
the connection between Z̄V −C and the CV loops in G that yield hidden constraints.
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V2

2’

3’

1’ V1

Figure 3.5.: The subgraph GV −C

Example 3.46. We consider again the network graph displayed in Figure 3.3. After the
contraction on the C-subgraphs, we get the network graph in Figure 3.4. The subgraph
GV −C is shown in Figure 3.5.

The graph GV −C contains only one V loop which consists of the voltage source V1.
Comparing Figure 3.5 with the network graph in Figure 3.3, we see that V1 forms a
CV loop with the capacitances C2, C3 and C5. The matrix Z̄V −C for the network graph
in this example is given by

Z̄T
V −C =

[
1 0

]
.
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4. Index reduction in circuit simulation

In Section 3.3 it has been shown that the differentiation index of a circuit DAE arising
from the Modified Nodal Analysis or the charge-oriented Modified Nodal Analysis is tied
to the network graph of the circuit. Also, the derivatives that lead to higher index can
be determined based on the network graph. In this chapter this information will be used
to reduce the differentiation index of circuit DAEs. The discussion starts by examining
the influence of controlled sources in Section 4.1. Section 4.2 then presents an index
reduction method suitable for circuit DAEs from MNA. This index reduction method
uses the derivatives as given in equations (3.23) and (3.25). However, an analogous
approach for circuit DAEs from MNA c/f is not directly possible. The method presented
in Section 4.3 therefore tries to determine the necessary derivatives in such a way that
these derivatives are equivalent to equations (3.24) and (3.26b), but more suited for an
index reduction of a DAE from MNA c/f. Section 4.4 shows that the index reduction
method for DAEs from MNA c/f as proposed in Section 4.3 can be interpreted as direct
modifications to a given circuit that leads to a DAE with differentiation index 1.

4.1. Controlled sources and index reduction

In Section 4.3 and Section 4.4 two index reduction methods will be proposed that rely on
direct changes to the respective circuit. If such a change affects the controlling element
of a controlled source, we have to make sure that the controlled source still fulfills the
condition in Appendix I.

Theorem 4.1. Let G be a network graph in which the controlled sources fulfill the
conditions in Appendices I.1 and I.2. Moreover, let G′ be the network graph that results
from G by inserting an independent voltage source in series with each capacitance that
belongs to a CV loop. Then, the controlled sources in G′ also fulfill the conditions in
Appendices I.1 and I.2.

Proof. See Appendix I.3.

Theorem 4.2. Let G be a network graph in which the controlled sources fulfill the
conditions in Appendices I.1 and I.2. Moreover, let G′ be the network graph that results
from G if one capacitance in each CV loop is replaced by a controlled current source.
Then, the controlled sources in G′ that correspond to the controlled sources in G also
fulfill the conditions in Appendices I.1 and I.2.

Proof. See Appendix I.4.
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Theorem 4.3. Let G be a network graph in which the controlled sources fulfill the
conditions in Appendices I.1 and I.2. Moreover, let G′ be the network graph that results
from G if one inductance in each LI cutset is replaced by a controlled voltage source.
Then, the controlled sources in G′ that correspond to the controlled sources in G also
fulfill the conditions in Appendices I.1 and I.2.

Proof. See Appendix I.5.

4.2. Index reduction for MNA equations

In this section, we will develop algebraic index reduction methods for circuits that have
been modeled with MNA. We will present methods which are based on the index reduc-
tion methods by minimal extention which have been proposed in [48]. This method will
be adapted to the special structure of the DAEs that arise from either of the modeling
techniques. To simplify the notation, we will examine the cases of CV loops and LI cut-
sets separately. Note that it is possible to combine the index reduction methods, if a
circuit contains both CV loops and LI cutsets.

4.2.1. Index reduction for circuits with CV loops

We will consider a circuit with controlled sources that fulfill the conditions listed in
Appendices I.1 and I.2 and assume that it only contains CV loops, but no LI cutsets.
Hence, due to Theorem 3.43, equation (3.23) yields hidden constraints and has to be
added to the DAE (3.22). In this way, we obtain the extended system

0 = AC
d

dt
qC

(
AT

Ce, t
)

+ ARg
(
AT

Re, t
)

+ ALiL + AV iV + AI is(∗, t), (4.1a)

0 =
d

dt
ΦL(iL, t)−AT

Le, (4.1b)

0 = AT
V e− vs(∗, t), (4.1c)

0 = Z̄T
V −CAT

V,ind

d

dt
e− Z̄T

V −Cvind(t). (4.1d)

Here, AV,ind denotes the incidence matrix with respect to independent voltage sources
and vind(t) denotes the functions that describe the independent voltage sources. The
restriction to independent voltage sources in equation (4.1d) is possible since controlled
voltage sources are not allowed to be part of CV loops (cf. Appendix I.1). Our first
objective will be to determine the derivatives (4.1d) in such a way that these equations
can be easily inserted into the original DAE system.

Determination of required derivatives

Both Algorithm 1 and Algorithm 2, which will be presented in the following, are taken
from [24]. In the following, GC denotes again the capacitive subgraph of G. Note that, in
contrast to Algorithm 1 and Section 3.3, the connected components of GC in Algorithm 2
do not include isolated nodes, i.e. nodes that are not incident with any branch.
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4.2. Index reduction for MNA equations

Algorithm 1: Computation of Z̄T
V −C – Part 1

Data: Network graph G

begin

Set G̃ = G;1

while a CV loop m is found in G̃ do2

save the voltage sources and the components of GC that are part of m;3

set G̃ to the graph obtained by deleting one of the voltage sources in m and4

contracting the incident nodes;

define the coefficients of Z̄T
V −C by (3.6) restricted to the sources found in step 3;5

color all nodes in G that are not incident with capacitances;6

foreach connected component C of GC do7

if C does not contain the datum node then color an arbitrary node;8

else color the datum node;9

end

With Algorithm 1 the hidden constraints are given by equation (3.23)

0 = Z̄T
V −C

(
AT

V

d

dt
e− d

dt
vs(∗, t)

)
.

Moreover, if ê is the vector of node potentials of those nodes colored in step 7 of Algo-
rithm 2 and ÂV the part of AV related to those nodes, then Z̄T

V −CÂT
V is nonsingular,

cf. proof of Theorem 7.6 in [24].

Algebraic transformation of the circuit DAE

To determine those differential variables that have to be replaced by algebraic variables
we need to find permutations Πe such that

Z̄T
V −CAT

V,indΠ
T
e = [F1 F2] , (4.2)

with F1 nonsingular. As shown in the previous section, Algorithm 2 can be used to
obtain such a permutation. We permute the node potentials e accordingly and split e

into

Πee =: ẽ =:


e1

e2


 .

Following the idea of the index reduction by minimal extension method [48], we see that
we have to set

d

dt
e1 =: ê1. (4.3)

We now multiply (4.1a) from the left by Πe and and apply (4.2) and (4.3) to (3.22). To
simplify the notation we set Ã∗ := ΠeA∗, ∗ ∈ {C, R, L, V, I} and Ã := ΠeA. In this
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4. Index reduction in circuit simulation

Algorithm 2: Computation of Z̄T
V −C – Part 2

Data: Network graph G

begin

Set G̃ to the subgraph of G that consists of the voltage sources found in step 31

Algorithm 1;
foreach connected component C of GC do2

while C still forms unexamined CV loops with G̃ do3

if an colored node of C is incident with G̃ and part of a CV loop m then4

make m the current CV loop;
else choose an arbitrary CV loop m as current loop;5

choose an uncolored node in which m is incident with branches of G̃;6

color that node;7

delete from G̃ the voltage source in m that is incident with node colored8

in step 7;
mark the current loop as examined;9

add C to G̃;10

end

way, we obtain the system

0 = ÃCC
(
ÃT

C ẽ, t
)
ÃT

C


 ê1

d
dte2


 + ÃCq′

t

(
ÃT

C ẽ, t
)

+ ÃRg
(
ÃT

Rẽ, t
)

+ ÃLiL + ÃV iV + ÃI is(∗, t), (4.4a)

0 =
d

dt
ΦL(iL, t)− ÃT

Lẽ, (4.4b)

0 = ÃT
V ẽ− vs(∗, t), (4.4c)

0 = F2
d

dt
e2 + F1ê1 − Z̄T

V −C

d

dt
vind(t), (4.4d)

which according to Section 2.4 has differentiation index 1. Since F1 is nonsingular, we
can solve (4.4d) for ê1 and obtain

ê1 = F−1
1

(
Z̄T

V −C

d

dt
vind(t)− F2

d

dt
e2

)
. (4.5)

We insert (4.5) into (4.4a). This yields

0 = ÃCC
(
ÃT

C ẽ, t
)
ÃT

C

d

dt
ē + ÃCq′

t

(
ÃT

C ẽ, t
)

+ ÃT
Rg

(
ÃT

Rẽ, t
)

+ ÃLiL + ÃV iV + ÃI,modimod(∗, t)
(4.6)
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4.2. Index reduction for MNA equations

with

ē :=


−F−1

1 F2

I


 e2,

ÃI,mod :=


ÃI

ÃC


 ,

imod(∗, t) :=




is

(
ÃT ẽ, d

dtqC

(
ÃT

C ẽ, t
)

, iL, iV , t
)

C
(
ÃT

C ẽ, t
)
ÃT

C


I

0


F−1

1 Z̄T
V −C

d
dtvind(t)


 .

Equation (4.6) has a structure similar to the structure of (3.22a). Since (4.5) is a solution
for equation (4.4d), we can omit this equation and obtain a system of the same size as
the original DAE (3.22).

4.2.2. Index reduction for circuits with LI cutsets

We consider a circuit that contains LI cutsets but no CV loops. Again, we have to
examine those equations that yield hidden constraints and add them to (3.22). In this
case the extended DAE is given by

0 = AC
d

dt
qC

(
AT

Ce, t
)

+ ARg
(
AT

Re, t
)

+ ALiL + AV iV + AI is(∗, t), (4.7a)

0 =
d

dt
ΦL(iL, t)−AT

Le, (4.7b)

0 = AT
V e− vs(∗, t), (4.7c)

0 = ZT
CRV AL

d

dt
iL + ZT

CRV AI
d

dt
is(∗, t). (4.7d)

Again, we will first try to obtain the derivatives (4.7d) in a way that allows for them
to be easily inserted into the DAE.

Determination of the required derivatives

In the case of a circuit with LI cutsets, we will not determine ZT
CRV [AL AI ] as it was

defined in Definition 3.41. Instead, we will use (3.27). Algorithm 3 is based on the
duality of loops and cutsets that is described in Lemma 3.34. If we consider a tree in
a graph, then we know by Definition 3.31 that every tree branch defines a fundamental
cutset and every connecting branch defines a fundamental loop of the graph. Consider
a connecting branch b and the loop m that is defined by b. The relations (3.8a) and
(3.8b) show that b belongs to every cutset that is defined by the tree branches in m.
However, due to the minus sign in (3.8b), the orientations of b in the cutsets is inverse
to the orientations of the respective tree branches in the loop m.
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4. Index reduction in circuit simulation

Algorithm 3: Computation of SLI = ZT
CRV [AI AL]

Data: Network graph G

begin

determine the subgraph GCRV and G−CRV of G;1

choose a tree of inductive branches TL−CRV in G−CRV ;2

save the tree branches;3

foreach connecting branch bc in G−CRV do4

foreach tree branch bt in the loop m defined by bc do5

add bc to the list of branches in the cutset s defined by bt;6

define the coefficients of SLI by (3.7);7

end

With Algorithm 3 the constraints are given by

0 = ZT
CRV [AI AL]

d

dt


is(∗, t)

iL


 .

Moreover, if ÂL is the incidence matrix of the inductive tree branches, then ZT
CRV ÂL =

INLI
is nonsingular, cf. Lemma 3.34.

Algebraic transformation of the circuit DAE

We will use Algorithm 3 to determine the matrix ZT
CRV [AL AI ] as a fundamental LI cut-

set matrix and assume again that the branches are already ordered in such a way that
ZT

CRV [AL AI ] can be written as in (3.28). In addition, we split iL according to the

splitting of AL into iL =
[
ĩTL īTL îTL

]T
and is(∗, t) according to the splitting of AI in

(3.29) into is(∗, t) =
[
iind(t)

T icontr(∗, t)T
]T

. This allows us to rewrite (4.7d) as

0 = ZT
CRV AL

d

dt
iL + ZT

CRV AI
d

dt
is(∗, t)

= ZT
CRV ÃL

d

dt
ĩL +

d

dt
îL + ZT

CRV AI,ind
d

dt
iind(t). (4.8)
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4.3. Index reduction for MNA c/f equations

Obviously, d
dt îL is determined by d

dt ĩL and d
dt iind(t). Moreover, (4.8) can easily be solved

for d
dt îL and inserted into (4.7b). This leads to

0 =
d

dt
ΦL(iL, t)−AT

Le

= L(iL, t)
d

dt
iL + Φ′

t(iL, t)−AT
Le

= L(iL, t)




d
dt ĩL

d
dt īL

−ZT
CRV ÃL

d
dt ĩL − ZT

CRV AI,ind
d
dt iind(t)


 + Φ′

t(iL, t)−AT
Le (4.9)

If we replace equation (3.22b) in the DAE (3.22) by (4.9), then the resulting DAE has
differentiation index 1.

If the circuit under consideration contains CV loops as well as LI cutsets, both ap-
proaches can be combined to obtain again a DAE system of differentiation index 1.

4.3. Index reduction for MNA c/f equations

In the previous section, we have adapted the index reduction by minimal extension
method to DAEs that arise from MNA. We have used the special properties of such DAEs
to obtain a differentiation index 1 system of the same size as the original differentiation
index 2 system. If we want to apply a similar approach to DAEs from charge and flux
oriented MNA, then we are faced with some difficulties in the case of constraints that
arise from CV loops. This is because in contrast to DAEs from MNA the DAEs from
charge and flux oriented MNA not only use node related values, i.e. the node potentials,
but also branch related values, i.e. capacitance charges, to describe the behaviour of
the capacitances. Hence, we have to find a way to resolve the interdependencies of
both node related and branch related values. This will lead to an index reduction
method that is based on the minimal extension method, but needs less derivatives of the
charge conservation equations (3.21d) than the approach proposed in [48]. The same
can be observed by examining the constraints that arise from LI cutsets. Again, we will
aim at deriving a differentiation index 1 system that has the same size as the original
differentiation index 2 system (3.21).

For the remainder of this section we will assume that the conditions in the following
Assumption A2 hold. If this assumption does not hold, then the interdependencies of
branch and node related values cannot be resolved correctly. This in turn means that we
have to consider all equations in Theorem 3.43 in addition to the original DAE (3.21).

Assumption A2. The capacitances and inductances of the circuit have to fulfill the
following conditions.

• Any capacitance of the circuit depends only on the voltages across the element.

• Any inductance of the circuit depends only on the current through the element.
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4. Index reduction in circuit simulation

• Neither capacitances nor inductances are time dependent.

This means that the capacitance and the inductance matrices have the forms

C(vC , t) = C(vC) =




C1(vC1)

. . .

CNC
(vCNC

)


 , (4.10a)

L(iL, t) = L(iL) =




L1(iL1)

. . .

LNL
(iLNL

)


 . (4.10b)

Remark 4.4. Models for MOS transistors or MOSFETs that fulfill Assumption A2
violate the charge conservation for the respective transistor [33,34]. To guarantee charge
conservation, nonlinear capacitance models have been developed [70,76,78]. These models
usually do not fulfill the Assumption A2. In this case, it is not possible to resolve the
interdependencies between branch and node related values and an index reduction method
would have to use the derivatives of the charge conservation laws associated with those
transistors that are part of CV loops.

As in the previous section, we will assume that Assumption A1 (cf. page 58) holds
and discuss the case of CV loops and LI cutsets separately. Both transformations can
be combined if the considered circuit contains both kinds of configurations that lead to
differentiation index 2.

4.3.1. Index reduction for circuits with LI cutsets

We will begin with a circuit that contains LI cutsets but no CV loops and take a closer
look at the LI cutset matrix SLI . According to Algorithm 3, SLI can be computed in
such a way that

SLI =
[

SI,ind 0I,contr S̃L 0L INLI

]
.

We will use the splittings for AL, AI , iL and is(∗, t) that we have defined in Section 4.2.
By Assumption A2, we obtain for the flux conservation laws (3.21e)

Φ = ΦL(iL, t) =




Φ̃L(̃iL)

Φ̄L(̄iL)

Φ̂L(̂iL)


 =




Φ̃L

Φ̄L

Φ̂L


 .
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Furthermore, we define

L(iL) =
∂

∂iL
ΦL(iL) =




∂

∂eiL
Φ̃L(̃iL) 0 0

0 ∂
∂ īL

Φ̄L(̄iL) 0

0 0 ∂

∂biL
Φ̂L(̂iL)




=:




L̃(̃iL) 0 0

0 L̄(̄iL) 0

0 0 L̂(̂iL)


 .

With this splitting and with the identities given in (3.30), equation (3.26a) is trans-
formed into

0 =
d

dt
îL + ZT

CRV ÃL
d

dt
ĩL + ZT

CRV AI,ind
d

dt
iind(t) (4.11)

and we see that only the derivatives of the branch currents through those inductances
that are actually part of LI cutsets are of interest when reducing the differentiation
index. To incorporate (4.11) into the system (3.21), we have to find a way to express
those derivatives in a more suitable way. To do so, we take a look at the flux conservation
law (3.21e). Differentiating the parts of (3.21e) that are associated with Φ̂ and Φ̃ and
taking (3.21b) into account yields

ÂT
Le =

d

dt
Φ̂ =

∂

∂i
Φ̂L(̂iL)

d

dt
îL =: L̂(̂iL)

d

dt
îL, (4.12a)

ÃT
Le =

d

dt
Φ̃ =

∂

∂i
Φ̃L(̃iL)

d

dt
ĩL =: L̃(̃iL)

d

dt
ĩL, (4.12b)

where, by Assumption A1, the Jacobians L̂(i) and L̃(i) are positive definite. With (4.12)
we can transform (4.11) as follows.

0 =
d

dt
îL + ZT

CRV ÃL
d

dt
ĩL + ZT

CRV AI,ind
d

dt
iind(t)

⇐⇒0 = L̂(̂iL)
d

dt
îL + L̂(̂iL)

(
ZT

CRV ÃL

) d

dt
ĩL + L̂(̂iL)

(
ZT

CRV AI,ind

) d

dt
iind(t)

⇐⇒0 =
d

dt
Φ̂ + L̂(̂iL)

(
ZT

CRV ÃL

)
L̃−1(̃iL)ÃT

Le + L̂(̂iL)
(
ZT

CRV AI,ind

) d

dt
iind(t)

︸ ︷︷ ︸
=:−VL(biL,eiL, eAT

L
e,t)

⇐⇒ d

dt
Φ̂ = VL

(
îL, ĩL, ÃT

Le, t
)

. (4.13)
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By inserting (4.13) into 0 = − d
dtΦ̂ + ÂT

Le, we obtain the following DAE

0 = AC
d

dt
q + ARg

(
AT

Re, t
)

+ ÂLîL + ÃLĩL + ĀLīL + AV iV + AI is(∗, t), (4.14a)

0 = ÂT
Le− VL

(
îL, ĩL, ÃT

Le, t
)

, (4.14b)

0 =
d

dt
Φ̃− ÃT

Le, (4.14c)

0 =
d

dt
Φ̄− ĀT

Le, (4.14d)

0 = AT
V e− vs(∗, t), (4.14e)

0 = q− qC

(
AT

Ce
)
, (4.14f)

0 = Φ̂− Φ̂L(̂iL), (4.14g)

0 = Φ̃− Φ̃L(̃iL), (4.14h)

0 = Φ̄− Φ̄L(̄iL). (4.14i)

Theorem 4.5. Consider a circuit that fulfills both Assumption A1 (p. 58) and As-
sumption A2 (p. 73). Moreover, assume that the circuit contains LI cutsets, but no
CV loops. If the functions of the sources are sufficiently smooth and L̃(̃iL) and L̂(̂iL)
are differentiable, then the DAE (4.14) has differentiation index 1.

Proof. Equation (4.14b) can be interpreted as the constitutive laws for controlled voltage
sources. From the splitting (3.28), we see that in each LI cutset one inductance is
replaced by such a controlled source. From Theorem 4.3 we know that all other controlled
sources do not influence the vector spaces which are critical for the index determination.
Since we are only interested in the influence of the modified equation (4.14b) we will
assume that the considered circuit only contains independent sources and write is(t) and
vs(t) in the following instead of is(∗, t) and vs(∗, t).

Consider the matrices defined in Definition 3.41 and choose matrices WC , WV −C ,
and WR−CV such that the matrices [W∗ Z∗], ∗ ∈ {C, V −C, R−CV } are nonsingular.
Note that since we assumed that the circuit does not contain CV loops, Z̄V −C is void.
Let

W :=
[
WC ZC

]

IC [

WV −C ZV −C

]







IC

IV −C [
WR−CV ZR−CV

]


 ,

(4.15)
where I∗ ∈ R

m×m if W∗ ∈ R
n×m, ∗ ∈ {C, V − C}, and define


W−

∗

Z−
∗


 := [W∗ Z∗]

−1 , ∗ ∈ {C, V − C, R− CV },
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4.3. Index reduction for MNA c/f equations

where W−
∗ ∈ R

m×n and Z−
∗ ∈ R

(n−m)×n, if W∗ ∈ R
n×m and Z∗ ∈ R

n×(n−m). Hence we
have

W−1 =




IC

IV −C 
W−

R−CV

Z−
R−CV










IC 
W−

V −C

Z−
V −C








W−

C

Z−
C


 . (4.16)

In addition, we set

W−1e =




W−
Ce

W−
V −CZ−

Ce

W−
R−CV Z−

V −CZ−
Ce

Z−
CRV e




=:




eC

eV −C

eR−CV

eCRV




, (4.17a)

where Z−
CRV denotes the product Z−

R−CV Z−
V −CZ−

C , and

W1 := WC , W2 := ZCWV −C (4.17b)

W3 := ZCZV −CWR−CV . (4.17c)

We start by multiplying (4.14a) by WT and applying (4.17). In this way, we obtain

0 = WT
1

[
AC

d

dt
q + ÂLîL + ÃLĩL + ĀLīL + AV iV + AI is(t)

+ ARg
(
AT

R (W1eC + W2eV −C + W3eR−CV ) , t
)]

, (4.18a)

0 = WT
2

[
ÂLîL + ÃLĩL + ĀLīL + AV iV + AI is(t)

+ ARg
(
AT

R (W1eC + W2eV −C + W3eR−CV ) , t
)]

, (4.18b)

0 = WT
3

[
ÂLîL + ÃLĩL + ĀLīL + AI is(t)

+ ARg
(
AT

R (W1eC + W2eV −C + W3eR−CV ) , t
)]

(4.18c)

and

0 = ZT
CRV

[
ÂLîL + ÃLĩL + ĀLīL + AI is(∗, t)

]

= îL + ZT
CRV ÃL ĩL + ZT

CRV AI is(t). (4.18d)
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4. Index reduction in circuit simulation

The same transformation of e is applied to (4.14b)-(4.14f), so that we obtain

0 = ÂT
L (W1eC + W2eV −C + W3eR−CV ) + eCRV − VL

(
îL, ĩL, ÃT

Le, t
)

=
(
INLI

+ L̂(̂iL)ZT
CRV ÃLL̃−1(̃iL)ÃT

LZCRV

)
eCRV + L̂(̂iL)ZT

CRV AI
d

dt
is(t)

+
(
ÂL + L̂(̂iL)ZT

CRV ÃLL̃−1(̃iL)
)

(W1eC + W2eV −C + W3eR−CV ) , (4.19a)

0 =
d

dt
Φ̃− ÃT

L (W1eC + W2eV −C + W3eR−CV + ZCRV eCRV ) , (4.19b)

0 =
d

dt
Φ̄− ĀT

L (W1eC + W2eV −C + W3eR−CV ) , (4.19c)

0 = AT
V (W1eC + W2eV −C)− vs(t) (4.19d)

and

0 = q− qC(AT
CW1eC). (4.19e)

The flux equations (4.14g)-(4.14i) remain unchanged. Now, we differentiate (4.19e)
which yields

d

dt
q = C

(
AT

CW1eC

)
AT

CW1
d

dt
eC , (4.20)

where C(vC) = ∂
∂vC

qC(vC) is again the capacitance matrix. Equation (4.20) provides

an expression for d
dtq which we insert into (4.18a) to obtain

WT
1 ACC(AT

CW1eC)AT
CW1

d

dt
eC = −WT

1

[
ÂLîL + ÃLĩL + ĀLīL + AV iV + AI is(t)

+ARg
(
AT

Re, t
)]

.

(4.21)

The matrix WT
1 ACC(AT

CW1eC)AT
CW1 is nonsingular because C(vC) is positive def-

inite by Assumption A1 and W1A
T
C has full column rank. Thus, we have found an

expression for d
dteC . The derivative of (4.19d) is given by

AT
V W2

d

dt
eV −C = −AT

V W1
d

dt
eC +

d

dt
vs(t) (4.22)

and we can use (4.21) to replace d
dteC . Since AT

V W2 = AT
V ZCWV −C is nonsingular,

(4.22) leads to a differential equation for d
dteV −C . We differentiate (4.14g), (4.14h) and

(4.14i) to obtain

d

dt
Φ̂ = L̂(̂iL)

d

dt
îL, (4.23a)

d

dt
Φ̃ = L̃(̃iL)

d

dt
ĩL, (4.23b)

d

dt
Φ̄ = L̄(̄iL)

d

dt
īL. (4.23c)
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These expressions for the derivatives of the fluxes are inserted into (4.19b) and (4.19c)
which leads to

L̃(̃iL)
d

dt
ĩL = ÃT

L (W1eC + W2eV −C + W3eR−CV + ZCRV eCRV ) , (4.24a)

L̄(̄iL)
d

dt
īL = ĀT

L (W1eC + W2eV −C + W3eR−CV ) . (4.24b)

Since both L̃(̃iL) and L̄(̄iL) are positive definite by Assumption A1, equations (4.24a)
and (4.24b) yield differential equations for d

dt ĩL and d
dt īL. The differential equation for

d
dt îL is derived by differentiating (4.18d) and replacing d

dt ĩL with help of (4.24a). It is
given by

d

dt
îL = −ZT

CRV

[
ÃLL̃−1(̃iL)ÃT

L (W1eC + W2eV −C + W3eR−CV + ZCRV eCRV )

+AI
d

dt
is(t)

]
.

(4.25)

The derivative of (4.18c) is given by

WT
3 ARG(AT

Re, t)AT
RW3

d

dt
eR−CV = −WT

3

[
ÂL

d

dt
îL + ÃL

d

dt
ĩL + ĀL

d

dt
īL + AI

d

dt
is(t)

+ G
(
AT

Re, t
)
AT

R

(
W1

d

dt
eC + W2

d

dt
eV −C

)

+ g′
t

(
AT

Re, t
)]

,

(4.26)

where G(vR, t) = ∂
∂vR

g(vR, t) is the conductance matrix and g′
t(vR, t) as defined in

(3.18). We can use equations (4.21), (4.22), (4.24a), (4.24b) and (4.25) to eliminate
all differential variables except d

dteR−CV . The matrix WT
3 ARG(AT

Re, t)AT
RW3 is again

nonsingular, since G(vR, t) is positive definite and AT
RW3 = AT

RZCZV −CWR−CV has
full column rank. Hence, (4.26) provides a differential equation for d

dteR−CV . Next, we
differentiate (4.18b) and obtain

WT
2 AV

d

dt
iV = −WT

2

[
ÂL

d

dt
îL + ÃL

d

dt
ĩL + ĀL

d

dt
īL + AI

d

dt
is(t) + ARg′

t(A
T
Re, t)

+ARG(AT
Re, t)AT

R

(
W1

d

dt
eC + W2

d

dt
eV −C + WT

3

d

dt
eR−CV

)]
.

(4.27)

Again, we are able to replace all differential variables except d
dt iV . The matrix WT

2 AV =
WT

V −CZT
CAV is nonsingular, since AV has full column rank. Thus, (4.27) yields a
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4. Index reduction in circuit simulation

differential equation for d
dt iV . Finally, we differentiate (4.19a) and set

T1(̂iL, ĩL) :=INLI
+ L̂(̂iL)ZT

CRV ÃLL̃−1(̃iL)ÃT
LZCRV ,

T2(̂iL, ĩL) :=ÂL + L̂(̂iL)ZT
CRV ÃLL̃−1(̃iL)

Tk :=

[
∂

∂ îL
Tk (̂iL, ĩL)

d

dt
îL +

∂

∂ ĩL
Tk (̂iL, ĩL)

d

dt
ĩL

]
, k = 1, 2

and get

T1(̂iL, ĩL)
d

dt
eCRV = −T1eCRV − T2 (W1eC + W2eV −C + W3eR−CV )

−T2(̂iL, ĩL)

(
W1

d

dt
eC + W2

d

dt
eV −C + W3

d

dt
eR−CV

)

− L̂(̂iL)ZT
CRV ÃI

d2

dt2
is(t)−

[
∂

∂ îL
L̂(̂iL)

d

dt
îL

]
d

dt
is(t).

(4.28)

The differential variables d
dt îL, d

dt ĩL, d
dteC , d

dteV −C and d
dteR−CV can be eliminated with

the help of the previously derived differential equations. Since L̂(̂iL) is positive definite
and ZT

CRV ÃLL̃−1(̃iL)ÃT
LZCRV is at least positive semidefinite, T1 is nonsingular and

(4.28) is a differential equation for d
dteCRV .

To conclude the proof, we note that in order to derive the ODE system (4.20)-(4.28),
we had to differentiate every equation at most one time. Hence, (4.14) has differentiation
index 1.

Proposition 4.6. The DAE (4.14) has a properly stated leading term.

Proof. We rewrite (4.14) as

0 = AC
d

dt
qC

(
AT

Ce
)

+ ARg
(
AT

Re, t
)

+ ÂLîL + ÃLĩL + ĀLīL + AV iV + AI is(∗, t),

0 =
d

dt
Φ̃L(̃iL)− ÃT

Le,

0 =
d

dt
Φ̄L(̄iL)− ĀT

Le,

0 = ÂT
Le− VL

(
îL, ĩL, ÃT

Le, t
)

,

0 = AT
V e− vs(∗, t),

(4.29)
which is the MNA formulation of (4.14). In analogy to [59], we choose

A =




AC 0 0

0 IeL 0

0 0 IL̄

0 0 0

0 0 0




, R =




A−
CAC 0 0

0 IeL
0

0 0 IL̄


 and d(t,x) =




qC

(
AT

Ce
)

Φ̃L(̃iL)

Φ̄L(̄iL)


 ,
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4.3. Index reduction for MNA c/f equations

where A−
C denotes the Moore-Penrose inverse of AC and x =

[
eT , îTL, ĩTL, īTL, iTV

]T
. By

construction, we have that

kerA = kerR.

Moreover, we have

D(t,x) =
∂

∂x
d(t,x) =




C
(
AT

Ce
)
AT

C 0 0 0 0

0 0 L̃
(
ĩL

)
0 0

0 0 0 L̄
(̄
iL

)
0


 ,

with C (vC), L̃
(
ĩL

)
and L̄

(̄
iL

)
fulfilling Assumptions A1 and A2. Hence, we also have

rangeD(t,x) = rangeR

and we see that (4.29) has a properly stated leading term. According to [59], this also
shows that (4.14) has properly stated leading term.

4.3.2. Index reduction for circuits with CV loops

In this section, we will consider a circuit that contains CV loops but no LI cutsets.
Whereas the index reduction in case of LI cutsets could be easily transferred from the
MNA case to the MNA c/f case, we are faced with some problems in the case of CV loops.
In the case of LI cutsets we only had to deal with values that were related to inductive
branches, namely the inductive branch currents iL and the inductive fluxes Φ. However,
if we consider the constraints that arise from CV loops for the MNA c/f, we have on one
hand (3.24a)

0 = Z̄T
V −C

(
AT

V

d

dt
e− d

dt
vs(∗, t)

)
,

but on the other hand (3.24b)

0 =
d

dt
q− d

dt
qC(AT

Ce, t).

These equations establish a connection between branch related values, namely the ca-
pacitive charges q, and node related values, namely the node potentials e. Moreover, the
equations are connected to different types of elements, namely capacitances and voltage
sources. Hence, our first task will be to find a different representation for the constraints
(3.24) that resolves these connections.

Determination of required derivatives

To find a suitable representation of the constraints, we will first reformulate (3.24a) in
such a way that the new equations not only involve the voltage sources that are part of
CV loops, but also the respective capacitances.
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4. Index reduction in circuit simulation

We start by taking a closer look at (3.24a). In Section 3.3.2, we have shown that
the matrix Z̄T

V −C basically is a fundamental loop matrix of the V loops in the subgraph
GV −C . In order to combine (3.24a) and (3.24b), we have to include the capacitances
into our considerations. Note that the nodes of GV −C are either nodes of the network
graph G which are not incident with capacitances or the connected components of the
capacitive subgraph GC . Hence, we have to extend the V loops to CV loops in GV −C .
However, the extension of a V loop to a CV loop may not be unique.

0

1

VC1 C2

R

C3

C4 C5

3

2

Figure 4.1.: Circuit with two CV loops

Example 4.7. Consider the circuit in Figure 4.1. After contracting the C-subgraph
GC , we find the V loop that consists of the voltage source V . If we want to extend the
V loop to a CV loop, we have two alternatives to do so, namely either the loop C1, V
or the loop C2, V . Note that if we choose a tree in the network graph that includes the
voltage source V , then both loops are fundamental loops and hence independent. Note
also that the capacitances C1 and C2 form a C loop as do the capacitances C4 and C5.
Whereas the capacitances in the first C loop are part of CV loops, the capacitances of
the latter C loop are not part of any CV loop.

Example 4.7 shows that we are able to find a set of independent CV loops by examining
the connected components of the subgraph GCV of the network graph. However, we have
to find a way to distinguish C loops in which all capacitances are part of CV loops and
C loops in which no capacitance is part of a CV loop. Now, we know from Lemma 3.20,
that C and CV loops can only occur in the blocks of the subgraph GCV . Moreover,
if a block of GCV contains at least one voltage source V , then for each capacitance C
in the same block we are able to find a CV loop that contains both V and C. Hence,
we need to determine the blocks of GCV and check each block for voltage sources. In
both [41] and [71], algorithms for the determination of blocks of a non-oriented graph
are given. We can apply these algorithms here, as at this point we are only interested
in whether loops exist or not and not in the special directions of branches inside the
loops. Algorithm 4 is taken from [41] and adapted to the problem at hand. The sets Bk

determined by Algorithm 4 are the sets of nodes in the blocks of GCV . We can define a
block Kk by the nodes in Bk and all branches that are incident with a pair of nodes in
Bk.

Now, consider a block K of GCV that contains a voltage source. In order to determine
a set of fundamental loops in K, we first have to compute a tree in K. This will be done
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4.3. Index reduction for MNA c/f equations

in such a way that the tree includes all voltage sources. Algorithm 5 then determines a
fundamental CV loop matrix of the following form

MCV =
[

I eNCV︸ ︷︷ ︸
capacitive
connecting
branches
inside
CV loops

M̃C︸︷︷︸
capacitive
tree
branches
inside
CV loops

0C︸︷︷︸
capacitive
branches
outside
CV loops

MV,ind︸ ︷︷ ︸
independent
voltage
sources

0V,contr︸ ︷︷ ︸
controlled
voltage
sources

]
, (4.30)

where ÑCV is the number of fundamental CV loops in GCV . In order to derive the equa-
tions which are necessary to perform an index reduction, we apply Kirchhoff’s Voltage
Law to these fundamental CV loops. Let the vectors vC and vV be ordered such that

AT
Ce = vC =:




v̂C

ṽC

v̄C


 =:




ÂT
Ce

ÃT
Ce

ĀT
Ce


 (4.31)

and

vV =


 vV,ind

vV,contr


 =


 vind(t)

vcontr(∗, t)


 .

Then Kirchoff’s Voltage Laws yields

0 = MCV


vC

vV


 = v̂C + M̃CvC + MV,indvind(t)

or if we consider the derivative

0 =
d

dt
v̂C + M̃C

d

dt
ṽC + MV,ind

d

dt
vind(t). (4.32)

Equation (4.32) is equivalent to the original derivative (3.24a) since KVL also yields

d

dt
v̂C + M̃C

d

dt
ṽC = −MV,ind

d

dt
vV,ind = −MV,indA

T
V

d

dt
e

which can be inserted into (4.32). Moreover, since we included all voltage sources that
belong to CV loops in our considerations and since we determined a set of fundamental
CV loops there exists a nonsingular matrix T such that

TMV =


Z̄T

V −C

0


 .
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Algorithm 4: Computation of the blocks of GCV

Data: Subgraph GCV (NCV , BCV ) and starting node n∗ ∈ NCV

begin

foreach n ∈ NCV do nr(n) = 0; p(n) = 0;1

foreach b ∈ BCV do u(b) = false;2

i = 0; n = n∗; C = ∅; k = 0; L(n∗) = 0; create a stack S with single element n∗;3

end

repeat

while there exists a branch b =< n, n′ > with u(b) = false do

choose n′; u(b) = true;4

if nr(n′) = 0 then

p(n′) = n; i = i + 1; nr(n′) = i; L(n′) = i; append n′ to S; n = n′;5

else L(n) = min{L(n), nr(n′)};6

if p(n) 6= n∗ then

if L(n) < nr(p(n)) then L(p(n)) = min{L(p(n)), L(n)};7

else

C = C ∪ {p(n)}; k = k + 1;8

create a list Bk containing all nodes of S up to n (including n); remove9

these nodes from S; append p(n) to Bk;

else

if there exists a branch b =< n∗, n′ > with u(b) = false then C = C ∪ {n∗};10

k = k + 1; create a list Bk containing all nodes of S up to n (including n);11

remove these nodes from S; append p(n) to Bk;

n = p(n);12

until p(n) = 0 and u(b) = true for all b incident with n ;

Algebraic transformation of the circuit DAE

Together with (4.31), equation (4.32) can be used to replace (3.24a). Note that the
number of equations in (4.32) may be greater than the number of equations in (3.24a),
since we may find more fundamental CV loops in G than fundamental V loops in GV −C .
However, (4.32) is more advantageous than (3.24a) with respect to the proposed index
reduction method, since it only uses capacitive branch voltages as variables. This enables
us to proceed analogously to the case of LI cutsets. By Assumption A2 we are able to
write the charge conservation law (3.21d) as

q = qC(vC , t) =:




q̂C(v̂C)

q̃C(ṽC)

q̄C(v̄C)


 =:




q̂

q̃

q̄


 .
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Algorithm 5: Computation of MCV

Data: Network graph G

begin

identify all blocks of GCV by Algorithm 4;1

foreach block K do2

if K contains at least one voltage source then3

initialize T with the voltage sources in K;4

foreach capacitive branch c in K do5

if c closes a loop m with T then save all branches belonging to m;6

else add c to T;7

define the coefficients of MCV by (3.6);8

end

Taking a look at (4.32), we see that we need the derivatives of the charge conservation
law that are related to v̂C and ṽC . Thus, we get

îC =
d

dt
q̂ =

∂

∂vC
q̂C(vC)

d

dt
v̂C =: Ĉ(vC)

d

dt
v̂C , (4.33a)

ĩC =
d

dt
q̃ =

∂

∂vC
q̃C(vC)

d

dt
ṽC =: C̃(vC)

d

dt
ṽC , (4.33b)

where, by Assumption A1, the Jacobians Ĉ(v̂C) and C̃(ṽC) are positive definite. We
use (4.33) and transform (4.32) as follows

0 =
d

dt
v̂C + M̃C

d

dt
ṽC + MV,ind

d

dt
vind

⇐⇒0 = Ĉ(v̂C)
d

dt
v̂C + Ĉ(v̂C)M̃C

d

dt
ṽC + Ĉ(v̂C)MV,ind

d

dt
vind(t)

⇐⇒0 =
d

dt
q̂C + Ĉ(v̂C)M̃CC̃−1(ṽC )̃iC + Ĉ(v̂C)MV,ind

d

dt
vind(t)

︸ ︷︷ ︸
=:−IC(bvC ,evC ,eiC ,t)

. (4.34)

If we solve for d
dt q̂ and use (4.31), then we finally obtain

d

dt
q̂ = IC

(
ÂT

Ce, ÃT
Ce, ĩC , t

)
. (4.35)
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This can be inserted into (3.21a) and we obtain

0 = ÃC
d

dt
q̃ + ĀC

d

dt
q̄ + ARg(AT

Re, t) + ALiL + AV iV

+ AI is(∗, t) + ÂCIC
(
ÂT

Ce, ÃT
Ce, ĩC , t

)
, (4.36a)

0 =
d

dt
Φ−AT

Le, (4.36b)

0 = AT
V e− vs(∗, t), (4.36c)

0 = q̂− q̂C

(
ÂT

Ce
)

, (4.36d)

0 = q̃− q̃C

(
ÃT

Ce
)

, (4.36e)

0 = q̄− q̄C

(
ĀT

Ce
)
, (4.36f)

0 = Φ−ΦL(iL). (4.36g)

This is analogous to (4.14), however here we are faced with the problem that the capac-
itive current ĩC does not occur in the original DAE (3.21) as an unknown. We could use
(4.33a) to replace ĩC by d

dt q̃, but that would introduce a derivative to (4.35) and lead
to a time and state dependent mass matrix. Instead, we use a technique that is widely
used in the design of circuits to measure the currents through those capacitances which
are part of CV loops but do not close those loops. This technique uses the fact that
the current through voltage sources is included in the MNA and MNA c/f as variable
and that the currents through two elements in series are identical. Thus, to measure a
current through a resistance or a capacitance, an additional voltage source is introduced
in series to the respective element to the circuit. The voltage source adds a voltage of
v0 = 0 to the circuit. Hence the new voltage source does not change the overall behavior
of the circuit, but changes the analytical solution by introducing an additional variable
iV0 = ĩC . Figure 4.2 illustrates the changes to the circuit.

p

n

ic p−n

p

n

iv0

ic
p

n

ic p−n

Figure 4.2.: Adding a voltage source to measure the current through a capacitance

Let ÑC be the number of capacitances belonging to ÃC ∈ R
N× eNC . We will add a

measuring voltage sources in series with each of the ÑC capacitances that define ÃC . To
introduce these sources, we first have to introduce ÑC new nodes. The node potentials

of these new nodes will be denoted by e0 ∈ R
eNC in the following and the new vector of
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all node potentials is given by

enew =


 e

e0


 ∈ R

N+ eNC . (4.37a)

Since the new nodes are only incident with the newly introduced voltage sources and
the capacitances that belong to ÃC , the incidence matrices for the resistances and in-
ductances changes as follows

AR,new =


 AR

0 eNC×NR


 , AL,new =


 AL

0 eNC×NL


 , (4.37b)

where NR is the number of resistances and NL the number of inductances in the circuit.
To define the new incidence matrices for capacitances and voltage sources, we first split
ÃC into ÃC+ and ÃC− such that

(ãC+)kl =

{
1, if (ãC)kl = 1,

0, else

and
ÃC = ÃC+ + ÃC−.

This means that every column of ÃC− contains at most one non zero entry which is
related to the node that the capacitance that belongs to that row enters. Analogously,
every row of ÃC+ contains at most one nonzero element related to the node the respective
capacitance leaves. If a column in either ÃC+ or ÃC− is zero, then the involved node
is the reference node. Now, the new incidence matrices for the capacitances and the
voltage sources can be written as

AC,new =


 ÃC+ ĀC

−I eNC
0 eNC×N̄C


 , AV,new =


 AV ÃC−

0 eNC×NV
I eNC


 , (4.37c)

where N̄C is the number of capacitances that define ĀC and NV the number of voltage
sources in the original circuit. The currents through the voltage sources in the altered
circuit are given by

iV,new =


 iV

iV0


 (4.37d)

and the new function that describes the voltages of the voltage sources is given by

vs,new(∗, t) =


vs(∗, t)

0


 .
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4. Index reduction in circuit simulation

In addition to this we set

qnew =


q̃

q̄


 , (4.37e)

qC,new





ṽ

v̄





 =


q̃C(ṽ)

q̄C(v̄)


 , (4.37f)

Cnew





ṽ

v̄





 =


 C̃(ṽ) 0 eNC×N̄C

0
N̄C× eNC

C̄(v̄)


 . (4.37g)

Finally, we note that (4.35) suggests that the current îC through the capacitances that
close CV loops is determined by the voltage across those capacitances as well as by the
currents and voltages of the remaining capacitances in the CV loops. Therefore, we are
able to replace those capacitances by controlled sources that add the same current to
the circuit and define

AI,new =


 AI ÂC

0 eNC×NI
0 eNC× bNC


 (4.37h)

and

is,new(∗, t) =


 is(∗, t)
IC

(
ÂT

Ce, ÃT
Ce, ĩC , t

)


 =


 is(∗, t)
IC

(
ÂT

Ce, ÃT
Ce, iV0 , t

)


 . (4.37i)

With the changes to the circuit that are described by (4.37) the DAE (4.36) becomes

0 = AC,new
d

dt
qnew + AR,newg

(
AT

R,newenew, t
)

+ AL,newiL

+ AV,newiV,new + AI,newis,new(∗, t), (4.38a)

0 =
d

dt
Φ−AT

L,newenew, (4.38b)

0 = AT
V,newenew − vs,new(∗, t), (4.38c)

0 = q̂− q̂C

([
ÂT

C 0 bNC× eNC

]
enew

)
, (4.38d)

0 = qnew − qC,new

(
AT

C,newenew

)
, (4.38e)

0 = Φ−ΦL(iL). (4.38f)

Remark 4.8. System (4.38) contains 2ÑC additional equations compared with the orig-
inal system. However, like the original system (3.21), it has a constant mass matrix.
Moreover, the additional equations for the new nodes and the new voltage sources are
given by

0 = − d

dt
q̃ + iV0 and 0 = ÃT

C−e + e0,

88



4.3. Index reduction for MNA c/f equations

which are obviously both easy to solve.

Theorem 4.9. Consider a circuit that fulfills both Assumption A1 (p. 58) and As-
sumption A2 (p. 73). Moreover, assume that the circuit contains CV loops, but no
LI cutsets. If the functions of the sources are sufficiently smooth and C̃(ṽC) and Ĉ(v̂C)
are differentiable, then the DAE (4.38) has differentiation index 1.

Proof. Due to Table I.8 and Table I.9 in Appendix I, we can again assume that the
original circuit does not contain any controlled sources. We start by considering the
matrix

[AC,new AR,new AV,new] =


ÃC+ ĀC AR AV ÃC−

−I 0 0 0 I




=


I −ÃC+

0 I





 0 ĀC AR AV ÃC

−I 0 0 0 0







I 0 0 0 −I

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I




.

Since the branches that belong to the matrices ÃC , ĀC and AV form a tree TCV in

GCV , the matrix
[
ÃC ĀC AV

]
has the same image as [AC AV ]. Hence we have

range
[
ÃC ĀC AR AV

]
= range [AC AR AV ] .

Since we have assumed that the original circuit does not contain LI cutsets, [AC AR AV ]

has full row rank and hence
[
ÃC ĀC AR AV

]
has full row rank. This shows that

[AC,new AR,new AV,new] also has full row rank and, therefore, the altered circuit does not

contain LI cutsets. Thus, ZCRV vanishes. Moreover, [AC,new AV,new] =
[
ÃC ĀC AV

]

has full column rank because there are no loops in TCV by definition. Therefore, there
are no CV loops in the altered circuit and Z̄V −C also vanishes.

We apply Definition 3.41 to the altered circuit and define W, W−1e and the matrices
Wi, i = 1, 2, 3 in analogy to (4.15) and (4.17). By multiplying (4.38a) with WT and
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4. Index reduction in circuit simulation

applying (4.17) to the whole system (4.38) we get

0 = WT
1

[
AC,new

d

dt
qnew + AL,newiL + AV,newiV,new + AI,newis,new(t)

+ AR,newg
(
AT

R,new (W1eC + W2eV −C + W3eR−CV ) , t
)]

, (4.39a)

0 = WT
2

[
AL,newiL + AV,newiV,new + AI,newis,new(t)

+ AR,newg
(
AT

R,new (W1eC + W2eV −C + W3eR−CV ) , t
)]

, (4.39b)

0 = WT
3

[
AL,newiL + AI,newis,new(t)

+ AR,newg
(
AT

R,new (W1eC + W2eV −C + W3eR−CV ) , t
)]

, (4.39c)

and

0 =
d

dt
Φ−AT

L,new (W1eC + W2eV −C + W3eR−CV ) , (4.39d)

0 = AT
V,new (W1eC + W2eV −C)− vs,new(t), (4.39e)

0 = q̂− q̂C

([
ÂT

C 0 bNC× eNC

]
(W1eC + W2eV −C + W3eR−CV )

)
, (4.39f)

0 = qnew − qC,new

(
AT

C,newW1eC

)
, (4.39g)

0 = Φ−ΦL(iL). (4.39h)

The derivative of (4.39h) together with (4.39d) yields

L(iL)
d

dt
iL = AT

L,new (W1ec + W2eV −C + WR−CV eR−CV ) (4.40a)

and

d

dt
Φ = AT

L,new (W1ec + W2eV −C + WR−CV eR−CV ) , (4.40b)

which are expressions for d
dtΦ and d

dt iL. Likewise, the derivative of (4.39g) together with
(4.39a) leads to

C d

dt
eC = −WT

1

[
AL,newiL + AV,newiV,new + AI,newis,new(t)

+ AR,newg
(
AT

R (W1eC + W2eV −C + W3eR−CV ) , t
)]

(4.40c)

with C := WT
1 AC,newC

(
AT

C,newWT
1 eC

)
AT

C,newWT
1 and

d

dt
qnew = −C(AT

C,newW1eC)AT
C,newW1C−1WT

1 ·
[
AL,newiL + AV,newiV,new + AI,newis,new(t)

+AR,newg
(
AT

R (W1eC + W2eV −C + W3eR−CV ) , t
)]

, (4.40d)
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4.3. Index reduction for MNA c/f equations

since C is nonsingular by the construction of W1 = WC . Since, AT
V,newW2 is nonsingular

by construction of WV −C , the derivative of (4.39e) yields

AT
V,newW2

d

dt
eV −C = AT

V,newW1C−1WT
1

[
AL,newiL + AV,newiV,new + AI,newis,new(t)

+AR,newg(AT
Re, t)

]
+

d

dt
vs,new(t),

(4.40e)

which is a differential equation for eV −C . Since the replaced capacitances were part of
CV loops, we have [

ÂT
C 0 bNC× eNC

]
W3 = 0,

and hence the derivative of (4.39f) is given by

d

dt
q̂ = Ĉ

([
ÂT

C 0 bNC× eNC

]
(W1eC + W2eV −C)

) [
W1

d

dt
eC + W2

d

dt
eV −C

]
. (4.40f)

Inserting (4.40b) and (4.40d) into (4.40f), we obtain a differential equation for d
dt q̂. Now

we differentiate (4.39c) and observe that G = WT
3 ARG(AT

Re, t)W3 is nonsingular by
construction of WR−CV . In addition, we have

WT
3 AI,new

d

dt
is,new(t) = WT

3


 AI ÂC

0 eNC×NI
0 eNC× bNC


 d

dt


 is(∗, t)
IC

(
ÂT

Ce, ÃT
Ce, iV0 , t

)




= WT
3


 AI

0 eNC×NI


 d

dt
is(t).

Thus, the derivative of (4.39c) is given by

G d

dt
eR−CV = −WT

3


AL,new

d

dt
iL +


 AI

0 eNC×NI


 d

dt
is(t) + AT

R,newg′
t(A

T
Re, t)

+ AT
R,newG

(
AT

Re, t
)
AT

R,new

(
W1

d

dt
eC + W2

d

dt
eV −C

)
 ,

(4.40g)

with g′
t(vR, t) as defined in (3.18). Using (4.40a), (4.40c) and (4.40d), equation (4.40g)

leads to a differential equation for eR−CV . Moreover, with the derivative of (4.39f) we
obtain a differential equations for d

dt q̂. This is given by

0 = WT
2

[
AV,new

d

dt
iV,new + AI,new

d

dt
is,new(t) + AL,new

d

dt
iL + AR,newg′

t

(
AT

Re, t
)

+ AR,newG
(
AT

Re, t
)
AT

R,new

(
W1

d

dt
eC + W2

d

dt
eV −C + W3

d

dt
eR−CV

)]
.

(4.40h)
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4. Index reduction in circuit simulation

To simplify the notation, in the following we set

T1(v̂C , ṽC) :=Ĉ(v̂C)M̃CC̃−1(ṽC),

T2(v̂C) :=Ĉ(v̂C)MV ,

T3 :=

[
∂

∂v̂C
T1(Â

T
Ce, ÃT

Ce)ÂT
C

(
W1

d

dt
eC + W2

d

dt
eV −C

)]

+

[
∂

∂ṽC
T1(Â

T
Ce, ÃT

Ce)ÃT
CeW1

d

dt
eC

]
,

T4 :=

[
∂

∂v̂C
T2(Â

T
Ce)ÂT

C

(
W1

d

dt
eC + W2

d

dt
eV −C

)]
.

With this, we obtain

WT
2

[
AV,new

d

dt
iV,new+ AI,new

d

dt
is,new(t)

]
=

= WT
2





AV ÃC−

0 I


 d

dt


 iV

iV0


 +


ÂI

0


 d

dt
is(t)

−


ÂC

0




(
T3iV0 + T1

d

dt
iV0 + T4

d

dt
vs(t) + T2

d2

dt2
vs(t)

)


= WT
2





AV ÃC− − ÂCT1

0 I


 d

dt


 iV

iV0




−


ÂC

0


 T3iV0 +


AI ÂC

0 0







d
dt is(t)

T4 d
dtvs(t) + T2

d2

dt2
vs(t)




 .

Since WV −C was chosen such that for W2 = ZCWV −C

WT
2


AV ÃC−

0 I




is nonsingular,

WT
2


AV ÃC− − ÂCT1

0 I




is also nonsingular. Therefore we obtain a differential equation for iV,new from (4.40h).
Since we only have to differentiate each equation in the DAE (4.38) at most once, the
DAE has differentiation index 1.

Proposition 4.10. The DAE (4.38) has a properly stated leading term.
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Proof. In analogy to the proof of Proposition 4.6, we rewrite (4.38) as

0 = AC,new
d

dt
qC,new

(
AT

C,newenew

)
+ AR,newg

(
AT

R,newenew, t
)

+ AL,newiL

+ AV,newiV,new + AI,newis,new(∗, t),

0 =
d

dt
ΦL(iL)−AT

L,newenew,

0 = AT
V,newenew − vs,new(∗, t),

0 = q̂− q̂C

([
ÂT

C 0 bNC× eNC

]
enew

)

(4.41)

and choose

A =




AC,new 0

0 IL

0 0


 , R =


A−

C,newAC,new 0

0 IL


 and d(t,x) =


qC,new

(
AT

C,newenew

)

ΦL(iL)


 ,

where A−
C,new is the Moore-Penrose inverse of AC,new and x =

[
eT

new, iTL, iTV,new

]T
.

4.4. Index reduction by element replacement

The index reduction methods for DAEs arising from the MNA which have been presented
in Section 4.2 already hinted to the fact that we may be able to find a connection between
the index reduction methods and the transformation of the circuit under consideration.
The index reduction method for DAEs that arise from the MNA c/f (cf. Section 4.3)
made this connection even more obvious. Indeed, it is possible to modify the model of
a circuit that yields a DAE with differentiation index 2 in such a way that the altered
circuit still has the same analytical solution but yields a DAE with differentiation index
1, independent of whether the DAE has been derived using the MNA or the MNA c/f
[11,12]. This approach is advantageous as it only requires some additions to the element
libraries of most commercial circuit simulation software, but no changes to the software
itself.

In the following, we will consider circuits that fulfill both Assumption A1 (cf. page
58) and Assumption A2 (cf. page 73).

4.4.1. Modifications to the netlist due to CV loops

Consider a circuit that contains a single CV loop with capacitive branches C0, . . . , Ck

and branches of voltage source V1, . . . , Vl. We will chose the capacitance C0 to be the
capacitance that defines the loop (cf. Definition 3.31). The capacitance values are de-
noted by c0(vC0), . . . , ck(vCk

) and the functions that describe the voltage sources by
v1(t), . . . , vl(t). The coefficients αi, i = 1, . . . , k and α̃j , j = 1, . . . , l are given by the
directions of the capacitances and voltage sources with respect to the loop.
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4. Index reduction in circuit simulation

Again, as in Section 4.3.2, we will add a voltage source in series with each of the
capacitances C1, . . . , Ck to measure the current through the capacitances. The directions
of these new elements with respect to the loop are the same as the directions of the
capacitances they belong to. The currents of these measuring sources belonging to the
capacitances Cj , j = 1, . . . , k are denoted by îV,j . Kirchhoff’s Voltage Law applied to
this loop yields

I = iC0 = −
k∑

j=1

αj

c0

([
AT

Ce
]
0

)

cj

([
AT

Ce
]
j

) îV,j −
l∑

j=1

α̃jc0

([
AT

Ce
]
0

) d

dt
vj(t), (4.42)

where
([

AT
Ce

]
j

)
denotes the j-the entry of the vector AT

Ce which belongs to the capac-

itance Cj , j = 0, . . . , k. Equation (4.42) defines the current through the capacitance C0.
Since this current is fixed by the CV loop, the capacitance C0 does not contribute to
the dynamic behavior of the circuit and thus can be replaced by a current source that
introduces the current I into the circuit. This changes the netlist of the circuit under
consideration. As a result, we obtain a netlist that produces a DAE with differentiation
index 1 when modeled by either MNA or MNA c/f.

The replacement can be done in two ways. If the circuit simulation software that is
used to generate the DAE from a circuit netlist is extendable to include current sources
that are controlled by voltages and currents of various elements in the circuit, then the
selected capacitances are replaced by just one current source each.

If this is not possible, then we can replace the selected capacitances by several standard
current controlled and independent current sources, provided the capacitances are linear
and constant. The current through the selected current source (4.42) then takes the
form

I = iC0 = −
k∑

j=1

αj
c0

cj
îV,j −

l∑

j=1

α̃jc0
d

dt
vj(t). (4.43)

Consider first the terms in (4.43)

−α̃jc0
d

dt
vj(t), j = 1, . . . , l. (4.44)

Each of these terms can be realized by an independent current source with ĩs,j(t) =
−α̃jc0

d
dtvj(t), j = 1, . . . , l. Similarly, we realize the terms

−αj
c0

cj
îV,j , j = 1, . . . , k. (4.45)

with help of current controlled current sources with is,j(iV,j) = −αj
c0
cj

îV,j , j = 1, . . . , k.

The controlling current is given by the current iV,j and the current gain is given by
−αj

c0
cj

.

Since the currents of the current sources is,j(t), j = 1, . . . , l and is,j(iV,j), j = 1, . . . , k
are summed up, we need to place them in parallel to obtain (4.43) on the circuit level.
The current sources will have the same orientation as the replaced capacitance.
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Example 4.11. Consider the circuit in Figure 4.3. Due to the CV loop, that includes
the capacitances C1 and C2 and the voltage source V , both MNA and MNA c/f would
yield DAEs of differentiation index 2.

R1

R2

V

1

C1

2

C2

Figure 4.3.: Circuit with CV loop

If we assume that the capacitance C2 defines the loop and that the orientations of the
branches inside the loop are all positive, then we can replace C2 by two current sources
Ic and Iv. The currents of the current sources are defined by

iv(t) = c2
d

dt
v(t)

for the current source Iv and

iC(iV0) = −c2

c1
iV0

for the current source IC where iV0 is the current through the newly introduced voltage
source V0 in series to the capacitance C1. Figure 4.4 shows the circuit after the replace-
ment. If the new circuit is modeled with either MNA or MNA c/f, then the resulting
DAEs are of differentiation index 1.

Example 4.12. The example of the NAND gate shown in Figure 4.6 is taken from
[1]. Figure 4.5 shows the equivalent circuit for a MOSFET used in this example. The
complete circuit is shown in Figure 4.6. Due to the CV loops which are contained in the
circuit, the DAEs that arise from either MNA or MNA c/f have differentiation index 2.

Algorithm 5 identifies six CV loops in the given circuit. The exact composition of these
loops depends on the order in which the capacitances are examined. Here, we chose the
CV loops that are listed in Table 4.1. The signs show the orientation of the elements
inside the CV loops with respect to the selected capacitance which defines the CV loop.
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2

0
C1

1

R2

Ic Iv

V
R1

V0

Figure 4.4.: Index reduced circuit

selected capacitance remaining elements

Cdb1 +C, +Cgd1 ,−Vbb

Csb1 +C, +Cgs1 ,−Vbb

Cdb2 +Cgd2 , +V1,−Vbb

Csb2 +Cgs2 , +V1,−Vbb

Cdb3 +Cgd3 , +V2,−Vbb

Csb3 +Cgs3 , +V2,−Vbb

Table 4.1.: CV loops in the NAND gate

In order to reduce the index, the selected capacitances will be replaced by the con-
trolled current sources that are listed in Table 4.2. Figure 4.7 shows the circuit after the
replacement.

Remark 4.13. Even though Example 4.12 suggests that there is a way to modify the
individual MOSFETs regardless of the surrounding network in order to lower the index,
this is not true. Table 4.2 shows that the functions for the current controlled sources not
only depend on local elements inside a MOSFET, but also on elements of the surrounding
network, like the input sources V1 and V2.
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Cgd

Csb

Cgs

source

gate bulk

Cbd

drain

Figure 4.5.: Level B equivalent circuit for a MOSFET

selected capacitance replacement

Cdb1 I1 = iCdb1
= −cdb1

(
c−1iV,C + c−1

gd1
iV,gd1 − d

dtvbb

)

Csb1 I2 = iCsb1
= −csb1

(
c−1iV,C + c−1

gs1
iV,gs1 − d

dtvbb

)

Cdb2 I3 = iCdb2
= −cdb2

(
c−1
gd2

iV,gd2 + d
dtv1 − d

dtvbb

)

Csb2 I4 = iCsb2
= −csb2

(
c−1
gs2

iV,gs2 + d
dtv1 − d

dtvbb

)

Cdb3 I5 = iCdb3
= −cdb3

(
c−1
gd3

iV,gd3 + d
dtv2 − d

dtvbb

)

Csb3 I6 = iCsb3
= −csb3

(
c−1
gs3

iV,gs3 + d
dtv2 − d

dtvbb

)

Table 4.2.: Current controlled current sources to replace the selected capacitances
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Vbb

V1

Vdd

V2

4

3

1

2

11

7

6

5

8

10

9

12

C

MOSFET 1

MOSFET 2

MOSFET 3

Figure 4.6.: NAND gate, differentiation index 2
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Vbb

V1

Vdd

V2

4

3

1

2

11

7

6

5

8

10

9

12

C

1−3

1−2

5−7

5−6

8−10

8−9

MOSFET 2

MOSFET1

MOSFET 3

Figure 4.7.: NAND gate, differentiation index 1
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4.4.2. Modifications to the netlist due to LI cutsets

The necessary modifications of the netlist in case of LI cutsets are similar to those that
are necessary in case of CV loops. Again, we will assume that the circuit under consid-
eration only contains one LI-cutset with inductances L0, . . . , Lk with inductance values
l0(iL0), . . . , lk(iLk

) and current sources I1, . . . , Im with source functions i1(t), . . . , im(t).
The inductance L0 is taken as the inductance that defines the cutset. The directions
of the inductances and current sources with respect to the cutset are denoted by αj ,
j = 1, . . . , k and α̃j , j = 1, . . . , m, respectively. The voltage that arises from the LI cut-
set is given by

V = vL0 = −
k∑

j=1

αj
l0(iL0)

lj(iLj
)
vLj
−

m∑

j=1

α̃jl0(iL0)
d

dt
ij(t). (4.46)

Here, vLj
denotes the voltage across the inductance Lj, j = 1, . . . , k. Equation (4.46)

now defines the voltage across the inductance L0 and hence, L0 does not contribute to
the dynamic behavior of the circuit. Thus, we are able to replace L0 by a voltage source
that introduces the voltage given by (4.46) into the circuit.

Again, the replacement can be either done directly if the software that is used to
simulate the circuit is extendable. If this is not the case and the inductances in the
cutset are linear, then we are again able to realize (4.46) on the netlist level by using
several voltage controlled and independent sources. In this case, voltage controlled
voltage sources vs,j(vLj

) with controlling voltages vLj
and voltage gains −αj

l0
lj

are used

to express the terms

−αj
l0
lj

vLj
, j = 1, . . . , k.

For the terms

−α̃j l0
d

dt
ij(t), j = 1, . . . , m

independent sources which are described by the functions vs,j(t) are used. Since the
voltages of the voltage sources are summed up, the sources need to be placed in series
and have the same orientations as the replaced inductance.

Example 4.14. Consider the circuit in Figure 4.8. Due to the LI cutset which consists
of the inductances L1 and L2 and the current source I1 the circuit has differentiation
index 2.

If we assume that L1 defines the cutset and that the orientations of the branches inside
the cutset are all positive, then we can replace L1 by two voltage sources VL and VI . The
voltages of the voltage sources are defined by

vI(t) = l1
d

dt
i1(t)

for the voltage source VI and

vL(vL2) = − l1
l2

vL2 = − l1
l2

(e2 − e3)
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R1

1

2

3

L1

R2 L2

I1

Figure 4.8.: Circuit with LI cutset

for the voltage source VL. Figure 4.9 shows the circuit after the replacement. Again,
both MNA and MNA c/f yield DAEs of differentiation index 1.

4
1

2

3

R2 L2

I1R1

VI VL

Figure 4.9.: Index reduced circuit

Example 4.15. The oscillator in Figure 4.10 is taken from [24]. The circuit has differ-
entiation index 2 due to the LI-cutsets that it contains. Table 4.3 displays one possible
choice of the fundamental LI-cutsets.

selected capacitance remaining elements

Ld Lg1 , Lg2 , Ls1

Ls Ls1

Lg Lg1 , Lg2

Table 4.3.: LI cutsets in the oscillator circuit

In order to reduce the index, the selected inductances are replaced by voltage controlled
voltage sources for which the describing functions are given in Table 4.4. Figure 4.11
shows the circuit after the replacement of the inductances.
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Ls
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Figure 4.10.: Oscillator, differentiation index 2

selected capacitance replacement

Ld V1 = vLd
= −ld

(
l−1
g1

vLg1
+ l−1

g2
vLg2

+ l−1
s1

vLs1

)

Ls V2 = vLs = −ld
(
l−1
s1

vLs1

)

Lg V3 = vLg = −ld
(
l−1
g1

vLg1
+ l−1

g2
vLg2

)

Table 4.4.: Voltage controlled voltage sources to replace the selected inductances
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Figure 4.11.: Oscillator, differentiation index 1
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5. qPsim - Software for circuit simulation

In this chapter, the academical circuit simulator qPsim will be presented. qPsim is based
on the code Psim (Pedagogical SIMulator) [65] which has been written in C++ [74].
Psim features a built-in automatic differentiation to evaluate the involved functions as
well as to compute their derivatives. qPsim builds upon this feature to compute the
derivatives necessary for the index reduction.

The original code Psim created the circuit DAEs based on the Modified Nodal Anal-
ysis. qPsim has been changed in such a way that the circuit DAEs are created based on
the charge-oriented Modified Nodal Analysis. In order to determine the differentiation
index of a given circuit, Algorithms 3, 4 and 5 have been implemented in qPsim. To
reduce the differentiation index if needed, the index reduction as proposed in Section 4.3
has been implemented.

This chapter is split into two parts. The first part consists of Section 5.1 and gives a
detailed description of the qPsim code. Section 5.2 then discusses the performance of
the new index reduction method implemented in qPsim by means of several examples.

5.1. Description of qPsim

5.1.1. Overview over the main classes in qPsim

qPsim is written in C++ and makes use of the programming language’s object oriented
features like class hierarchies and template classes. In this section, the most important
classes in qPsim are described. These classes are defined in the following header files.

• ad double.h

• List.h

• hierarchy.h

• device.h

• topology.h

• minext.h

ad double.h

In ad double.h, the classes for the automatic differentiation are defined. These classes
include the class for the new datatype ad double which models a function f(x) evaluated
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5. qPsim - Software for circuit simulation

for a certain value x0 as well as the gradient of the function ∂
∂x

f which also is evaluated
at x0. This class also overrides the standard operators ’+’, ’-’, ’·’ and so on. Other
classes defined in the same header file are designed to handle the information in the
gradient (cf. Section 5.1.3). The interdependencies of the classes in ad double.h are
shown in Figure 5.1.

ad_double
-_value: double

-the_gradient: grad_struct

grad_struct
-p_share: grad_shrare*

-scale: double

grad_share
-ref_count: int

-_nnz: int

-ugrad: double*

-index: int*

Figure 5.1.: Class hierarchy in ad double.h

List.h

The classes defined in List.h are templates for lists of objects. These lists are used by
the classes Circuit and SubCircuit defined in hierarchy.h to manage the elements
and nodes in a circuit.

hierarchy.h

The classes which are defined in hierarchy.h are the central classes of qPsim . These
classes model the parts of a circuit as well as the circuit itself. All classes are derived
from the root class HierObj. This root class is implemented in such a way that a given
circuit is represented as a rooted tree of objects with the nodes and elements of the
circuit as leaves. The class residual plays a special role. It is used in the class Circuit
to manage the equations that are associated with the circuit. Since the circuit is modeled
by MNA c/f, these equations take the form

Q
d

dt
x + f(t,x) = 0, (5.1)

where Q is a square, constant matrix that may be singular. The class residual has
two members of type ad double. The first ad double, f part, represents the part of an
equation that does not depend on the derivatives of variables. The parts of an equation
that depend on the derivatives of variables are gathered in the second member, q part.

The class Circuit is the class that actually is designed to model a circuit. Because of
its importance, we will list some of its methods that are used by the numerical methods.

int num unk() returns the number of unknowns of the circuit DAE.

int num rsd() returns the number of equations of the circuit DAE.

void show unk(FILE*) writes the names, values and derivatives of the unknowns to
FILE.
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Figure 5.2.: Class hierarchy in hierarchy.h

void show rsd(FILE*) writes the names, values and derivatives of the circuit DAE equa-
tions to FILE.

void vec to unk(double* Y) sets the values of the unknowns to Y.

void rsd to vec(eq part CHOICE, double* Y) sets Y to Q d
dtx if CHOICE = Q PART and

to f(t,x) if CHOICE = F PART.

void D dense(eq part CHOICE , int LDA , int NCOL , double* JAC) sets JAC to Q
if CHOICE = Q PART and to F(t,x) = ∂

∂x f(t,x) if CHOICE = F PART. The Jacobians
are stored columnwise.

void eval() evaluates the equations associated with the circuit and computes their deriva-
tives at the same time.
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5. qPsim - Software for circuit simulation

device.h

This header file contains the definitions of the classes that model circuit elements like
resistances, capacitances or sources. All classes are derived either from one of the classes
Device, TwoTerminal and TwoPort, which are defined in hierarchy.h. In Appendix II,
the most important elements are listed together with the constructors of their respective
classes.

topology.h

This header file contains the classes and routines that perform the graph theoretical
analysis of a given circuit. The methods used in the analysis are based on Algorithms 3,
4 and 5 (cf. Section 5.1.4).

minext.h

The functions in this header file are used to handle the equations that are necessary to
perform the index reduction proposed in Chapter 4. The functions include getCVeq and
getLIeq, which evaluate the additional equations, and the functions hcMass, hcliFcn
and hccvFcn, which return the Jacobians and the values of the additional equations.

5.1.2. Netlist description of a circuit

To simulate a circuit with help of qPsim , the circuit must be provided as a Spice-like
netlist (cf. [42]). To do so, the user has to define a new class which is derived from
the Circuit class and thus inherits all of the methods that are defined by the Circuit

class. If the circuit contains time-dependent sources, the class that models the circuit
must implement the method void time stimulus(ad double t) to provide the values
of sources at a given time t.

R1

R2

V

1

C1

2

C2

Figure 5.3.: Example circuit

Example 5.1. Consider the circuit shown in Figure 5.3. This circuit is modeled by the
following qPsim class.
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class CVex : public Circuit

{

public:

// Reference node of the circuit with fixed node potential equal to 0.0

RefNode gnd;

// the remaining nodes of the circuit

Node n1, n2;

// voltage sources

Vsrc v1;

// linear resistances

Res r1, r2;

// linear capacitances

Cap c1, c2;

// the construcutor of the "CVex" class

// the members of the class have to appear in the initializer list

// in correct order

CVex() : Circuit("Index2"),

gnd(this, "gnd", 0.0),

n1(this, "n1"),

n2(this, "n2"),

v1(this, "v1", n1, gnd, 1.0),

r1(this, "r1", n1, gnd, 1.0),

r2(this, "r2", n2, gnd, 1.0),

c1(this, "c1", n1, n2, 1.0),

c2(this, "c2", n2, gnd, 1.0)

{}

// function for the time-dependent voltage source

void time_stimulus(ad_double t){v1.set_v(-sin(100.0*t));}

};

5.1.3. Creating equations from the netlist

The DAE that is used to simulate the circuit in qPsim arises from MNA c/f. It is
evaluated whenever the Circuit object calls the method eval(). The evaluation is
done on an element-by-element basis. This element-by-element approach is also called
stamping of the circuit equations. It is a standard technique used in software for circuit
simulation.

Data structure for the MNA c/f equations and unknown

In qPsim, the class Node has a member kcl of type residual that models the sum
of currents that enter a node. When an object of type Node is created, a pointer to
it will be placed into the list of nodes nod l of the Circuit object the Node belongs
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to. Moreover, the residual object for the Node is also created and a pointer to that
residual object is placed into the list of KCL equations KCL of the Circuit. Figure 5.4
shows the pointer lists and the pointers to the Node objects.

....

....

....

KCL_1 KCL_2 KCL_3 KCL_M

KCL

nod_l

Node_1 Node_2 Node_3 Node_M

v_2 v_3 v_Mv_1

Figure 5.4.: Pointer lists to nodes and KCL equations

In addition to the residual kcl the class Node also has a member v of type ad double

which models the node potential of a specific node. When a Node object is created, the
ad double object will also be created and a pointer to this object will be placed in the
list of node potentials Vn of the Circuit object (cf. Figure 5.2). The data structure that
is build in this way is similar to the one for the KCL residual objects in Figure 5.4.

Classes that model electric elements have pointers to the incident nodes. If an explicit
current-voltage relation exists for an electric element, then the class that models that
element does neither have members of type residual that account for equations asso-
ciated with that element nor members of type ad double that account for additional
unknowns. Such elements include for example resistances. In this case, the voltage
across the element is computed from the node potentials of the incident nodes. This
voltage then is used to compute the current through the element which is then added to
the residual kcl of the incident nodes.

If on the other hand, the electric element does not have an explicit current-voltage
relation, then the class that models such an element has both a member of type residual
and a member of type ad double. Consider for example the class Vsrc which models
an independent voltage source. The class has a member ad double ib and a member
residual kvl. The member ib models the unknown for the current through the voltage
source, whereas kvl models the equation associated with the voltage source. When an
object of type Vsrc is created, the members are created as well. Moreover, pointers are
placed into the list of voltage source currents Iv and the list of voltage source equations
KVLv of the superior Circuit object. Similar, for the classes Cap and Ind which model
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capacitances and inductances, there are class members that model the charges and fluxes
and the conservation laws that describe the elements. Figure 5.5 shows the data structure
for one object of type Vsrc.

....

.... ....

.... ....

....

Vsrc

Node_p Node_n

v_p kclp v_n kcln

kvlib

dev_lIv KVLv

nod_l

KCL Vn

Figure 5.5.: Pointer lists for a Vsrc object

Automatic differentiation

If we want to simulate the transient behavior of a circuit, then we need the derivatives
of certain variables with respect to the time t as well as the derivatives of the equations
with respect to the variables or their derivatives. Since qPsim generates these equations
and variables from a netlist, we cannot supply subroutines for these derivatives. Instead,
qPsim uses automatic differentiation techniques to compute the needed derivatives. The
automatic differentiation in qPsim is realized by defining the class ad double. The
operator overloading feature of C++ is used to implement the differentiation rules.

The class ad double has two members. The first member, value, is of type double

and models a function value f(x0). The second member, the gradient, is of type
grad struct and models the function’s gradient ∂

∂x
f(x0) (cf. Figure 5.1). The class de-

fines operators to add, subtract, multiply and divide ad double objects. These operators
perform the normal operation on the function value and change the gradient accordingly.
Let X, Y and Z be ad doubles. Then the operations are defined as follows.

Z = X + Y Z._value = X._value + Y._value

Z.the_gradient = 1.0*X.the_gradient

+ 1.0*Y.the_gradient
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Z = X - Y Z._value = X._value - Y._value

Z.the_gradient = 1.0*X.the_gradient

- 1.0*Y.the_gradient

Z = X * Y Z._value = X._value * Y._value

Z.the_gradient = Y._value*X.the_gradient

+ X._value*Y.the_gradient

Z = X / Y Z._value = X._value / Y._value

Z.the_gradient = (1.0/Y._value)*X.the_gradient

- (X._value/(Y._value*Y._value))

*Y.the_gradient

Z = g(X) Z._value = g(X._value)

Z.the_gradient = g’(X._value)*X.the_gradient

Here g is one of the functions cos, sin, tan, atan, exp, log and pow. The last
operation implements the differentiation by the chain rule. Note that in this case,
Z.the gradient is a multiple of X.the gradient. The automatic differentiation in
qPsim makes use of this fact to save memory and computation time. To do so, the
class grad share is implemented to manage the unscaled values of the gradient and a
reference counter. The class grad struct has a pointer to grad share and a double

value to scale the gradient. This approach saves memory space and computation time,
especially if we consider functions in n variables. In this case, the member the gradient

would be a double array of size n. Now, consider Z = g(X). If both Z and X had their
own array the gradient, then the array X.the gradient would have to be copied to
Z.the gradient which has then to be multiplied with the factor g’(X. value). This
is not only time consuming, but also results in the double amount of memory required
to store both X.the gradient and Z.the gradient. To save the time and memory,
both X.the gradient and Z.the gradient point to the same array. However, then
the scaling of Z.the gradient cannot be done directly. In qPsim , the scaling factor
is stored along with the pointer to the gradient array in a grad struct for each ob-
ject of type ad double. The actual array is stored in grad share. Also, each object
of type grad share has a counter which is incremented by one if new pointer to the
object is added. As soon as an object that points to a grad share is destroyed, the
reference counter is decremented by one. The grad share is destroyed if the reference
counter reaches zero. In this way, only one array of size n has to be stored for both
X.the gradient and Z.the gradient. If for example Z.the gradient is requested by
a function in qPsim , then the array is multiplied by the scaling factor g’(X. value)

and returned to the calling function. If Z.the gradient is destroyed, then the reference
counter for the array is lowered by one. However, since X.the gradient is still pointing
to the array, the array is not destroyed. If X.the gradient is destroyed and no other
object is pointing to the array, then the array is also destroyed.
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5.1.4. Transient analysis and index reduction

Up to now, we have described how qPsim creates the data structure that models the
unknowns and equations of a circuit which has been modeled by MNA c/f. The actual
simulation of the transient behavior of the circuit can now be done by calling the function
int transient(Circuit& W, double* x, PARAM p). The PARAM object contains the
parameters that are passed to transient. They are listed in Table 5.1.

Parameter Feature

iout output

0: no output (default)

1: output only at computed steps

2: output at user provided points

3: output at both user provided and computed steps

ir flag index reduction

0: perform index reduction (default)

1: do not perform index reduction

method discretization method used

0: Radau5 (default)

1: Daspk3.1

con inv initial values

0: initial values are not consistent (default)

1: initial values are consistent

grid size number of user provided points for output

t start starting point for the transient analysis

t end end point for the transient analysis

atol / rtol absolute and relative tolerances

h0 initial stepsize

grid user provided points for output

fname name of the output file(s)

Table 5.1.: Parameters for transient(Circuit& W, double* x, PARAM p)
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The transient analysis is done in several steps. In a first step prior to the actual
transient analysis, the differentiation index of the circuit is determined by analyzing its
netlist. Then, depending on the parameter method, the circuit DAE is integrated either
with Radau5 or Daspk3.1. During the integration, the index reduction as proposed
in Chapter 4 is performed, if ir flag = 0. In the following, the different steps of
the transient analysis will be discussed in detail. Since the graph theoretical index
determination and the index reduction are the main parts of qPsim , a greater emphasis
is placed on these steps.

Graph theoretical analysis of the circuit

It is possible to perform the transient analysis in qPsim based on the circuit DAE as
provided by the MNA c/f or to perform an index reduction in the case the circuit has
differentiation index 2. If the parameter ir flag is set to 0, then qPsim will call the
functions int CVloopCheck(Circuit& W, std::map<std::string, Loop>) and
int LIcutsetCheck(Circuit& W, std::map<std::string, Cutset>) to determine the
index.

The class std::map is an associative container which is part of the C++ Standard
Template Library [69, 74]. The container is used to hold the information about all
CV loops or LI cutsets which are found by CVloopCheck or LIcutsetCheck, respectively.
The class Loop is used to store the list of capacitances and the list of voltage sources that
belong to a specific CV loop. Similarly, the class Cutset stores the list of inductances
and the list of current sources of a specific LI cutset.

The function CVloopCheck uses Algorithm 4 to search for 2-connected components of
the subgraph GC of the network graph G. If a 2-connected component is found, then the
component is checked for voltage sources. If it contains at least one voltage source, then
the component also contains a CV loop. In this case, a set of fundamental CV loops for
the component is determined by Algorithm 5. For each CV loop, the capacitance that
defines the loop is stored separately in the corresponding Loop object. The function
returns the number of fundamental CV loops that are contained in the circuit or -1 if
the function detected a loop of voltage sources.

The function LIcutsetCheck uses Algorithm 3 to determine a set of fundamental
LI cutsets. Again, the inductance that defines an LI cutset is stored separately in the
corresponding Cutset object. Analogously to CVloopCheck, the function returns the
number of fundamental LI cutsets that have been found or -1 if the function detected a
cutset of current sources.

The index check needs only to be done once prior to the actual solution of the circuit
DAE. The information about the index of the DAE and the CV loops and LI cutsets
contained in the circuit are stored and used to reduce the index if necessary. Note that
neither CVloopCheck nor LIcutsetCheck check the circuit for controlled sources that
violate the conditions given in Appendix I.
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Index reduction

If both CVloopCheck and LIcutsetCheck return 0, then the circuit DAE is considered
to have differentiation index 1. If either of the functions returns a value greater than 0,
then the differentiation index is considered to be 2 and an index reduction is performed
if ir flag = 0. In this case, two new lists of residual objects are created that are used
to model the additional functions

fC(t,x, ẋ) := FC
d

dt
q + Ĉ(ÂT

Ce)MV,ind
d

dt
vind(t) (5.2a)

and

fL(t,x, ẋ) := FL,1
d

dt
Φ + FL,2A

T
Le + L̂(̂iL)SI,ind

d

dt
iind(t), (5.2b)

with xT =
[
qT ΦT eT iTV iTL

]
. Both functions are evaluated by getCVeq and getLIeq.

The functions hcliFcn and hccvFcn then return the actual function values fC(t∗,x∗, ẋ∗)
and fL(t∗,x∗, ẋ∗) at t∗,x∗ and ẋ∗. To obtain the time derivatives of the source functions
vind(t) and iind(t), the independent variable t is declared dependent for the automatic
differentiation. Hence, these time derivatives do not have to be supplied by the user.
The function hcMass returns the Jacobians of (5.2a) and (5.2b) with respect to either
x or ẋ. These functions are used in the routines RAD1 MAS, RAD1 JAC, RAD1 FCN, D1 JAC

and D1 FCN which compute the actual, index reduced DAE to be integrated by Radau5

and Daspk.1.

With the information about the capacitances and inductances that define fundamental
CV loops and LI cutsets, it is possible to obtain permutations ΠC and ΠL such that

ΠCq =




q̂

q̃

q̄


 and ΠLΦ =




Φ̂

Φ̂

Φ̄




with the corresponding incidence matrices

ACΠT
C =

[
ÂC ÃC ĀC

]

and

ALΠT
L =

[
ÂL ÃL ĀL

]
.

With these permutations, we are able to transform (5.2a) and (5.2b) into

fC(t,y, ẏ) :=
d

dt
q̂ + Ĉ(v̂C)MCC̃−1(ṽC)

d

dt
q̃ + Ĉ(v̂C)MV,ind

d

dt
vind(t) (5.3a)
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and

fL(t,y, ẏ) :=
d

dt
Φ̂ + L̂(̂iL)SLL̃−1(̃iL)ÃT

Le + L̂(̂iL)SI,ind
d

dt
iind(t), (5.3b)

with yT =
[
(ΠCq)T (ΠLΦ)T

eT iTV (ΠLiL)T
]
. If we apply the permutations to

the function fBCR,L(t,x, ẋ) := d
dtΦ −AT

Le which represents equation (3.21b), then we
obtain the following splitting

f̂BCR,L(t,y, ẏ) =
d

dt
Φ̂− ÂT

Le, (5.4a)

f̃BCR,L(t,y, ẏ) =
d

dt
Φ̃− ÃT

Le, (5.4b)

f̄BCR,L(t,y, ẏ) =
d

dt
Φ̄− ĀT

Le. (5.4c)

We see that we have to subtract (5.3b) from (5.4a) in order to perform the index reduc-
tion in the case of LI cutsets.

The situation is a bit more complex in the case of CV loops. If we compare (5.3a)
with (4.34)

0 =
d

dt
q̂C + Ĉ(ÂT

Ce)M̃CC̃−1(ÃT
Ce)̃iC + Ĉ(ÂT

Ce)MV,ind
d

dt
vind(t),

we see that (5.3a) still depends on the derivatives of the charges q̃ whereas (4.34) depends
on the capacitive currents ĩC . This is due to the fact that the Circuit object does not
contain these currents as unknowns. Hence, in contrast to the case of LI cutsets, it is
not possible to obtain the necessary equations directly from the circuit simulator.

To implement the index reduction as proposed in Section 4.3.2, we first compute the
matrix

ÃC− − ÂCĈ(ÂT
Ce)MCC̃−1(ÃT

Ce)

and multiply it with the new variables ĩC . The matrices ÂC and ÃC− can be determined
with the help of the information about the capacitances which are part of CV loops and
about the capacitances which define fundamental CV loops. The matrix ÃC+ can be
computed at the same time as ÃC−. The matrix

Ĉ(ÂT
Ce)MCC̃−1(ÃT

Ce)

is computed as the Jacobian of fC(t,y, ẏ) with respect to d
dt q̃. Finally, we compute the

product

−ÂCĈ(ÂT
Ce)MV,ind

d

dt
vind(t).

With these we are able to compute

0 =ÃT
C+

d

dt
q̃ + ĀT

C

d

dt
q̄ + ARg(AT

Re, t) + ALiL + AC iV

+
(
ÃC− − ÂCĈ(ÂT

Ce)M̃CC̃−1(ÃT
Ce)

)
ĩC + AIis(∗, t)

− ÂCĈ(ÂT
Ce)MV,ind

d

dt
vind(t).
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Moreover, to compensate for the additional variables, the equation

0 = − d

dt
q̃ + ĩC

is added to the system. The system that results in this way is equivalent to the system
(4.38). However, qPsim does not allow the evaluation of the charge conservation laws
(4.38e) which depend on the node potentials e0 of additional nodes that were not part of
the original circuit. But since a closer look at (4.38) reveals that these node potentials
only occur in equations (4.38e) and

0 = ÃT
C−e + e0, (5.5)

the use of the original charge conservation laws

0 = q− qC(AT
Ce)

simply means that we solve (5.5) for e0 and insert the result into (4.38e). This alge-
braic operation does not change the differentiation index. Therefore, the system that is
generated in this way also has differentiation index 1.

Solving the circuit DAE

As described in the previous section, the index reduction is done inside the routines
RAD1 MAS, RAD1 JAC, RAD1 FCN, D1 JAC and D1 FCN which are then passed to Radau5

and Daspk3.1. Both solvers are not altered.
The parameters for Radau5 are set such that the same tolerances are used for all

variables and no variable is excluded from the error test. For stepsize control the stan-
dard controller is used (cf. [38], page 124). The nonlinear system that arises after the
discretization of the DAE is solved by a simplified Newton method. As starting value
for the Newton iteration the last computed value is used.

The parameters for Daspk3.1 are set such that again the same tolerances for all
variables are used and no variables are excluded from error tests. In addition, the code
is told that it is possible to integrate the system past the last step params.t end. Note
that this may not be true for all circuit DAEs.

If the user specified params.con inv = 0, then qPsim will try to compute consistent
initial values from an initial guess which the user has to provide. The computation is
done by the function conival which calls Nlscon which is a nonlinear least square
solver [66]. Nlscon tries to solve the underdetermined system of nonlinear equations

Q̃ỹ + f̃(t, x̃) = 0,

for ỹ and x̃, where

Q̃
d

dt
x̃ + f̃(t, x̃) = 0,

is the index reduced system. The initial values will be computed with a tolerance set to
10−8. Nlscon offers the option to place constraints on the least square solution. This
could be used to allow the user to fix certain initial values. However, in the current
implementation this feature is not used.
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5.2. Numerical results

The examples presented here comprise two linear circuits and the NAND gate benchmark
[1] with the level B MOSFET model. All of the circuits presented in this section yield
MNA c/f equations which have differentiation index 2.

In the following, we will discuss the performance and efficiency of the index reduction
which has been implemented in qPsim . All examples have been simulated with qPsim

both with and without index reduction. As discretization methods for the DAEs both
Radau5 and Daspk3.1 have been used. Since the object oriented approach used in
qPsim creates an overhead for the handling of objects during runtime, the results are
difficult to compare to any results obtained by other solvers.

R1

R2

V

1

C1

2

C2

Figure 5.6.: Linear circuit with one CV loop

5.2.1. Linear circuit with one CV loop

The circuit in Figure 5.6 has already been examined in Example 4.11. For the simulation
we will use C1 = C2 = 1, R1 = R2 = 1 and v(t) = sin(100t). With these parameters,
the MNA c/f yields the DAE (5.6).

0 =
d

dt
q1 + e1 + iV ,

0 =
d

dt
q2 −

d

dt
q1 + e2,

0 = e1 − sin(100t),

0 = q1 − e1 + e2,

0 = q2 − e2.

(5.6)

It is possible to derive an exact analytical solution (5.7) for this example. With
the consistent initial values q1(0) = q2(0) = e1(0) = e2(0) = 0 and iV (0) = −50 the
analytical solution is given by
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5.2. Numerical results

q1(t) = e1(t)− e2(t),

q2(t) = e2(t),

e1(t) = sin(100t),

e2(t) =
100

40001
cos(100t) +

20000

40001
sin(100t)− 100

40001
e−

1
2
t,

iV (t) = −2000100

40001
cos(100t)− 50001

40001
sin(100t) +

50

40001
e−

1
2
t.

(5.7)

This solution has been used to compute the absolute errors in each variable. A nu-
merical solution has been computed with both Radau5 and Daspk3.1 on the interval
[0, 0.1] with relative and absolute accuracy ranging from 10−3 to 10−12. For the integra-
tion both the original formulation of the circuit DAE and the index reduced formulation
have been used. If no index reduction was performed, Daspk3.1 failed to converge for
accuracies smaller than 10−5. The achieved accuracies with respect to each unknown
have been computed using the Euclidean norm of the vector absolute errors for the re-
spective unknown. Figure 5.7, 5.8 and 5.9 show the results for q1, e1 and iV . Note
that in this example the current iV is the variable which causes the higher index of the
DAE (5.6). The figures suggest that both solvers perform better if the index reduction
method proposed in Section 4.3 is applied. The effect is most noticeable in the efficiency
with respect to iV (cf. Figure 5.9).
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Figure 5.7.: Efficiency with respect to the charge of C1
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Figure 5.8.: Efficiency with respect to the voltage at node 1
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Figure 5.9.: Efficiency with respect to the current through the voltage source
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5.2.2. Linear circuit with one LI cutset

In this example, we consider the circuit in Figure 5.10. For R1 = R2 = 1, L1 =
L2 = 1 and i(t) = sin(100t) we obtain (5.8) from MNA c/f. Due to the LI cutset that
consists of the inductances L1 and L2 and the current source, the circuit DAE (5.8) has
differentiation index 2.

0 = 2e1 − e2 + iL1,

0 = −e1 + e2 + iL2,

0 = −iL1 − iL2 + i(t),

0 =
d

dt
φ1 − e1 + e3,

0 =
d

dt
φ2 − e2 + e3,

0 = φ1 − iL1,

0 = φ2 − iL2.

(5.8)

R1

1

2

3

L1

R2 L2

I1

Figure 5.10.: Linear circuit with one LI cutset

As for the previous example, it is possible to compute an analytical solution for given
initial values. Here the initial values were chosen to be φ1(0) = φ2(0) = e1(0) = e2(0) =
iL1(0) = iL2(0) = 0 and e3(0) = −50. With these values, the analytical solution of (5.8)
is given by

φ1(t) = − 100

40001
cos(100t) +

20001

40001
sin(100t) +

100

40001
e−

1
2
t,

φ2(t) =
100

40001
cos(100t) +

20000

40001
sin(100t)− 100

40001
e−

1
2
t,

e1(t) = − sin(100t),

e2(t) = e1(t)− φ2(t),

e3(t) =
e1(t) + e2(t)

2
− 50 cos(100t),

iL1(t) = φ1(t),

iL2(t) = φ2(t).

(5.9)
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Numerical solutions have been computed by both Radau5 and Daspk3.1 with and
without index reduction for absolute and relative accuracies ranging from 10−3 to 10−12.
For accuracies smaller than 10−5 Daspk3.1 failed to converge if no index reduction was
performed. The exact solution (5.9) was used to compute the absolute errors in the
unknowns. As a measure for the accuracies achieved by the codes the Euclidean norm
of the vectors of absolute errors in each variable has been computed. Figures 5.11, 5.12
and 5.13 display the results for the voltages at node 1 and 3 and the current through L1.
Note that in this example the voltage e3 at node 3 is the variable that causes the higher
differentiation index of DAE (5.8). Again, the performance of both solvers increased if
the index reduction method from Section 4.3 was applied to the DAE (5.8). As in the
previous example, this effect is most noticeable in the unknown that causes the higher
differentiation index, i.e. the voltage e3 (cf. Figure 5.12).
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Figure 5.11.: Efficiency with respect to the voltage at node 1
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Figure 5.12.: Efficiency with respect to the voltage at node 3

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

computation time

ac
cu

ra
cy

 o
f t

he
 n

um
er

ic
al

 s
ol

ut
io

n

Efficiency with respect to the current through L
1

RADAU5, Index 1
RADAU5, Index 2
DASPK3.1, Index 1
DASPK3.1, Index 2

Figure 5.13.: Efficiency with respect to the current through L1

123



5. qPsim - Software for circuit simulation

5.2.3. NAND gate with level B MOSEFT model

In Example 4.12, we introduced the NAND gate benchmark [1]. Here, the NAND gate
is simulated with qPsim. For the simulation the MOSFETs in the circuit have been
modeled with the level B MOSFET model.

Vbb

V1

Vdd

V2

4

3

1

2

11

7

6

5

8

10

9

12

C

MOSFET 1

MOSFET 2

MOSFET 3

Figure 5.14.: NAND gate
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While the level A MOSFET model uses linear bulk capacitances, the level B model
uses nonlinear bulk capacitances for which the charges are given by

qdb(v) = qsb(v) =





C0 · ΦB ·
(
1−

√
1− v

ΦB

)
for v ≤ 0,

C0 ·
(
1 + v

4ΦB

)
· v for v > 0,

with C0 = 0.24·10−13F and ΦB = 0.87V . The gate capacitances both have a capacitance
value of Cgs = Cgd = 0.6 · 10−13F . The contact resistances Rs and Rd are given by
Rs = Rd = 4Ω. To model the fact that the gate is isolated from the drain-source
channel, the resistance Rsd is given by Rsd = 1015Ω.

The voltage controlled current source models the technology dependent current gain
of the MOSFET. For the level B MOSFET model this current gain is given by

ids(vds, vgs, vbs, vgd, vbd) =





0 for U ≤ 0,

−β (1 + δvds)U2 for 0 < U ≤ vds,

−βvds (1 + δvds) (2U − vds) for vds < U

with U = vgs −
(
UT0 + γ ·

(√
Φ− vbs −

√
Φ

))
if vds > 0 and Φ > vbs,

ids(vds, vgs, vbs, vgd, vbd) = 0

if vds = 0 and

ids(vds, vgs, vbs, vgd, vbd) =





0 for U ≤ 0,

−β (1− δvds)U2 for 0 < U ≤ −vds,

−βvds (1− δvds) (2U − vds) for − vds < U

with U = vgd −
(
UT0 + γ ·

(√
Φ− vbd −

√
Φ

))
if vds < 0 and Φ > vbd. The values for

the parameters UT0, β, γ, δ and Φ determine the behavior of the MOSFET. They can
be found in Appendix II. The load capacitance C is given by C = 0.5 · 10−13F .

The NAND gate consists of three MOSFETs. MOSFET1 is a depleting MOSFET.
MOSFET2 and MOSFET3 are enhancing MOSFETs. Roughly speaking, enhancing
means that the drain-source channel opens if the gate voltage rises above a technology
dependent threshold. For a depleting MOSFET, the drain-source channel is open until
the gate voltage reaches a technology dependent threshold.

The drain voltage of MOSFET1 is constant at VDD = 5V , the bulk voltages of all
MOSFETs are constant at VBB = −2.5V . The input signals are given by the voltage
sources V1 and V2. If both signals are at 5V (i.e. HIGH), then the response at node 1 is at
0V (i.e. LOW). Otherwise the response is HIGH. The input sources have been modeled
both with piecewise linear functions and with functions in C1(I) where I = [0, 8 · 10−8]
is the integration interval. Figure 5.15 shows the numerical solution for the NAND gate
with piecewise linear input signals. The solution has been computed with Radau5 with
index reduction and a prescribed accuracy of 10−15.
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Figure 5.15.: Reference solution for the NAND gate example with piecewise linear input
signals
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Figure 5.16.: Efficiency with respect to e1 for the NAND gate example with piecewise
linear input signals
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Figure 5.17.: Efficiency with respect to i1 for the NAND gate example with piecewise
linear input signals
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Figure 5.18.: Efficiency with respect to i2 for the NAND gate example with piecewise
linear input signals
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To measure the efficiency of the index reduction method implemented in qPsim, a
numerical solution for the circuit DAE of the NAND gate has been computed with
Radau5 and Daspk3.1 for accuracies between 10−3 and 10−12. The computation was
done with and without index reduction. The initial values have been taken from [26] and
corrected by conival (cf. Table 5.2). The results are compared to a reference solution
which has been computed by Radau5 with index reduction. The tolerance for the
reference solution has been set to 10−15.

q = 2.48702e−13

qgd1 = −1.53975e−15 qgd2 = −2.98424e−13 qgd3 = 2.3029e−15

qgs1 = −1.81303e−17 qgs2 = 2.32257e−15 qgs3 = −2.39079e−27

qsb1 = 5.67893e−13 qsb2 = 5.64588e−13 qsb3 = 1.00869e−13

qdb1 = 5.64665e−13 qdb2 = 1.0085e−13 qdb3 = 1.03103e−13

e1 = 4.97404 e2 = 4.97434 e3 = 4.9997

e4 = 5.0 e5 = −3.12224e−39 e6 = −0.0387095

e7 = 4.97373 e8 = 7.84801e−44 e9 = 3.98465e−14

e10 = −0.0383817 e11 = −0.0385456 e12 = −2.5

iDD = −7.5543e−05 iBB = 9.98898e−05

i1 = −3.58793e−25 i2 = −2.43469e−05

Table 5.2.: Initial values for the NAND gate with level B MOSFET and piecewise linear
input signals

For piecewise linear input functions, Daspk3.1 failed to integrate the circuit DAE
for accuracies smaller than 10−5, whether the index reduction was performed or not.
In all cases, the nonlinear solver of Daspk3.1 failed to converge. This suggests that
Daspk3.1 may have some difficulties with the discontinuities in the derivatives of the
input signals. Radau5 failed to converge for prescribed accuracies of 10−10 and 10−12.
If the index reduction was performed, then Radau5 successfully integrated the circuit
DAE for all prescribed accuracies. Figure 5.16, 5.17 and 5.18 show the efficiencies with
respect to the response at node 1 and the currents through the input sources in the case
of piecewise linear input functions. We see, that the solution computed with Daspk3.1

reaches higher accuracies if the index reduction is performed, whereas the accuracies
for the solutions computed without index reduction are independent of the prescribed
accuracies. The same is true for the numerical solutions computed with Radau5 for
prescribed accuracies smaller than 10−7. The bad performance of Radau5 with index
reduction for lower accuracies is again due to the discontinuous derivatives of the input
signals.
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Figure 5.19.: Efficiency with respect to e1 for the NAND gate example with smooth
input signals
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Figure 5.21.: Efficiency with respect to i2 for the NAND gate example with smooth input
signals

129



5. qPsim - Software for circuit simulation

0 2 4 6 8 10 12 14
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

computation time

ac
cu

ra
cy

 o
f t

he
 n

um
er

ic
al

 s
ol

ut
io

n

Efficiency with respect to the current through V
1

 

 
RADAU5, Index 1
RADAU5, Index 2
DASPK3.1, Index 1
DASPK3.1, Index 2

Figure 5.20.: Efficiency with respect to i1 for the NAND gate example with smooth input
signals

To exclude the effects caused by the discontinuities, the parts of the input functions
that model the switching of a signal from LOW to HIGH and vice versa have been
replaced by the cubic polynomials

p1(x) = − 2

25
x3 +

3

5
x2, if the signal switches from LOW to HIGH,

p2(x) =
2

25
x3 − 3

5
x2 + 5, if the signal switches from HIGH to LOW,

for 0 ≤ x ≤ 5. The switching times are the same as for the original piecewise linear
input functions. The input signals obtained in this way have continuous derivatives. The
initial values from [26] were taken as an initial guess to determine the set of consistent
initial values shown in Table 5.3. With the new input functions, Daspk3.1 was able to
compute a numerical solution without index reduction for prescribed accuracies ranging
from 10−3 to 10−9. With index reduction, it was possible to obtain a numerical solution
with Daspk3.1 for all prescribed accuracies. Radau5 successfully computed a solution
both with and without index reduction for all prescribed accuracies. The numerical
solutions were compared to the solution computed by Radau5 with index reduction at
a prescribed accuracy of 10−15. Figures 5.19, 5.20 and 5.21 show the efficiencies with
respect to the response at node 1 and the currents through the input sources V1 and V2.
It can be seen that both solvers perform much better for all prescribed accuracies if the
code is told to apply the index reduction method.
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q = 2.5e−13

qgd1 = 3.01207e−25 qgd2 = −3.0e−13 qgd3 = 2.32257e−15

qgs1 = 1.19071e−27 qgs2 = 2.32257e−15 qgs3 = −2.39071e−27

qsb1 = 5.67931e−13 qsb2 = 5.67931e−13 qsb3 = 1.0085e−13

qdb1 = 5.67931e−13 qdb2 = 1.0085e−13 qdb3 = 1.03103e−13

e1 = 5.0 e2 = 5.0 e3 = 5.0

e4 = 5.0 e5 = −1.93398e−50 e6 = −0.0387095

e7 = 5.0 e8 = −3.9819e−45 e9 = 3.98452e−14

e10 = −0.0387095 e11 = −0.0387095 e12 = −2.5

iDD = 2.49613e−14 iBB = −4.98238e−14

i1 = 1.50275e−16 i2 = 4.72672e−23

Table 5.3.: Initial values for the NAND gate with level B MOSFET and smooth input
signals
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6. Summary

The main goal of this thesis has been to develop an index reduction method that is
suitable for DAEs that arise from the modeling of a circuit by means of the classical or
the charge-oriented Modified Nodal Analysis. To this end, an introduction to the theory
of general nonlinear and quasi-linear DAEs was given in Chapter 2. Also in Chapter 2,
the index reduction method by minimal extension was presented which was the basis of
the development of structured index reduction methods for circuit DAEs.

In order to be able to generate the DAE which describes the behaviour of a given circuit
in a systematic way, concepts from graph theory have used. Moreover, it is possible to
determine the differentiation index of a circuit DAE by examining the corresponding
circuit graph. If this graph contains CV loops or LI cutsets, then the DAE resulting
from either variant of the Modified Nodal Analysis has differentiation index 2. These
results along with the definitions of the graph theoretical concepts involved have been
summarized in Chapter 3.

Chapter 4 presented the main results. We have shown that under the assumption
that both the capacitance matrix C(vC) and the inductance matrix L(iL) are diagonal
matrices, it is possible to reduce the differentiation index of a circuit DAE in such a way
that the index reduced system still has the structural properties of the original circuit
DAE. For the index reduction method for DAEs from charge-oriented Modified Nodal
Analysis, it was possible to prove that the index reduced system still has a properly
stated leading term. It also has been shown that both index reduction methods from
Chapter 4 can be interpreted as modifications to the original circuit which allows for an
easy application of the proposed methods to existing circuit simulation software.

Finally, Chapter 5 presented an academic circuit simulator which includes the index
reduction method proposed for circuit DAEs from the charge-oriented Modified Nodal
Analysis. The examples which have been considered show that the numerical solvers
Daspk3.1 and Radau5 which have been used to discretize the circuit DAE, perform
better if the index reduction method is applied.

One major drawback of the proposed index reduction methods is that they focus on
circuits for which the capacitance and the inductance matrix are diagonal matrices. For
most circuits arising in industrial applications this assumption will not be fulfilled. To
apply the proposed methods successfully to industrial circuits, a generalization of the
results of this thesis is under investigation. However, it is not clear as of yet if there exists
an interpretation of the generalized method in terms of modifications to the circuit.
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I. Controlled sources

The following conditions for controlled sources in lumped circuits can be found in [25],
[27] or [28].

I.1. Controlled voltage sources

The controlled voltage sources are not allowed to be part of CV loops. Their controlling
elements have to fulfill the conditions given in Table I.1 for voltage controlled voltage
sources (VCVS) and Table I.2 for current controlled voltage sources (CCVS).

The controlling voltage of a VCVS can be the voltages across

1. capacitances,

2. independent voltage sources,

3. CCVSs that are controlled by the currents through

a) inductances,

b) independent current sources,

c) resistances or VCCSs for which the nodes that are incident with the
controlling branch are connected by

i. capacitances,

ii. independent voltage sources,

iii. paths that contain only elements that are described in (3(c)i)
and (3(c)ii),

d) branches that form a cutset with elements described in (3a), (3b)
and (3c),

4. branches that form a loop with elements described in (1), (2) and (3).

Table I.1.: Conditions for voltage controlled voltage sources
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I. Controlled sources

The controlling currents of a CCVS can be currents through

1. inductances,

2. independent current sources,

3. resistances or VCCSs for which the controlling nodes are connected by

a) capacitances,

b) independent voltage sources,

c) VCVSs for which the nodes that are incident with the controlling
branch are connected by

i. capacitances,

ii. independent voltage sources,

iii. paths that contain only elements that are described in (3(c)i)
and (3(c)ii),

d) paths that contain only elements described (3a), (3b) and (3c),

4. branches that form a cutset with elements described in (1), (2) and (3).

Table I.2.: Conditions for current controlled voltage sources
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I.2. Controlled current sources

I.2. Controlled current sources

Each controlled current source has to fulfill at least one of the following condi-
tions:

1. The controlled current source is not part of any LI cutset and the con-
trolling elements fulfill the conditions given in Table I.4 for voltage con-
trolled current sources (VCCS) and Table I.5 for current controlled current
sources (CCCS).

2. There exists a path of capacitive branches that connects the nodes that are
incident with the controlled current source. The controlling elements fulfill
the conditions given in Table I.6 for CCCSs. The VCCSs are controlled
by arbitrary voltages.

3. There exists a path of capacitances and voltage sources that connects the
nodes that are incident with the controlled current source. The control-
ling elements fulfill the conditions given in Table I.7. The VCCSs are
controlled by arbitrary voltages.

Table I.3.: Conditions for the controlled current sources

The controlling voltages of a VCCS can be voltages across

1. capacitances,

2. voltage sources,

3. branches that form a loop with branches that are described in (1) and (2).

Table I.4.: Conditions for voltage controlled current sources
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I. Controlled sources

The controlling current of a CCCS can be the current through

1. inductances,

2. independent current sources,

3. resistances or VCCSs for with the nodes that are incident with the CCCS
are connected by

a) capacitances,

b) voltage sources,

c) paths that contain only elements described in (3a) and (3b),

4. branches that form a cutset with elements described in (1), (2) and (3).

Table I.5.: Conditions for current controlled current sources in Table I.3 (1).

The controlling current of a CCCS can be the current through

1. inductances,

2. independent current sources,

3. resistances,

4. voltage sources that do not belong to any CV loops,

5. VCCSs,

6. a branch that forms a cutset with elements described in (1) – (5).

Table I.6.: Conditions for current controlled current sources in Table I.3 (2).
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I.3. Proof of Theorem 4.1

The controlling current of a CCCS can be the current through

1. inductances,

2. resistances,

3. independent current sources,

4. VCCSs,

5. a branch that forms a cutset with elements described in (1) – (4).

Table I.7.: Conditions for current controlled current sources in Table I.3 (3).

I.3. Proof of Theorem 4.1

Since this change only affects sources that are controlled by either capacitances or in-
dependent voltage sources in CV loops, we only need to consider this kind of sources.
From Tables I.1–I.6, we see that such a controlled source is required to be controlled by
either a capacitance or an independent voltage source or a path that only consists of
capacitances and independent voltage sources. However, every path in G that consists
only of capacitances and independent voltage sources is transformed into a path of the
same kind in G′. As the remaining controlled sources are not affected by the change,
this concludes the proof.

I.4. Proof of Theorem 4.2

First, we consider the case that a source is only controlled by a capacitance in G that
is replaced in G′ by a controlled current source. Table I.8 and Table I.9 list all possible
control relations for this case. Moreover, for each relation the conditions in Table I.1–I.7
that cover the relation are listed. Here, a ← b means that element a is controlled by
element b.
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I. Controlled sources

Possible control relations conditions

VCVS ← repl. capacitance Table I.1 (4)

VCVS ← CCVS ← VCCS ← repl. cap. Table I.1 (3(c)iii)

CCVS ← VCCS ← VCVS ← repl. cap. Table I.2 (3(c)iii)

CCVS ← VCCS ← repl. capacitance Table I.2 (3d)

VCCS ← repl. capacitance Table I.4 (3)

CCCS ← VCCS ← repl. capacitance Table I.5 (3c)

Table I.8.: Sources controlled by replaced capacitances

The second case deals with sources that are controlled by paths of capacitances and
voltage sources in G which include a capacitance that is replaced in G′ by a controlled
current source. Since this capacitance is part of a CV loop, we are able to replace its
branch by a path of independent voltage sources and capacitances. Hence, the conditions
in Appendix I are fulfilled, too.

I.5. Proof of Theorem 4.3

Any voltage source that replaces an inductance in a LI cutset naturally is part of a
cutset that, apart from the voltage source, contains only independent current sources
and inductances. Hence, those voltage sources satisfy the conditions for controlling
elements. Table I.9 lists all possible cases as well as the conditions in Tables I.1-I.7 that
cover them.

Possible control relations conditions

VCVS ← CCVS ← repl. inductance Table I.1 (3d)

CCVS ← repl. inductance Table I.2 (4)

CCCS ← repl. inductance Table I.5 (4),

Table I.6 (6),

Table I.7 (5)

Table I.9.: Source controlled by replaced inductances
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II. Circuit elements in qPsim

II.1. Two-terminal elements

Resistance

• Graphical symbol:

V

R

I

• Branch constitutive relation:

I =
1

R
V, V = RI

• qPsim constructor:

Res::Res(SubCircuit* parent, char* name, BaseNode& p, BaseNode& n,

ad_double r);

Silicon diode

• Graphical symbol:

V

I

• Branch constitutive relation:

I = Is

(
e(V/VT ) − 1

)

Is saturation current Is = 10−14A

VT = kT
e thermal voltage, VT ≈ 25mV

T absolute temperature of the p-n junction

k Boltzmann’s constant

e elementary charge
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II. Circuit elements in qPsim

• qPsim constructor:

Diode::Diode(SubCircuit* parent, char* name, BaseNode& p, BaseNode& n);

Capacitance

• Graphical symbol:

V

C

I

• Branch constitutive relation:

I = C
d

dt
V

• qPsim constructor:

Cap::Cap(SubCircuit* parent, char* name, BaseNode& p, BaseNode& n,

ad_double c);

Inductance

• Graphical symbol:

V

L

I

• Branch constitutive relation:

V = L
d

dt
I

• qPsim constructor:

Ind::Ind(SubCircuit* parent, char* name, BaseNode& p, BaseNode& n,

ad_double l);
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II.1. Two-terminal elements

Independent current source

• Graphical symbol:

V

I

• Branch constitutive relation:

I = I0, V arbitrary

• qPsim constructor:

Isrc::Isrc(SubCircuit* parent, char* name, BaseNode& p, BaseNode& n,

ad_double i0);

If the current source is time depending, i.e. I0 = i(t), then the user has to provide
the method time stimulus(ad double t) for the circuit under consideration in the
following way

void time_stimulus(ad_double t)

{

i.set_i( <function in t> );

}

Independent voltage source

• Graphical symbol:

V

I

• Branch constitutive relation:

V = V0, Iarbitrary

• qPsim constructor:

Vsrc::Vsrc(SubCircuit* parent, char* name, BaseNode& p, BaseNode& n,

ad_double v0);
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II. Circuit elements in qPsim

If the voltage source is time depending, i.e. V0 = v(t), then the user has to provide
the method time stimulus(ad double t) for the circuit under consideration in the
following way

void time_stimulus(ad_double t)

{

v.set_v( <function in t> );

}

II.2. Twoport elements

Coupled indcutances – transformer

• Graphical symbol:

L1V1 V2

I2I1
M

L2

• Branch constitutive relation:

L1 M

M L2


 d

dt


I1

I2


−


V1

V2


 = 0

The coefficient of coupling K is given by

K =
|M |√
L1L2

, 0 ≤ K < 1.

If K = 1, then the transformer is ideal.

• qPsim constructor:

Cpl::Cpl(SubCircuit* parent, char* name, Ind& L1, Ind& L2,

ad_double k);

Voltage controlled voltage source

• Graphical symbol:

I1=0 I2

V1 V2=mV1
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II.2. Twoport elements

• Branch constitutive relation:

I1 = 0, V2 = mV1

The constant m is called voltage gain.

• qPsim constructor:

VCVS::VCVS(SubCircuit* parent, char* name,

BaseNode& p1, BaseNode& n1,

BaseNode& p2, BaseNode& n2,

ad_double m);

Voltage controlled current source

• Graphical symbol:

I1=0 I2

V1 I2=gV1

• Branch constitutive relation:

I1 = 0, I2 = gV1

The constant g is called transconductance.

• qPsim constructor:

VCIS::VCIS(SubCircuit* parent, char* name,

BaseNode& p1, BaseNode& n1,

BaseNode& p2, BaseNode& n2,

ad_double g);

Current controlled voltage source

• Graphical symbol:

I2I1

V1=0 V2=rI1
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II. Circuit elements in qPsim

• Branch constitutive relation:

V1 = 0, V2 = rI1

The constant r is called transresistance.

• qPsim constructor:

ICVS::ICVS(SubCircuit* parent, char* name,

BaseNode& p1, BaseNode& n1,

BaseNode& p2, BaseNode& n2,

ad_double r);

Current controlled current source

• Graphical symbol:

I2I1

V1=0 I2=aI1

• Branch constitutive relation:

V1 = 0, I2 = aI1

The constant a is called current gain.

• qPsim constructor:

ICIS::ICIS(SubCircuit* parent, char* name,

BaseNode& p1, BaseNode& n1,

BaseNode& p2, BaseNode& n2,

ad_double a);
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II.3. Multiport elements

II.3. Multiport elements

Bipolar transistor

• Graphical symbol:

B

C

E

pnp-transistor

B

C

E

npn-transistor

• qPsim constructor:

Bjt::Bjt(SubCircuit* parent, char* nm,

BaseNode& c, BaseNode& b, BaseNode& e,

double type);

• Parameter:

type=1 npn-transistor

type=-1 pnp-transistor

MOSFET transistor - Level 1

• Graphical symbol:

S

B

G

G

• qPsim constructor:

Mosfet::MosfetL1(SubCircuit* parent, char* name,

BaseNode& drain, BaseNode& gate,

BaseNode& source, BaseNode& bulk,
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II. Circuit elements in qPsim

double ut0, double beta,

double gamma, double phi,

double delta);

• Parameter:

enhancement type depletion type

UT0 0.8V −2.43V

β 1.748 · 10−3A/V 2 5.35 · 10−4A/V 2

γ 0.0
√

V 0.2
√

V

δ 0.02V −1 0.02V −1

Φ 1.01V 1.28V

MOSFET transistor - Level 2

• qPsim constructor:

Mosfet::MosfetL2(SubCircuit* parent, char* name,

BaseNode& drain, BaseNode& gate,

BaseNode& source, BaseNode& bulk,

double ut0, double beta,

double gamma, double phi,

double delta);

• Parameter:

enhancement type depletion type

UT0 2.0V −2.43V

β 1.748 · 10−3A/V 2 5.35 · 10−4A/V 2

γ 0.35
√

V 0.2
√

V

δ 0.02V −1 0.02V −1

Φ 1.01V 1.28V

Remark II.1. The MOSFET level 1 and level 2 models differ in the way in which the
bulk capacitances and the current gain are modelled. In the level 1 model, the bulk ca-
pacitances are assumed to be linear. In the level 2 model these capacitances are modelled
as nonlinear capacitances.

148



Bibliography

[1] Benchmark: NAND gate. www.math.hu-berlin.de/˜caren/nandgatter.ps.

[2] Daspk3.1. http://www.engineering.ucsb.edu/˜cse/software.html. Software pro-
gram.

[3] Dassl. http://www.engineering.ucsb.edu/˜cse/software.html. Software program.

[4] Gelda. http://www.math.tu-berlin.de/numerik/mt/NumMat/Software/GELDA/.
Software program.

[5] Genda. http://www.math.tu-berlin.de/numerik/mt/NumMat/Software/GELDA/.
Software program.

[6] Geoms. http://www.math.tu-berlin.de/numerik/mt/NumMat/Software/GEOMS/.
Software program.

[7] Matlab. http://www.mathworks.com/. Software program.

[8] Radau5. http://www.unige.ch/˜hairer/software.html. Software program.

[9] RadauP. http://www.unige.ch/˜hairer/software.html. Software program.

[10] Sundials. http://www.llnl.giv/CASC/sundials/. Software program.

[11] S. Bächle and F. Ebert. Element-based topological index reduction for differential-
algebraic equations in circuit simulation. Technical Report Matheon 246, TU
Berlin, Germany, 2005.
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