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Abstract

This work studies fixed point algorithms and superiorization in wireless communication
systems. Modern wireless systems perform a great variety of signal processing tasks,
including channel estimation, precoding, combining, signal detection, and peak-to-average
power ratio (PAPR) reduction. The growing demand for mobile data traffic calls for
systems with higher bandwidths, larger antenna arrays, and the capability to serve an
increasing number of devices. As a result, the dimensions of various optimization problems
arising in wireless networks are growing continuously, which increases the computational
cost of algorithmic solutions. Hence, scalable algorithms with low complexity are vital
to meet both real-time requirements and power budgets. For various types of problems,
finding optimal solutions can be too computationally demanding in practice. In this
case, it is desirable to strike a balance between performance and complexity. Ranging
between feasibility seeking and constrained optimization, the superiorization methodology
is a promising means of achieving this trade-off. It relies on the concept of bounded
perturbation resilience of an iterative algorithm. A feasibility-seeking fixed point algorithm
is said to be bounded perturbation resilient if its convergence to a fixed point can be
guaranteed even if certain perturbations are added to the iterate in each step. In this case,
the superiorization methodology can be used to define a sequence of perturbations leading
to a reduced (not necessarily minimal) value of a given objective function. Compared
to exact constrained minimization, superiorization often results in a lower computational
cost.

In this thesis, we investigate the bounded perturbation resilience of several algorithmic
frameworks, including the well-known projections onto convex sets (POCS) algorithm,
the adaptive projected subgradient method (APSM), and certain extrapolated projection
methods. By doing so, we enable their use as basic algorithms for superiorization. We
propose an algorithm for the nonconvex multi-group multicast beamforming problem based
on a perturbed POCS algorithm. The proposed perturbations simultaneously reduce two
objective functions, one of which is nonconvex. Then we harness the bounded perturbation
resilience of the APSM by proposing an algorithm for detection in multiple-input multiple-
output (MIMO) systems based on a superiorized APSM. We also devise a deep unfolded
version of this algorithm, in which the design parameters are learned using a stochastic
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gradient descent method. Moreover, we propose online algorithms for estimating and
tracking time-varying channels with hybrid-beamforming architectures based on an APSM.
The proposed channel estimation algorithms can compensate for random delay and phase
variations in wideband channels. Furthermore, we devise a data-driven analog combining
policy. Finally, we propose extrapolated projection methods for PAPR reduction. We
devise perturbations that aim at incorporating a nonconvex constraint set, which allows
the simultaneous use of certain subcarriers for channel estimation and peak cancellation.
Simulations at the end of each chapter show that the proposed methods can outperform
state-of-the-art techniques, while often resulting in a reduced computational cost.
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Zusammenfassung

Diese Arbeit untersucht Fixpunktalgorithmen und superiorization in drahtlosen Kom-
munikationssystemen. Moderne Funksysteme bewältigen eine Vielzahl von Signalverar-
beitungsaufgaben, wie beispielsweise Kanalschätzung, Precoding, Combining, Signalde-
tektion oder der Reduzierung des Verhältnisses von Spitzen- zu Durchschnittsleistung
(peak-to-average power ratio, PAPR) von Sendesignalen. Die wachsende Nachfrage nach
mobilem Datenverkehr macht Systeme mit höheren Bandbreiten und größeren Antennen-
arrays erforderlich, die darüber hinaus in der Lage sind, eine wachsende Anzahl von Ge-
räten zu versorgen. Infolgedessen nehmen die Dimensionen vieler Optimierungsprobleme
in drahtlosen Netzen ständig zu, was den Rechenaufwand für ihre algorithmische Lösung
erhöht. Daher sind skalierbare Algorithmen mit geringer Komplexität von entscheidender
Bedeutung, um sowohl Echtzeitanforderungen zu erfüllen als auch Energiebudgets einzu-
halten. Die Suche nach einer optimalen Lösung kann in der Praxis für bestimmte Arten
von Optimierungsproblemen zu rechenintensiv sein. In diesem Fall ist es von Interesse,
einen Kompromiss zwischen Approximationsgüte und Rechenaufwand zu finden. Die su-
periorization methodology stellt ein vielversprechendes Mittel dar, um diesen Trade-off zu
erreichen. Hierbei handelt es sich um ein algorithmisches Framework, welches einen Mit-
telweg zwischen der Lösung von Zulässigkeitsproblemen und restringierter Optimierung
darstellt. Sie stützt sich auf das Konzept der bounded perturbation resilience iterativer
Algorithmen. Ein Fixpunktalgorithmus zur Lösung eines Zulässigkeitsproblems gilt als
bounded perturbation resilient, wenn dessen Konvergenz zu einem Fixpunkt auch dann
garantiert werden kann, wenn in jeder Iteration bestimmte Störungen addiert werden. In
diesem Fall kann die superiorization methodology verwendet werden, um eine Folge von
Störungen zu definieren, welche zu einem reduzierten (nicht notwendigerweise minimalen)
Wert einer gegebenen Zielfunktion führen. Auf diese Weise geht superiorization oft in
einem deutlich geringeren Rechenaufwand einher als Verfahren zur exakten Lösung von
restringierten Optimierungsproblemen.

In dieser Arbeit untersuchen wir die bounded perturbation resilience verschiedener Al-
gorithmen, darunter der bekannte projections onto convex sets (POCS)-Algorithmus, die
adaptive projected subgradient method (APSM) sowie extrapolierte Projektionsmethoden.
Auf diese Weise ermöglichen wir deren Verwendung als sogenannte basic algorithms für die
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superiorization. Wir entwickeln einen Algorithmus für das nichtkonvexe multi-group mul-
ticast beamforming-Problem, der auf einem gestörten POCS-Algorithmus basiert. Die vor-
geschlagenen Störungen reduzieren gleichzeitig zwei Zielfunktionen, von denen eine nicht-
konvex ist. Anschließend nutzen wir die bounded perturbation resilience der APSM, indem
wir einen Algorithmus zur Detektion in multiple-input multiple-output (MIMO)-Systemen
vorschlagen, welcher auf einer superiorisierten APSM beruht. Zusätzlich entwickeln wir
mittels deep unfolding eine Version dieses Algorithmus, deren Designparameter mit Hilfe
eines stochastischen Gradientenabstiegsverfahrens gelernt werden. Darüber hinaus schla-
gen wir Online-Algorithmen zur Schätzung und Verfolgung (Tracking) von zeitvarianten
Kanälen mit hybrid beamforming-Architekturen vor, die auf einer APSM basieren. Die vor-
geschlagenen Kanalschätzverfahren können zufällige Laufzeit- und Phasenschwankungen
in Breitbandkanälen kompensieren. Darüber hinaus entwickeln wir eine datengesteuerte
analog combining policy. Schlussendlich verwenden wir extrapolierte Projektionsmetho-
den zur PAPR-Reduktion. Wir schlagen Störungen vor, die darauf abzielen, eine nicht-
konvexe Nebenbedingung einzubeziehen, welche die gleichzeitige Verwendung bestimmter
Unterträger für die Kanalschätzung und die Auslöschung von Signalspitzen ermöglicht.
Simulationen am Ende der jeweiligen Kapitel zeigen, dass die vorgeschlagenen Methoden
den Stand der Technik übertreffen können, wobei sie oft mit geringeren Rechenkosten
verbunden sind.
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1. Introduction

1.1. Motivation

Digital signal processing is ubiquitous in all parts of modern wireless communication sys-
tems. While linear processing was prevalent in the early days of digital communications,
the rising demand for mobile communication has driven the development of increasingly
complex system architectures, calling for more sophisticated nonlinear processing tech-
niques. Over the past three decades, growing computational power has facilitated the ap-
plication of convex optimization techniques to approach a vast variety of problems in signal
processing and communications. Although convex optimization problems typically admit
polynomial-time solutions, strict latency requirements combined with ever-increasing sys-
tem dimensions of wireless networks can hinder the use of general-purpose convex solvers
in practice. Moreover, novel communication schemes often involve nonconvex optimization
problems, many of which are known to be NP-hard and hence do not admit polynomial-
time solutions (unless NP=P).

When finding an optimal solution is not possible within the available time budget, one
typically has to resort to suboptimal approximation techniques. In this case, fixed point
algorithms are of particular interest. Given some initial point, a fixed point algorithm
produces a sequence of estimates by iteratively applying certain mappings. In some cases,
this sequence provably converges to an optimal solution. Apart from that, it may exhibit
weaker guarantees including monotone approximation of a solution or convergence to a
feasible point. As fixed point methods often have constant computational cost throughout
all iterations, they naturally allow to strike a balance between performance and complexity
by terminating the algorithm after a certain number of iterations.

The superiorization methodology [CDH10] is an algorithmic framework that ranges be-
tween constrained minimization and feasibility seeking [Cen15]. By interleaving fixed point
iterations (with respect to the feasible set) with perturbations that aim at reducing the
objective value, superiorization can achieve considerable complexity reduction compared
to iterative techniques for constrained minimization [CDH+14]. Whereas the goal of con-
strained minimization is to find a feasible point (i.e., a point satisfying all constraints) for
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1. Introduction

which the objective value is minimal, superiorization1 typically builds upon a simple fixed
point algorithm that produces a sequence of points provably converging to a feasible point.
This fixed point algorithm serves as the so-called basic algorithm. For a given objective
function, the superiorization methodology generates a superiorized version of the basic
algorithm by adding small perturbations in each iteration with the intent to find a feasible
point with reduced (not necessarily minimal) objective value. A central concept in the
superiorization methodology is the bounded perturbation resilience of iterative algorithms.
Feasibility seeking algorithms having this property are guaranteed to converge to a feasible
point even if summable perturbations are added to their iterates in each iteration. Once
bounded perturbation resilience of an algorithm has been established, the convergence of
superiorized versions of this algorithm is guaranteed automatically.

1.2. Contributions and Outline

This thesis aims at studying the potential of iterative algorithms to tackle a range of prob-
lems arising in wireless communication systems. One particular goal is to develop efficient
algorithms with guaranteed convergence that can be used to approximate solutions to (NP-
hard) nonconvex optimization problems. Some of the proposed techniques build upon the
concepts of bounded perturbation resilience and superiorization. Therefore, a second goal
of this thesis is to show the bounded perturbation resilience of algorithmic frameworks,
from which a variety of practical algorithms can be derived. The main contributions of
this thesis are organized as follows.

In Chapter 2, we investigate the bounded perturbation resilience of iterative algorithms
that will be used in the subsequent chapters. We derive convergence criteria for perturbed
versions of the projections onto convex sets (POCS) algorithm (see, e.g., [SY98]), the
adaptive projected subgradient method (APSM) [YO05], and the extrapolated alternating
projection methods proposed in [GPR67] and [BCK06], respectively. In particular, we
derive conditions for weak and strong convergence in (possibly infinite dimensional) real
Hilbert spaces.
Some of the results on the bounded perturbation resilience of POCS in Section 2.1 have
been presented in the conference publication [3] and the journal paper [7]. The results
on the bounded perturbation resilience of the APSM in Section 2.2 have been partially
presented in the conference paper [10], which is to appear, and they are covered in full by
the journal paper [11], which has been submitted for publication.

In Chapter 3, we propose a superiorized version of POCS to approximate solutions to
1In this thesis, we only consider weak superiorization, in which the underlying feasibility problem is

assumed to be consistent. See [Cen15] for a detailed overview of weak and strong superiorization.
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1.2. Contributions and Outline

the nonconvex multi-group multicast beamforming problem with quality of service (QoS)
constraints and per-antenna power constraints. We apply POCS to a convex relaxation
of the original problem, so that we can guarantee its convergence. Then we introduce
perturbations that aim at simultaneously reducing two superiorization objectives, one of
which is nonconvex. By proving that the proposed perturbations are bounded, we can
guarantee the convergence of the superiorized algorithm.
The work in Chapter 3 has been partially presented in the conference paper [3] and to its
full extent in the journal publication [7].

In Chapter 4, we propose an iterative algorithm with low computational complexity
for multiple-input multiple-output (MIMO) detection. We devise a variant of the APSM
to minimize asymptotically a sequence of convex cost functions over the convex hull of the
constellation constraint. Then we introduce perturbations that steer the iterates of the
APSM towards the discrete constellation constraint set. Unlike existing iterative MIMO
detectors based on approximate message passing (AMP), this set-theoretic approach does
not impose any assumptions on the channel matrix. Thus we can guarantee its convergence
even for realistic channel models. Moreover, we show that the proposed method gives rise
to a new type of deep unfolding-based MIMO detector.
The major part of the work in Chapter 4 has been presented in the conference paper [10]
and the journal paper [11].

In Chapter 5, we consider the APSM in an online setting. We propose an algorithm for
online channel estimation and tracking with hybrid beamforming architectures. Addition-
ally, inspired by the superiorization methodology, we propose a heuristic that implements
a regularization to promote sparsity of the channel estimates in delay- and angular do-
main. In contrast to many existing approaches, our proposed technique does not assume
block fading, so it can be used in realistic settings in which the channel coefficients change
continuously over time. The online structure of the proposed algorithms allows us to com-
bine them with mechanisms that compensate for random delay and phase variations, and
that adapt the analog beamforming policy based on previous channel observations.
Some parts of the work in Chapter 5 have been published in the conference paper [6].

In Chapter 6, we address the peak-to-average power ratio (PAPR) problem in or-
thogonal frequency division multiplexing (OFDM) systems, which is caused by the super-
position of a large number of subcarriers. We investigate the potential of extrapolated
alternating projection methods to improve the performance and to reduce the complexity
compared to the POCS algorithm, which has been used in several previous works. Fur-
thermore, we introduce a nonconvex constraint set that allows to reduce the PAPR by
modifying the phase of subcarriers that are used for channel estimation with phaseless pi-
lots [WBJ15a, WBJ15b]. Exploiting the bounded perturbation resilience of the proposed
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1. Introduction

algorithms, we introduce perturbations that incorporate this nonconvex constraint.
The work in Chapter 6 is an extended version of the results published in the conference
paper [1].

Historical Notes

Since the early work by von Neumann [vN33], the POCS algorithm considered in Sec-
tion 2.1 has been rediscovered and refined many times: The alternating projection method
in [vN33] finds a point in the intersection of two subspaces. As pointed out in [NS06],
this result was rediscovered independently in [Aro50], [Nak53], and [Wie55]. Kaczmarcz
[Kac37] used cyclic projections onto hyperplanes to solve a system of linear equations. Ag-
mon, Motzkin and Schoenberg [Agm54, MS54] generalized this cyclic projection method
by introducing relaxed projections, and by extending the convergence proof to half-spaces.
Eremin [Ere65] further generalized these results to closed convex sets in finite dimensional
spaces, Bregman [Bre65] showed the weak convergence of the sequence generated by this
method in the general case, and Gurin, Polyak and Raik [GPR67] derived sufficient con-
ditions for strong convergence.2

By now, the POCS algorithm has become ubiquitous in engineering. Exemplary applica-
tions include medical imaging [YW82, SS84, SKPJ04, GMZ+16, TBL+18], seismic imag-
ing [GCL+10, YGC12, GWC+15, ZZZ+20], road design [BK15], and distributed learn-
ing [AMB17]. Applications in wireless communications include localization in wireless
sensor networks [BH06, RSS06], PAPR reduction [GP97, Arm02, KJ03], multiuser detec-
tion [VLH13], and radar waveform design [EBL+15], among many others. The APSM
covered in Section 2.2 has been used for multiaccess interference suppression [CY08],
acoustic feedback cancellation [YY06, WZQZ10], robust beamforming [STY09], robust
subspace tracking [CKT14], online radio-map reconstruction [KCV+15], kernel-based on-
line classification [STY08], PAPR reduction [CY09], distributed learning in diffusion net-
works [CYM09, CST11, SYCD18], and adaptive symbol detection [ACYS18, ACYS20].
The extrapolated alternating projection methods addressed in Section 2.3 can be used to
solve feasibility problems with two closed convex sets. Hence they are applicable to many
of the applications of POCS listed above. Applications of extrapolated alternating projec-
tion methods in the literature include image reconstruction [CCC+12] and uplink-downlink
conversion of spatial covariance matrices [MCS18, MCS21]. Owing to the widespread use
of the algorithmic frameworks under consideration, the theoretical results in Chapter 2
can be valuable for practical applications beyond those presented in this thesis.

2Further details regarding the history of projection methods can be found in [Com93, BB96, CC15].
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1.3. Notation and Preliminaries

1.3. Notation and Preliminaries

Unless otherwise specified, lowercase letters denote scalars, lowercase letters in bold type-
face denote vectors, uppercase letters in bold typeface denote matrices. The sets N, Z, R+,
R++, R and C denote the nonnegative integers, integers, nonnegative real numbers, posi-
tive real numbers, real numbers and complex numbers, respectively. The set of summable
sequences in R+ is denoted by ℓ1+(N). The imaginary unit, i.e., the solution in C to
j2 = −1, is denoted by j. The real part, imaginary part, magnitude, angle, and complex
conjugate of a complex number z ∈ C are denoted by Re{z}, Im{z}, |z|, ∠z, and z∗,
respectively. To complex vectors and matrices, these functions are applied entry-wise.
The sign and the nonnegative part of a real number x ∈ R are denoted by sgn(x) and
(x)+ := max{x, 0}, respectively. We write ⌊·⌋ : R → Z for the floor function, which is
given by ⌊x⌋ = max{m ∈ Z | m ≤ x}. The cardinality of a discrete set I is denoted by
|I|. Given two sets A and B, we write A ⊂ B or B ⊃ A if (∀x ∈ A) x ∈ B. Given two
statements A and B, we write A =⇒ B if A is sufficient for B, and A ⇐⇒ B if A is
necessary and sufficient for B.

The transpose, Hermitian transpose, inverse, and Moore-Penrose inverse of a matrix A
are denoted by AT , AH , A−1 and A†, respectively. An orthogonal matrix is a matrix
Q ∈ RN×N satisfying Q−1 = QT and a unitary matrix is a matrix U ∈ CN×N satisfying
U−1 = UH . The Kronecker product of two matrices A and B is denoted by A ⊗B and
their direct sum is denoted by A ⊕ B. We write I for the identity operator and IN for
the N ×N -identity matrix. If the dimension is clear from the context, we sometimes omit
the subscript N . The all-zero vector or matrix is denoted by 0 and the ith Cartesian unit
vector is denoted by ei, where the dimension of the space will be clear from the context.
The singular values of a matrix A ∈ CN×N are denoted by σ1(A) ≥ · · · ≥ σN (A). For
square matrices A we define diag(A) to be the column vector composed of the diagonal
entries of A, and for row or column vectors a we define diag(a) to be a square diagonal
matrix having a as its diagonal. For a Hermitian or symmetric matrix A, write A ≽ 0
if A is positive semidefinite (PSD). The principal square root of a PSD matrix A ≽ 0
is denoted by A

1
2 . The submatrix consisting of the entries in rows i1 through i2 and

columns k1 through k2 of a matrix A is written as Ai1:i2,k1:k2 . The vectorization operator
that stacks the columns of a matrix into a column vector is denoted by vec(·). For p ≥ 1,
we write ∥x∥p for the p-norm of a column vector x, where ∥ · ∥2 is the Euclidean norm. In
compliance with established literature, we sometimes refer to ∥ · ∥1 as ℓ1-norm, even if the
underlying space is finite-dimensional. The Frobenius norm, spectral norm, and nuclear
norm of a matrix A are denoted by ∥A∥F , ∥A∥2, and ∥A∥∗. We denote by U(a, b) the
uniform distribution over an interval [a, b] ⊂ R. The multivariate normal distribution with
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mean µ ∈ RN and covariance Γ ≽ 0 ∈ RN×N is denoted by N (µ,Γ) and the circularly-
symmetric multivariate complex normal distribution with mean µ ∈ CN and covariance
Γ ≽ 0 ∈ CN×N is denoted by CN (µ,Γ). The expected value of a random variable x

is denoted by E[x]. We write arg min and arg max for the sets of points with minimal
and maximal objective value, respectively. These sets are singletons if the minimum (or
maximum) of the respective function is unique.

Throughout this thesis, we denote by (H, ⟨·, ·⟩) a real Hilbert space with induced norm
(∀x ∈ H) ∥x∥ :=

√︁
⟨x,x⟩. Given a function f : H → R and a constant c ∈ R, we denote

by lev≤c := {x ∈ H | f(x) ≤ c} a sublevel set of f . We say that a function f is closed if all
of its sublevel sets are closed. Moreover, we say that a function f : H → R∪{−∞,+∞} is
coercive if f(x)→ +∞ whenever ∥x∥ → +∞. The distance between two points x,y ∈ H
in a real Hilbert space (H, ⟨·, ·⟩) is d(x,y) = ∥x − y∥, where ∥ · ∥ is the norm induced by
the inner product ⟨·, ·⟩. The distance between a point x ∈ H and a nonempty set C ⊂ H
is defined as d(x, C) = infy∈C ∥x − y∥. Following [BCL02], we define the projection of a
point x ∈ H onto a nonempty subset C ⊂ H as the set

ΠC(x) = {y ∈ C | d(x,y) = d(x, C)} ,

and we denote by PC : H → C an arbitrary but fixed selection of ΠC , i.e., (∀x ∈ H)
PC(x) ∈ ΠC(x). If C is nonempty, closed, and convex, the set ΠC(x) is a singleton for all
x ∈ H, so ΠC has a unique selection PC , which itself is called a projector. For nonempty
closed nonconvex sets C in finite-dimensional Hilbert spaces, ΠC(x) is nonempty for all
x ∈ H, although it is not in general a singleton. Nevertheless, we will refer to the selection
PC as the projector, as the distinction from the set-valued mapping ΠC will always be
clear.

Fact 1.1. (Projection Theorem) [BC11, Theorem 3.16] Let C ⊂ H be a nonempty
closed convex set. Then (∀x ∈ H) ΠC(x) is a singleton, and (∀p ∈ H) its unique
element PC(x) satisfies

p = PC(x) ⇐⇒ [p ∈ C and (∀y ∈ C) ⟨y− p,x− p⟩ ≤ 0] .

The following property will be used in Chapters 3 and 6 to derive closed-form expressions
for the projection onto the intersection of certain closed convex subsets.

Proposition 1.1. Let I = {1, . . . ,K} be a finite set and let (∀i ∈ I) Ci ⊂ H be a
nonempty closed convex set. If C :=

⋂︁
i∈I Ci ̸= ∅ and (∀x ∈ H)(∀i ∈ I)(∀k ∈ I \ {i})

6



1.3. Notation and Preliminaries

⟨PCi(x)− x, PCk
(x)− x⟩ = 0, the projection of a point x ∈ H onto the intersection C

satisfies
PC(x) (a)= x +

∑︂
i∈I

(PCi(x)− x) (b)= PCi1
· · ·PCiK

(x),

where i1, . . . , iK is an arbitrary permutation of the indices in I.
Proof.

(a) Define p := x +
∑︁
i∈I(PCi(x)− x). Then (∀y ∈ C) it holds that

⟨y− p,x− p⟩ = ⟨y− x−
∑︂
k∈I

(PCk
(x)− x),−

∑︂
i∈I

(PCi(x)− x)⟩

(i)= −
∑︂
i∈I

⎛⎝⟨y− x, PCi(x)− x⟩ −
∑︂
k∈I
⟨PCk

(x)− x, PCi(x)− x⟩

⎞⎠
(ii)= −

∑︂
i∈I

(⟨y− x, PCi(x)− x⟩ − ⟨PCi(x)− x, PCi(x)− x⟩)

(iii)= −
∑︂
i∈I
⟨y− PCi(x), PCi(x)− x⟩⏞ ⏟⏟ ⏞

≥0

(iv)
≤ 0

where (i) and (iii) follow from additivity of inner products, (ii) holds by assump-
tion, and (iv) follows from Fact 1.1. Consequently, the equality (a) follows im-
mediately from Fact 1.1.

(b) Let A ⊂ H and B ⊂ H be closed convex subsets such that A∩B ̸= ∅ and (∀x ∈ H)
⟨PA(x)− x, PB(x)− x⟩ = 0. According to (a), it holds that (∀x ∈ H) PA∩B(x) =
PB(x) + (PA(x)− x).

Now, we fix x ∈ H and define

M := {y ∈ H | ⟨y− PA(x),x− PA(x)⟩ ≤ 0}

= {y ∈ H | ⟨y,a⟩ ≤ b} ,

where a := x−PA(x) and b := ⟨PA(x),x−PA(x)⟩. Note that for x /∈ A, M⊂ H
is a half-space, whereas for x ∈ A, M = H. Thus according to [SY98, Eq. (4.2-
12)], the projection of a point y ∈ H onto M is given by

PM(y) =

⎧⎨⎩y− ⟨y,a⟩−b
∥a∥2 a if x /∈ A and y /∈M

y otherwise.

7
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If x /∈ A, we have that ∥x− PA(x)∥ > 0, so

⟨PB(x)− PA(x),x− PA(x)⟩ = ⟨PB(x)− x,x− PA(x)⟩⏞ ⏟⏟ ⏞
=0

+∥x− PA(x)∥2 > 0.

Consequently, since PA(x) ∈ M, Fact 1.1 implies that PB(x) /∈ M whenever
x /∈ A. Hence, the projection of y = PB(x) onto M can be written as

PMPB(x) =

⎧⎨⎩PB(x)− ⟨PB(x)−x+x−PA(x),x−PA(x)⟩
∥x−PA(x)∥2 (x− PA(x)) if x /∈ A

PB(x) otherwise.

= PB(x)− (x− PA(x)) = PA∩B(x),

where the last equality follows from (a). According to the projection theorem in
Fact 1.1, (∀z ∈ A) ⟨z−PA(x),x−PA(x)⟩ ≤ 0, so it is clear that A∩B ⊂ A ⊂M.
Thus we have

d(PB(x),A ∩ B) ≥ d(PB(x),A) ≥ d(PB(x),M) = ∥PB(x)− PMPB(x)∥

= ∥PB(x)− PA∩B(x)∥ ≥ d(PB(x),A ∩ B),

whereby d(PB(x),A) = ∥PB(x) − PA∩B(x)∥. Since the projection of PB(x) onto
the closed convex set A, i.e., the point in A with distance d(PB(x),A) from PB(x),
is unique, d(PB(x),A) = ∥PB(x)− PA∩B(x)∥ implies that PAPB(x) = PA∩B(x).

Now, for an arbitrary permutation i1, . . . , iK of the indices in I, we define (∀n ∈
{1, . . . ,K}) An :=

⋂︁n
k=1 Cik . According to (a), we have (∀n ∈ {1, . . . ,K − 1})

⟨PAn(x)− x, PCin+1
(x)− x⟩ =

n∑︂
k=1
⟨PCik

(x)− x, PCin+1
(x)− x⟩ = 0,

whereby PAn+1 = PAn∩Cin+1
= PAnPCin+1

. Consequently, it holds that

PC = PAK
= PAK−1PCiK

= PAK−2PCiK−1
PCiK

= · · · = PCi1
· · ·PCiK

,

which is the desired result.

In this work, we extend the notion of proximal mappings to proper closed (possibly
nonconvex) functions.

Definition 1.1 (Proximal Mapping). Let f : H → (−∞,+∞] be a proper, closed
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1.3. Notation and Preliminaries

function. The proximal mapping proxf : H → H associated with f satisfies (∀x ∈ H)

proxf (x) ∈ P(x) := arg miny∈H

(︃
f(y) + 1

2∥x− y∥2
)︃
,

where we assume that (∀x ∈ H) P(x) ̸= ∅.

If f is proper, lower-semicontinuous, and convex, the set P(x) is a singleton for all x ∈
H, and its unique element is referred to as proxf (x). In this case, the assumption in
Definition 1.1 is always satisfied. If f is nonconvex, we denote by proxf (x) a unique
point selected deterministically from the set P(x). Note that P(x) is nonempty for all
x ∈ H if (H = RN , ⟨·, ·⟩) is a finite dimensional real Hilbert space and the function
y ↦→ f(y) + 1

2∥x− y∥2 is coercive for all x ∈ H [Bec17, Theorem 6.4]. The following fact
is a special case of [CP11, Table 10.1.x]. It states a property of proximal mappings that
will be useful in the subsequent chapters.

Fact 1.2. Let (H = RN , ⟨·, ·⟩) be a finite dimensional real Hilbert space. Given a
proper closed function f : H → R ∪ {+∞} and an orthogonal matrix U ∈ RN×N ,
the proximal mapping associated with f(U·) can be expressed in terms of the proximal
mapping associated with f(·), where

(∀x ∈ H) proxf(U·)(x) = UTproxf(·)(Ux).

Given a subset X ⊂ H, a fixed point of a mapping T : X → H is a point x ∈ X
satisfying T (x) = x. The set Fix(T ) = {x ∈ H | T (x) = x} is called the fixed point set
of T [YO05]. The domain of a mapping T is denoted by dom(T ). Given two mappings
T1 : H ⊃ D1 → R1 ⊂ H and T2 : H ⊃ D2 → R2 ⊂ H such that R1 ⊂ D2, we use
the shorthand T2T1 := T2 ◦ T1 to denote their concatenation, which is defined by the
composition (∀x ∈ H) T2T1(x) := (T2 ◦ T1)(x) = T2 (T1(x)). We use the shorthand
T = Tm · · ·T1 to denote the compositions of m mappings Ti for i ∈ {1, . . . ,m}. Moreover,
(∀t ∈ N), we write T t to denote the t-times composition of T with itself, where we use the
convention that T 0 = I.

Definition 1.2 (Selected Properties of Mappings). [BC11, Definition 4.1,4.33, Propo-
sition 4.2], [YO05], [HX17], [Ceg12, Definition 2.2.1] Let X ⊂ H be a nonempty subset
of H. A mapping T : X → H is called
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• nonexpansive if

(∀x ∈ X )(∀y ∈ X ) ∥T (x)− T (y)∥ ≤ ∥x− y∥.

• averaged nonexpansive or α-averaged nonexpansive if there exist α ∈ (0, 1) and
a nonexpansive mapping R : X → H such that T = (1− α)I + αR.

• firmly nonexpansive (1/2-averaged nonexpansive) if

(∀x ∈ X )(∀y ∈ X ) ∥T (x)− T (y)∥2 ≤ ⟨T (x)− T (y),x− y⟩,

or equivalently, if 2T − I is nonexpansive.

• quasi-nonexpansive if Fix(T ) ̸= ∅ and

(∀x ∈ X )(∀y ∈ Fix(T )) ∥T (x)− y∥ ≤ ∥x− y∥.

• averaged quasi-nonexpansive or α-averaged quasi-nonexpansive if there exist α ∈
(0, 1) and a quasi-nonexpansive mapping R : X → H such that T = (1− α)I +
αR.

• firmly quasi-nonexpansive (1/2-averaged quasi-nonexpansive) if Fix(T ) ̸= ∅ and

(∀x ∈ X )(∀y ∈ Fix(T )) ∥T (x)− y∥2 ≤ ∥x− y∥2 − ∥T (x)− x∥2,

or equivalently, if 2T − I is quasi-nonexpansive.

• κ-attracting quasi-nonexpansive if Fix(T ) ̸= ∅ and

(∃κ > 0)(∀x ∈ X )(∀y ∈ Fix(T )) ∥T (x)− y∥2 ≤ ∥x− y∥2 − κ∥x− T (x)∥2.

To derive the theoretical results in Chapter 2, we use the following additional facts
about nonexpansive and quasi-nonexpansive mappings.

Fact 1.3. [Ceg12, Theorem 2.1.13] Let X ⊂ H, let Ti : X → X , i ∈ I = {1, . . . ,m}
be nonexpansive mappings, and define T := Tm · · ·T1. If Tj(X ) = {y ∈ H | (∃x ∈
X ) y = Tj(x)} is bounded for at least one j ∈ I, then Fix(T ) ̸= ∅.
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Fact 1.4. [Ceg12, Theorem 2.1.14] Let X ⊂ H, let Ti : X → H, i ∈ I = {1, . . . ,m}
be nonexpansive mappings with a common fixed point, and define T :=

∑︁
i∈I wiTi,

where (∀i ∈ I) wi > 0 and
∑︁
i∈I wi = 1. Then Fix(T ) =

⋂︁
i∈I Fix(Ti).

Fact 1.5. [YO05, Fact 1], [HX17, Proposition 2.3] Let T1, . . . , Tm : H → H be
(averaged) nonexpansive mappings. Then the composition Tm · · ·T1 is also (averaged)
nonexpansive. Moreover, Fix(Tm · · ·T1) =

⋂︁
i∈{1,...,m} Fix(Ti) whenever the mappings

have a common fixed point, i.e., when
⋂︁
i∈{1,...,m} Fix(Ti) ̸= ∅.

Fact 1.6. Let X ⊂ H and let the mapping T : X → H be (α-averaged) nonexpansive
with Fix(T ) ̸= ∅. Then T is also (α-averaged) quasi-nonexpansive.

Proof. By nonexpansivity of T , (∀x ∈ X ) (∀y ∈ Fix(T ))

∥T (x)− T (y)∥ = ∥T (x)− y∥ ≤ ∥x− y∥,

so T is also quasi-nonexpansive. Moreover, if T is α-averaged nonexpansive, there
exists a nonexpansive mapping R : X → H such that T = (1 − α)I + αR. Since
R and I are nonexpansive and α ∈ (0, 1), Fact 1.4 implies that Fix(T ) = Fix(R),
so Fix(R) ̸= ∅. Hence R is also quasi-nonexpansive, whereby T is α-averaged quasi-
nonexpansive.

Fact 1.7. [YO05, Proposition 1(b)] Let α > 0. Then T : H → H is α-averaged
quasi-nonexpansive if and only if T : H → H is 1−α

α -attracting quasi-nonexpansive
with Fix(R) = Fix(T )

The following fact is a slight generalization of the result in [YO05, Proposition 1(d)]
and [Ceg12, Corollary 2.1.47] to the case in which the two mappings do not necessarily
have the same domain.

Fact 1.8. [YO05, Proposition 1(d)], [Ceg12, Theorem 2.1.46 & Corollary 2.1.47] Let
X1,X2 ⊂ H, let T1 : X1 → X2 be η1-attracting quasi-nonexpansive and let T2 : X2 → X1

be η2-attracting quasi-nonexpansive with Fix(T1)∩Fix(T2) ̸= ∅. Then T2T1 : X1 → X1

is η1η2
η1+η2

-attracting quasi-nonexpansive with Fix(T2T1) = Fix(T1) ∩ Fix(T2).

The proof of Fact 1.8 is identical to the proof of [Ceg12, Theorem 2.1.46].
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Fact 1.9. [BC11, Section 16.1] Let f : H → R be a continuous convex functiona and
denote by

(∀x ∈ H) ∂f(x) := {g ∈ H | (∀y ∈ H) ⟨y− x,g⟩+ f(x) ≤ f(y)} (1.1)

the subdifferential (i.e., the set of all subgradients) of f at x. Then (∀x ∈ H)
∂f(x) ̸= ∅.

aNote that convex functions f : H → R are not in general continuous if H is infinite dimensional.

Fact 1.10. [BC01, Proposition 2.3] Let f : H → R be a continuous convex function
such that lev≤0f := {x ∈ H | f(x) ≤ 0} ≠ ∅ and let g(x) ∈ ∂f(x) be a subgradient of
f at x ∈ H. Then the subgradient projector

T : H → H : x ↦→

⎧⎨⎩x− f(x)
∥g(x)∥2 g(x) if f(x) > 0

x if f(x) ≤ 0
(1.2)

is firmly quasi-nonexpansive, i.e., the mapping 2T − I is quasi-nonexpansive. Thus,
by Definition 1.2, the mapping (1− λ)I + λT is quasi-nonexpansive for all λ ∈ [0, 2].

Fact 1.11. [YO05, Proposition 2] Let K ⊂ H be a nonempty closed convex set, and
let T be the subgradient projector in (1.2) relative to be a continuous convex function
f with lev≤0f ̸= ∅. Then for any λ ∈ (0, 2), the mapping

T̂ λ := PK ((1− λ)I + λT )

is
(︂
1− λ

2

)︂
-attracting quasi-nonexpansive with fixed point set Fix(T̂ ) = K ∩ lev≤0f .

Definition 1.3 (Bounded Perturbations). A sequence (βnyn)n∈N in H is called a
sequence of bounded perturbations if (βn)n∈N ∈ ℓ1+(N) and (∃r ∈ R)(∀n ∈ N) ∥yn∥ ≤ r.

Definition 1.4 (Weak and Strong Convergence). [Ceg12, Section 1.1.1.3] A sequence
(xn)n∈N in H is said to converge weakly to x ∈ H if for any y ∈ H the sequence
(⟨y,xk⟩)n∈N converges to ⟨y,x⟩. If a subsequence (xkn)n∈N of (xn)n∈N converges
weakly to x, then x is called a weak cluster point of (xn)n∈N. A sequence (xn)n∈N in
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H is said to converge strongly to x ∈ H if limn→∞ ∥xn − x∥ = 0. In this case, we also
write limn→∞ xn = x.

The following important properties of weakly convergent sequences will be used to prove
the results in Chapter 2.

Fact 1.12. [Ceg12, Section 1.1.1.3] Weakly convergent sequences have the following
properties:

(a) A bounded sequence (xn)n∈N in H includes a weakly convergent subsequence.

(b) Strong convergence of a sequence (xn)n∈N in H to x ∈ H implies weak convergence
of (xn)n∈N to x.

(c) If H is finite dimensional, weak convergence of a sequence (xn)n∈N in H to x ∈ H
implies strong convergence of (xn)n∈N to x.

Convergence proofs for various algorithms rely on the notion of Fejér monotonicity. A
sequence (xn)n∈N in H is said to be Fejér monotone relative to a set S ⊂ H, if (∀z ∈
S)(∀n ∈ N) ∥xn+1 − z∥ ≤ ∥xn − z∥. To prove the convergence of perturbed algorithms,
we make use of the following types of quasi-Fejér monotonicity.

Definition 1.5 (Quasi-Fejér Monotonicity). [Com01, Definition 1.1] Let S be a
nonempty subset of H and let (xn)n∈N be a sequence in H. Then (xn)n∈N is

• quasi-Fejér (monotone) of Type-I relative to S if

(∃(εn)n∈N ∈ ℓ1+(N))(∀z ∈ S)(∀n ∈ N) ∥xn+1 − z∥ ≤ ∥xn − z∥+ εn.

• quasi-Fejér (monotone) of Type-II relative to S if

(∃(εn)n∈N ∈ ℓ1+(N))(∀z ∈ S)(∀n ∈ N) ∥xn+1 − z∥2 ≤ ∥xn − z∥2 + εn.

• quasi-Fejér (monotone) of Type-III relative to S if

(∀z ∈ S)(∃(εn)n∈N ∈ ℓ1+(N))(∀n ∈ N) ∥xn+1 − z∥2 ≤ ∥xn − z∥2 + εn.
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Fact 1.13. [Com01, Proposition 3.2]. The different types of quasi-Fejér sequences
relative to a set S ⊂ H are related as follows.

• Type-I =⇒ Type-III

• Type-II =⇒ Type-III

• if S is bounded, then Type-I =⇒ Type-II.

Moreover, will use the following known results to prove the convergence of perturbed
algorithms in Chapter 2.

Fact 1.14. [BC11, Lemma 5.31] Let (αn)n∈N and (βn)n∈N be sequences in R+, and
let (γn)n∈N and (δn)n∈N be sequences in ℓ1+(N) such that

(∀n ∈ N) αn+1 ≤ (1 + γn)αn − βn + δn.

Then the sequence (αn)n∈N converges and
∑︁
n∈N βn converges.

Fact 1.15. [Com01, Proposition 3.2-3.3]. Let (xn)n∈N be a quasi-Fejér sequence (of
Type-I, Type-II, or Type-III) relative to a nonempty set S ⊂ H. Then (xn)n∈N is
bounded and (∀z ∈ S) (∥xn − z∥)n∈N converges.

Fact 1.16. [Opi67, Lemma 2], [Ceg12, Lemma 3.2.5] Let X ⊂ H, T : X → H
be nonexpansive, and y ∈ X be a weak cluster point of a sequence (xn)n∈N. If
limn→∞ ∥T (xn)− xn∥ = 0, then y ∈ Fix(T ).

Fact 1.17. [Com01, Theorem 3.8] Let (xn)n∈N be quasi-Fejér of Type-III relative
to a nonempty set S ⊂ H. Then (xn)n∈N converges weakly to a point in S if and
only if the set of weak cluster points of (xn)n∈N is a subset of S. Note that quasi-
Fejér monotonicity implies that (xn)n∈N is bounded (see Fact 1.15), so the set of weak
cluster points is nonempty.

Additional notation is introduced when needed. Variables are defined independently
within each chapter.
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2. Bounded Perturbation Resilience of
Iterative Algorithms

In this section, we investigate the bounded perturbation resilience of algorithmic frame-
works for fixed point problems in Hilbert spaces. Throughout this thesis, we denote by
(H, ⟨·, ·⟩) a real Hilbert space equipped with inner product ⟨·, ·⟩ inducing a norm by

(∀x ∈ H) ∥x∥ =
√︂
⟨x,x⟩.

The following propositions will be useful for proving the convergence of algorithms con-
sidered in the subsequent sections.

Proposition 2.1. Let (Tn : H → H)n∈N be a sequence of quasi-nonexpansive map-
pings such that C :=

⋂︁
n∈N Fix(Tn) ̸= ∅, and let (βnyn)n∈N be a sequence of bounded

perturbations in H. Then the sequence (xn)n∈N generated by

(∀n ∈ N) xn+1 = Tn (xn + βnyn) , x0 ∈ H,

is quasi-Fejér of Type-I relative to C.
Proof. By quasi-nonexpansivity of Tn, it holds that (∀z ∈ C)(∀n ∈ N)

∥xn+1 − z∥2 = ∥Tn(xn + βnyn)− z∥2

(i)
≤ ∥xn + βnyn − z∥2

= ∥xn − z∥2 + 2βn⟨xn − z,yn⟩+ β2
n∥yn∥2

(ii)
≤ ∥xn − z∥2 + 2βn∥xn − z∥ · ∥yn∥+ β2

n∥yn∥2

= (∥xn − z∥+ βn∥yn∥)2 ,

where (i) follows from quasi-nonexpansivity of Tn and (ii) is an application of the
Cauchy-Schwartz inequality. Since (βnyn)n∈N is a sequence of bounded perturbations,
there exists r > 0 such that (∀n ∈ N) ∥yn∥ ≤ r, and (γn)n∈N := (rβn)n∈N ∈ ℓ1+(N).
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Consequently,
(︁
∃(γn)n∈N ∈ ℓ1+(N)

)︁
(∀z ∈ C)(∀n ∈ N)

∥xn+1 − z∥ ≤ ∥xn − z∥+ γn,

which is the desired result.

Proposition 2.2. Let κ > 0 and let (Tn : H → H)n∈N be a sequence of κ-attracting
quasi-nonexpansive mappings such that C :=

⋂︁
n∈N Fix(Tn) ̸= ∅, and let (βnyn)n∈N be

a sequence of bounded perturbations in H. Then for any bounded subset U ⊂ C the
sequence (xn)n∈N generated by

(∀n ∈ N) xn+1 = Tn (xn + βnyn) , x0 ∈ H

satisfies the following:
(︁
∃(γn)n∈N ∈ ℓ1+(N)

)︁
(∀z ∈ U)(∀n ∈ N)

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − κ∥xn+1 − xn∥2 + γn.

Proof. Since (∀n ∈ N) Tn is κ-attracting quasi-nonexpansive with Fix(Tn) ⊃ C ⊃ U ,
it holds that (∀z ∈ U)(∀n ∈ N)

∥xn+1 − z∥2 ≤ ∥xn + βnyn − z∥2 − κ∥xn+1 − (xn + βnyn)∥2

= ∥xn − z∥2 + 2βn⟨xn − z,yn⟩+ β2
n∥yn∥2

− κ
(︂
∥xn+1 − xn∥2 + 2βn⟨yn,xn − xn+1⟩+ β2

n∥yn∥2
)︂

(i)
≤ ∥xn − z∥2 + 2βn⟨xn − z,yn⟩+ β2

n∥yn∥2

− κ
(︂
∥xn+1 − xn∥2 + 2βn⟨yn,xn − xn+1⟩

)︂
(ii)
≤ ∥xn − z∥2 + 2βn∥xn − z∥∥yn∥+ β2

n∥yn∥2

− κ∥xn+1 − xn∥2 + 2κβn∥yn∥∥xn − xn+1∥

= ∥xn − z∥2 − κ∥xn+1 − xn∥2

+ 2βn∥yn∥ (∥xn − z∥+ κ∥xn − xn+1∥) + β2
n∥yn∥2,

where (i) follows from nonnegativity of βn∥yn∥ and (ii) is a two-fold application of
the Cauchy-Schwartz inequality. By Proposition 2.1, (xn)n∈N is quasi-Fejér of Type-I
relative to C, so Fact 1.15 ensures that (xn)n∈N is bounded. Boundedness of (xn)n∈N,
(yn)n∈N and U , guarantee the existence of some r > 0 such that (∀n ∈ N)(∀z ∈ U)

16



∥xn − z∥+ κ∥xn − xn+1∥ ≤ r and (∀n ∈ N) ∥yn∥ ≤ r. Consequently we can write

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − κ∥xn+1 − xn∥2 + βnr
2 (2 + βn)

≤ ∥xn − z∥2 − κ∥xn+1 − xn∥2 + βnr
2 (2 + b) ,

where we defined b :=
∑︁
n∈N βn. Therefore, defining c := r2(2 + b) and (γn)n∈N :=

(cβn)n∈N ∈ ℓ1+(N) yields the desired result.

Proposition 2.3. Let S ⊂ H be a nonempty subset, let (xn)n∈N be quasi-Fejér of
Type-I relative to S, and let (βnyn)n∈N be a sequence of bounded perturbations. Then
the sequence (zn)n∈N given by (∀n ∈ N) zn = xn + βnyn is also quasi-Fejér of Type-I
relative to S.

Proof. By (Type-I) quasi-Fejér monotonicity of (xn)n∈N, (∃(γn)n∈N ∈ ℓ1+(N))(∀z ∈
S)(∀n ∈ N) ∥xn+1− z∥ ≤ ∥xn− z∥+ γn. Thus it holds that (∃(γn)n∈N ∈ ℓ1+(N))(∀z ∈
S)(∀n ∈ N)

∥zn+1 − z∥ = ∥xn+1 + βn+1yn+1 − z∥
(i)
≤ ∥xn+1 − z∥+ βn+1∥yn+1∥
(ii)
≤ ∥xn − z∥+ γn + βn+1∥yn+1∥

= ∥zn − βnyn − z∥+ γn + βn∥yn+1∥
(iii)
≤ ∥zn − z∥+ γn + βn∥yn∥+ βn+1∥yn+1∥⏞ ⏟⏟ ⏞

=:εn

,

where we used the triangle inequality in (i) and (iii), and Type-I quasi-Fejér mono-
tonicity of (xn)n∈N in (ii). Moreover, (εn)n∈N ∈ ℓ1+(N) because (βnyn)n∈N is a se-
quence of bounded perturbations. Consequently, (zn)n∈N is quasi-Fejér of Type-I rel-
ative to S.

Proposition 2.4. Let T : H → H be quasi-nonexpansive with C := Fix(T ) ̸= ∅ and
let B ⊂ H be a bounded set. Then the image T (B) = {y ∈ H | (∃x ∈ B) y = T (x)} of
B under T is also bounded.

Proof. Note that (∀x ∈ H)(∀z ∈ C)

∥T (x)∥
(i)
≤ ∥T (x)− z∥+ ∥z∥

17



2. Bounded Perturbation Resilience of Iterative Algorithms

(ii)
≤ ∥x− z∥+ ∥z∥,

where (i) is an application of the triangle inequality and (ii) follows from quasi-
nonexpansivity of T . Since B is bounded, there exists a bounded set D ⊃ B such that
D ∩ C ̸= ∅. Moreover, boundedness of D implies that (∃c ∈ R+)(∀x ∈ D)(∀z ∈ D ∩ C)
∥T (x)∥ ≤ ∥x− z∥+ ∥z∥ ≤ c, which proves that T (B) ⊂ T (D) is bounded.

In the remainder of this chapter, we investigate the bounded perturbation resilience of
the POCS algorithm, of the APSM, and of two types of extrapolated alternating projection
methods.

2.1. Projections Onto Convex Sets

A vast variety of engineering problems can be posed in terms of convex feasibility problems,
which aim at finding a point in the intersection of a collection of closed convex sets. Each
of the sets represents a certain property of the sought point (estimandum), and any point
in the intersection of all sets possesses all of the desired properties. More formally, let
I := {1, . . . ,K}, let (∀k ∈ I) Ck ⊂ H be a nonempty closed convex set, and consider the
convex feasibility problem

find x ∈ C⋆ :=
⋂︂
k∈I
Ck, (2.1)

where typically C⋆ is assumed to be nonempty. A well-known technique to obtain solutions
to this problem is the POCS algorithm, which is described below. Denote by (∀λ ∈ [0, 2])

T
(λ)
C : H → H : x ↦→ x + λ(PC(x)− x)

the relaxed projection of x ∈ H onto a closed convex set C ⊂ H. Now, we can define a
POCS mapping T : H → H by

T := T
(λK)
CK

· · ·T (λ1)
C1

, (2.2)

where (∀k ∈ I) λk ∈ (0, 2). Starting from any point x0 ∈ H, the POCS algorithm produces
a sequence (xn)n∈N in H via

(∀n ∈ N) xn+1 = T (xn). (2.3)

The POCS algorithm above is a special case of the string-averaging projection method
proposed in [CEH01]. In [CZ13] and [BRZ18], the authors investigate the convergence
of perturbed variants of dynamic string averaging projection methods (see the formal
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definition in [CZ13]). However, the results in these works are restricted to unrelaxed
projections, i.e., to the case where (∀k ∈ I) λk = 1. In [7], we showed that the mapping
in (2.2) is α-averaged nonexpansive. We include this result below.

Remark 2.1. [7, Remark 5] The mapping T in (2.2) is averaged nonexpansive. More-
over, Fix(T ) = C⋆ whenever the solution set C⋆ in (2.1) is nonempty.

Proof. Note that, for every nonempty closed convex subset C ⊂ H, the reflector
RC = I + 2(PC − I) is nonexpansive [BC11, Corollary 4.18]. Therefore, according to
Definition 1.2, (∀λ ∈ (0, 2)) the relaxed projector

T
(λ)
C = I + λ(PC − I) = I + λ

2 (RC − I)

is λ/2-averaged. Further (see Fact 1.5), the composite of finitely many averaged
mappings is α-averaged for some α ∈ (0, 1).a Moreover, as both the identity mapping
and the the projection onto a closed convex set are nonexpansive, Fact 1.4 implies
that (∀C ⊂ H)(∀λ ∈ (0, 2)) Fix

(︂
T

(λ)
C

)︂
= Fix(I) ∩ Fix(PC) = C. Thus by Fact 1.5,

C⋆ ̸= ∅ implies that Fix(T ) =
⋂︁
k∈I Fix

(︂
T

(λk)
Ck

)︂
= C⋆.

aSee [OY02, CY15] for an exact evaluation of the averagedness constant α of the composition of
finitely many averaged mappings.

The perturbation resilience of α-averaged nonexpansive mappings (which by Remark 2.1
include the POCS mapping in (2.2)) in finite dimensional real Hilbert spaces H = RJ has
been proven in [HX17]. Lemma 2.1 generalizes this result to arbitrary real Hilbert spaces.

Lemma 2.1. Let T : H → H be averaged nonexpansive with Fix(T ) ̸= ∅ and let
(βnyn)n∈N be a sequence of bounded perturbations. Then the sequence (xn)n∈N pro-
duced by the recurrence

(∀n ∈ N) xn+1 = T (xn + βnyn), x0 ∈ H

converges weakly to a point in Fix(T ).
Proof. Since Fix(T ) ̸= ∅ by assumption, T is also averaged quasi-nonexpansive,

according to Fact 1.6. Hence by Fact 1.7, T is κ-attracting quasi-nonexpansive for
some κ > 0. Therefore, Proposition 2.2 implies that there exist z ∈ Fix(T ) and
(γn)n∈N ∈ ℓ1+(N) such that (xn)n∈N satisfies

(∀n ∈ N) ∥xn+1 − z∥2 ≤ ∥xn − z∥2 − κ∥xn+1 − xn∥2 + γn.
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2. Bounded Perturbation Resilience of Iterative Algorithms

Thus, according to Fact 1.14, we have that
∑︁
n∈N κ∥xn+1 − xn∥2 <∞, which implies

limn→∞ ∥xn+1 − xn∥2 = 0. Now, define

(∀n ∈ N) ȳn :=

⎧⎨⎩β
−1
n (T (xn + βnyn)− T (xn)) if βn ̸= 0

0 otherwise

and note that
βn∥ȳn∥ = ∥T (xn + βnyn)− T (xn)∥ ≤ βn∥yn∥,

because T is nonexpansive. Therefore, (∃r > 0) (∀n ∈ N) ∥ȳn∥ ≤ r since (yn)n∈N

is bounded by assumption. Moreover, note that (xn)n∈N is bounded due to quasi-
nonexpansivity of T , Proposition 2.1, and Fact 1.15, so owing to nonexpansivity (i.e.,
1-Lipschitz continutity) of T , (∥T (xn)∥)n∈N is also bounded. Hence the triangle in-
equality shows that (∥T (xn)− xn∥)n∈N is bounded and we obtain

0 = lim
n→∞

∥xn+1 − xn∥2

= lim
n→∞

∥T (xn + βnyn)− xn∥2

= lim
n→∞

∥T (xn) + βnȳn − xn∥2

= lim
n→∞

(︂
∥T (xn)− xn∥2 + 2⟨T (xn)− xn, βnȳn⟩+ β2

n∥ȳn∥2
)︂

≥ lim
n→∞

(︂
∥T (xn)− xn∥2 − 2βn∥T (xn)− xn∥∥ȳn∥⏞ ⏟⏟ ⏞

→0

+β2
n∥ȳn∥2⏞ ⏟⏟ ⏞

→0

)︂
= lim

n→∞
∥T (xn)− xn∥2 ≥ 0.

Consequently, Fact 1.16 and the nonexpansivity of T imply that any weak cluster
point of (xn)n∈N is a fixed point of T . Finally, since T is also quasi-nonexpansive,
Proposition 2.1 proves that (xn)n∈N is quasi-Fejér of Type-I (and hence by Fact 1.13
of Type-III). Therefore Fact 1.17 implies the weak convergence of (xn)n∈N to a point
in Fix(T ).

Using Lemma 2.1, we can now derive conditions for the convergence of perturbed ver-
sions of the POCS algorithm in (2.3).

Theorem 2.1. Let T : H → H be the mapping in (2.2) with (∀k ∈ I) λk ∈ (0, 2)
and let (βnyn)n∈N be a sequence of bounded perturbations. Then the sequence (xn)n∈N

produced by the perturbed POCS algorithm

(∀n ∈ N) xn+1 = T (xn + βnyn), x0 ∈ H
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satisfies the following:

(a) If T has a fixed point, (xn)n∈N converges weakly to a point in Fix(T ).

(b) If (∃k ∈ I) such that the set Ck in (2.1) is bounded and λk = 1, then T has a fixed
point and (xn)n∈N converges weakly to a point in Fix(T ).

(c) If the solution set C⋆ in (2.1) is nonempty, (xn)n∈N converges weakly to a solution
x⋆ ∈ C⋆.

(d) If H is finite dimensional, convergence of (xn)n∈N in (a)-(c) is strong.

Proof.

(a) As shown in Remark 2.1, the mapping T is averaged nonexpansive, so this result
is immediate from Lemma 2.1.

(b) By assumption, there exists k ∈ I such that λk = 1, i.e., T (λk)
Ck

= PCk
. Hence it

holds that T (λk)
Ck

(H) = PCk
(H) = {y ∈ H | (∃x ∈ H) y = PCk

(x)} = Ck, which is
bounded by assumption. Therefore, Fact 1.3 implies that the mapping T in (2.2)
has a fixed point. Consequently, weak convergence of (xn)n∈N to a point in Fix(T )
follows from (a).

(c) According to Remark 2.1, C⋆ ̸= ∅ =⇒ Fix(T ) = C⋆, so (c) follows from (a).

(d) This result is immediate from Fact 1.12(c).

2.2. Adaptive Projected Subgradient Method

The POCS algorithm in the previous section can only be applied to convex feasibility
problems with a finite number of sets. In many practical applications, information about
a sought point arrives sequentially, e.g., based on periodic measurements. A means of ap-
proaching estimation problems in this online setting is the APSM [YO05]. This algorithmic
framework generalizes Polyak’s subgradient method [Pol69] to the case of time-varying cost
functions, i.e., it can be used to minimize asymptotically a sequence of convex functions
over a closed convex set. One particular application of the APSM, which we will use in
Chapters 4 and 5, is as follows. Given a closed convex set K ⊂ H, and an infinite collection
(Cn)n∈N of closed convex sets with a nonempty intersection, we can use the APSM to find
a point in the intersection of all but finitely many sets of the sequence (Cn)n∈N. More
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precisely, we can use the APSM to solve the problem

find x ∈ K s.t. x ∈

⎛⎝ ⋂︂
n≥n0

Cn

⎞⎠
for some n0 ∈ N. For instance, the set Cn (and the corresponding cost function Θn) can
be used to encode new information obtained at time instant n, and the convex set K
can incorporate prior knowledge. In this section, we show that the APSM is bounded
perturbation resilient. By doing so, we justify the use of superiorized heuristics based on
the APSM. The proofs follow closely the structure in [YO05], while extending the results
in [YO05] to perturbed versions of the APSM. As in [YO05], Lemma 2.2 and Theorem 2.2
are technical results, which we use to prove the main result in Theorem 2.3. The following
lemma is a generalization of [YO05, Lemma 1] to quasi-Fejér monotone sequences. It
follows line by line the proof in [YO05].

Lemma 2.2. Suppose that a sequence (un)n∈N in H is quasi-Fejér monotone of Type-
I relative to a closed convex set C ⊂ H. In addition, suppose that C has a nonempty
relative interior with respect to a linear variety V ⊂ H, i.e., there exist x0 ∈ C ∩ V
and ε > 0 satisfying U := {x ∈ V | ∥x − x0∥ ≤ ε} ⊂ C. Then (PV(xn))n∈N converges
strongly to a point in V.

Proof. It is sufficient to show that (PV(xn))n∈N is a Cauchy sequence. To do so,
we first show that there exists (γn)n∈N ∈ ℓ1+(N) such that

(∀n ∈ N) 2ε∥PV(un)− PV(un+1)∥ ≤ ∥un − x0∥2 − ∥un+1 − x0∥2 + γn. (2.4)

If PV(un) = PV(un+1) for some n ∈ N, quasi-Fejér monotonicity of (un)n∈N ensures
that (2.4) holds for this n. Therefore it is sufficient to consider n ∈ N such that
PV(un) ̸= PV(un+1). In this case, we have x0 + ε PV (un)−PV (un+1)

∥PV (un)−PV (un+1)∥ ∈ C ∩ V, thus by
Type-I quasi-Fejér monotonicity of (un)n∈N there exists (δn)n∈N ∈ ℓ1+(N) such that
⃦⃦⃦⃦
x0 + ε

PV(un)− PV(un+1)
∥PV(un)− PV(un+1)∥ − un+1

⃦⃦⃦⃦
≤
⃦⃦⃦⃦
x0 + ε

PV(un)− PV(un+1)
∥PV(un)− PV(un+1)∥ − un

⃦⃦⃦⃦
+ δn.

Squaring and expanding the above inequality yields

∥x0 − un+1∥2 + 2ε
⟨︃
PV(un)− PV(un+1)
∥PV(un)− PV(un+1)∥ ,x0 − un+1

⟩︃
+ ε2

≤ ∥x0 − un∥2 + 2ε
⟨︃
PV(un)− PV(un+1)
∥PV(un)− PV(un+1)∥ ,x0 − un

⟩︃
+ ε2
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+ 2δn
⃦⃦⃦⃦
x0 + ε

PV(un)− PV(un+1)
∥PV(un)− PV(un+1)∥ − un

⃦⃦⃦⃦
+ δ2

n.

By rearranging and applying the triangle inequality, we obtain

2ε⟨PV(un)− PV(un+1),un − un+1⟩
∥PV(un)− PV(un+1)∥

≤ ∥x0 − un∥2 − ∥x0 − un+1∥2 + δn

(︃
2
⃦⃦⃦⃦
x0 + ε

PV(un)− PV(un+1)
∥PV(un)− PV(un+1)∥ − un

⃦⃦⃦⃦
+ δn

)︃
≤ ∥x0 − un∥2 − ∥x0 − un+1∥2 + δn (2 ∥x0 − un∥+ 2ε+ δn) .

Since (un)n∈N is quasi-Fejér monotone with respect to C and x0 ∈ C, the sequence
(∥x0−un∥)n∈N converges (see Fact 1.15). Therefore (∃r > 0)(∀n ∈ N) ∥x0 − un∥ < r.
By defining a := (2r+2ε+

∑︁
n∈N δn) we obtain a sequence (γn)n∈N = (aδn)n∈N ∈ ℓ1+(N)

such that

2ε⟨PV(un)− PV(un+1),un − un+1⟩
∥PV(un)− PV(un+1)∥ ≤ ∥x0 − un∥2 − ∥x0 − un+1∥2 + γn.

From firm nonexpansivity of PV (see Definition 1.2) we have

0 ≤ ∥PV(un)− PV(un+1)∥ ≤ ⟨PV(un)− PV(un+1),un − un+1⟩
∥PV(un)− PV(un+1)∥ ,

which proves (2.4). Since (∀n ∈ N) γn ≥ 0, the inequality in (2.4) implies that
(∀n ∈ N)(∀k ∈ N)

2ε∥PV(un)− PV(un+k)∥ ≤ ∥un − x0∥2 − ∥un+k − x0∥2 +
∞∑︂
i=n

γi.

Moreover, since (∥un − x0∥)n∈N converges and (γn)n∈N ∈ ℓ1+(N), (∀δ > 0)(∃N ∈
N)(∀n ≥ N)(∀k ∈ N)

2ε∥PV(un)− PV(un+k)∥ ≤ ∥un − x0∥2 − ∥un+k − x0∥2 +
∞∑︂
i=n

γi < δ,

which shows that (PV(un))n∈N is a Cauchy sequence.

In Theorem 2.2 below, we generalize [YO05, Theorem 1] to quasi-Fejér monotone se-
quences. The proof is a slightly altered version of the proof in [YO05]. It comprises a
somewhat involved geometric argument, which we summarize in the following: By harness-
ing Lemma 2.2 and quasi-Fejér monotonicity of the sequence (un)n∈N relative to a closed
convex set C, we construct a set S(ε) ⊂ H containing every element of the subsequence
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(un)n≥N1 for some N1 ∈ N. Using the same geometric arguments as in [YO05], we show
that the set S(ε) is a subset of the union of two induced norm balls with radius ε > 0, which
we denote by B(ε). As the premise of Theorem 2.2 implies that limn→∞ ∥un+1−un∥ = 0,
we conclude that for sufficiently small ε > 0 there exists N2 ∈ N such that all elements
of the subsequence (un)n≥N2 are contained in a single one of the two induced norm balls.
Thus we deduce that the sequence (un)n∈N converges to the center of this ball. To provide
some intuition, Figure 2.1 illustrates the geometric properties used in the proof. Note that
the arguments in Theorem 2.2 remain valid in arbitrary (possibly infinite dimensional) real
Hilbert spaces.

Figure 2.1.: Illustration of the arguments in Theorem 2.2. The intersection of the grey
regions corresponds to the set S(ε). The red squares have a sidelength of√

2ε, so each of them is enclosed in a ball of radius ε. The union of these two
balls represents the set B(ε).

Theorem 2.2. Let (un)n∈N be a quasi-Fejér sequence of Type-I relative to a closed
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convex set C ⊂ H and suppose that there exist κ > 0 and (γn)n∈N ∈ ℓ1+(N) such that

(∀z ∈ C)(∀n ∈ N) κ∥un − un+1∥2 ≤ ∥un − z∥2 − ∥un+1 − z∥2 + γn. (2.5)

Then (un)n∈N converges strongly to a point in H if C has a nonempty relative interior
with respect to a hyperplane W ⊂ H.

Proof. According to Lemma 2.2, the sequence (PW(un))n∈N converges strongly a
point in W. Hence we can define

v̂ := lim
n→∞

PW(un), (2.6)

p := PC∩W(v̂), and e ∈ H satisfying W = {x ∈ H | ⟨e,x − v̂⟩ = 0} and ∥e∥ = 1.
Moreover, according to Fact 1.15, the sequence (∥un− z∥)n∈N converges for all z ∈ C,
so we can define

a := lim
n→∞

∥un − p∥, (2.7)

τ := lim
n→∞

∥PW(un)− p∥ = ∥v̂− p∥, (2.8)

ρ :=
√︁
a2 − τ2. (2.9)

Note that by nonexpansivity of PW we have a ≥ limn→∞ ∥PW(un)− PW(p)∥ = ∥v̂−
p∥ = τ , so ρ is well-defined.

If ρ = 0, we have a = τ , whereby

lim
n→∞

∥un − v̂∥2 (i)= lim
n→∞

(︂
∥un − PW(un)∥2 + ∥PW(un)− v̂∥2

)︂
(ii)= lim

n→∞

(︂
∥un − p∥2 − ∥p− PW(un)∥2 + ∥PW(un)− v̂∥2

)︂
(iii)= a2 − τ2 + 0 = 0.

Here, (i) and (ii) follow the Pythagorean theorem and the properties of a projection
onto a hyperplane and (iii) follows from (2.7), (2.8) and (2.6). Thus for ρ = 0 it
holds that limn→∞ un = v̂.

For the case ρ > 0, we define
(︂
∀ε ∈

[︂
0,
√

2ρ
]︂)︂

S(ε) := {x ∈ H | ∥PW(x)− v̂∥ ≤ δε, |∥x− p∥ − a| ≤ δε} , (2.10)

25



2. Bounded Perturbation Resilience of Iterative Algorithms

where

δε :=
ρ ε√

2 −
ε2

4

a+ τ
. (2.11)

Note that ρ > 0 =⇒ a + τ > 0, so δε in (2.11) is well-defined. Moreover, observe
that

(∀x ∈ S(ε)) τ − δε
(i)
≤ ∥p− v̂∥ − ∥v̂− PW(x)∥

(ii)
≤ ∥PW(x)− p∥ (2.12)

(iii)
≤ ∥p− v̂∥+ ∥v̂− PW(x)∥

(iv)
≤ τ + δε,

where (i) and (iv) follow from (2.8) and (2.10) and (ii) and (iii) are applications
of the triangle inequality. By the Pythagorean theorem, (∀x ∈ H) ∥x − PW(x)∥2 =
∥x− p∥2 − ∥PW(x)− p∥2, so according to (2.10) and (2.12) we can write

(∀x ∈ S(ε)) (a− δε)2 − (τ + δε)2⏞ ⏟⏟ ⏞
=a2−τ2−2(a+τ)δε

=ρ2−2(a+τ)δε

≤ ∥x− PW(x)∥2 ≤ (a+ δε)2 − (τ − δε)2⏞ ⏟⏟ ⏞
=a2−τ2+2(a+τ)δε

=ρ2+2(a+τ)δε

.

This implies thata (∀x ∈ S(ε))

ρ− ∥x− PW(x)∥ ≤ ρ−
√︂
ρ2 − 2(a+ τ)δε = (1−

√︁
1− γ)ρ (2.13)

∥x− PW(x)∥ − ρ ≤
√︂
ρ2 + 2(a+ τ)δε − ρ = (

√︁
1 + γ − 1)ρ, (2.14)

where we substituted γ := 2(a + τ)δερ−2. Note that
(︂
∀ε ∈

[︂
0,
√

2ρ
]︂)︂

γ ∈ [0, 1], and
that (∀γ ∈ [0, 1]) 1−

√
1− γ ≥

√
1 + γ − 1, so(︂

∀ε ∈
[︂
0,
√

2ρ
]︂)︂

ρ−
√︂
ρ2 − 2(a+ τ)δε ≥

√︂
ρ2 + 2(a+ τ)δε − ρ.

Thus we can summarize (2.13) and (2.14) as

(∀x ∈ S(ε)) |∥x− PW(x)∥ − ρ| ≤ ρ−
√︂
ρ2 − 2(a+ τ)δε. (2.15)

For (2.11) to hold, ε must satisfy − ε2

4 + ρ ε√
2 − δε(a+ τ) = 0, i.e.,

ε ∈
{︃√

2ρ∓
√

2
√︂
ρ2 − 2(a+ τ)δε

}︃
.
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2.2. Adaptive Projected Subgradient Method

This implies that ε ≥
√

2
(︂
ρ−

√︁
ρ2 − 2(a+ τ)δε

)︂
, so by (2.15), we have

(∀x ∈ S(ε)) |∥x− PW(x)∥ − ρ| ≤ ρ−
√︂
ρ2 − 2(a+ τ)δε ≤

ε√
2
. (2.16)

By (2.9), it holds that ρ ≤ a ≤ a+ τ , so according to (2.10) and (2.11), it holds that

(∀x ∈ S(ε)) ∥PW(x)− v̂∥ ≤ δε ≤
ε√
2
· ρ

a+ τ
≤ ε√

2
. (2.17)

By definition of W, there exists ν ∈ R such that (x−PW(x)) = νe. Hence, according
to (2.16) and (2.17), we can write

if ν ≥ 0:

∥x− (v̂ + ρe)∥2 (i)= ∥(x− PW(x))− ρe∥2 + ∥PW(x)− v̂∥2

= |∥x− PW(x)∥ − ρ|2 + ∥PW(x)− v̂∥2 ≤ ε2,

if ν ≤ 0:

∥x− (v̂− ρe)∥2 (i)= ∥(x− PW(x)) + ρe∥2 + ∥PW(x)− v̂∥2

= |∥x− PW(x)∥ − ρ|2 + ∥PW(x)− v̂∥2 ≤ ε2,

where (i) follows from the Pythagorean theorem. Consequently,
(︂
∀ε ∈

[︂
0,
√

2ρ
]︂)︂
S(ε) ⊂

B(ε) := B1(ε) ∪ B2(ε), where

B1(ε) := {x ∈ H | ∥x− (v̂ + ρe)∥ ≤ ε} ,

B2(ε) := {x ∈ H | ∥x− (v̂− ρe)∥ ≤ ε} .

Now, we fix ε ∈ (0, ρ/2) ⊂
[︂
0,
√

2ρ
]︂
. Since limn→∞ ∥PW(un) − v̂∥ = 0 and

limn→∞ ∥un − PC∩W(v̂)∥ = a, there exists N1 ∈ N such that

(∀n ≥ N1) un ∈ S(ε) ⊂ B(ε).

Since (∀z ∈ C) (∥un − z∥)n∈N converges and (γn)n∈N ∈ ℓ1+(N), (2.5) implies that
limn→∞ ∥un − un+1∥ = 0, so there exists N2 ∈ N such that

(∀n ≥ N2) ∥un − un+1∥ < 2ε < ρ,
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2. Bounded Perturbation Resilience of Iterative Algorithms

which ensures the unique existence of i ∈ {1, 2} satisfying

(∀n ≥ N2) un ∈ Bi(ε).

This implies the strong convergence of (un)n∈N to either v̂ + ρe or v̂− ρe.
aNote that

√︁
ρ2 − 2(a + τ)δε is well-defined because the definition in (2.11) ensures that (∀ε ∈[︁

0,
√

2ρ
]︁
) 2(a + τ)δε ≤ ρ2.

Finally, Theorem 2.3, which is based on [YO05, Theorem 2], states the main result of
this section. It shows that perturbed versions of the APSM essentially enjoy the same
convergence guarantees as their unperturbed counterpart in [YO05], except for monotone
approximation.

Theorem 2.3. Let (Θn : H → R+)n∈N be a sequence of continuous convex functions,
let K ⊂ H be a nonempty closed convex set, and denote the APSM update for the nth
iteration bya (∀n ∈ N) Tn : H → H

Tn(x) =

⎧⎨⎩PK
(︂
x− λn Θn(x)

∥Θ′
n(x)∥2 Θ′

n(x)
)︂

if Θ′
n(x) ̸= 0,

PK(x) otherwise,
(2.18)

where Θ′
n(xn) ∈ ∂Θn(xn) and λn ∈ [0, 2]. Moreover, let (βnyn)n∈N ⊂ H be a sequence

of bounded perturbations, define

(∀n ∈ N) Ωn :=
{︃

x ∈ K
⃓⃓⃓⃓

Θn(x) = Θ⋆
n := inf

x∈K
Θn(x)

}︃
,

and suppose that

(∀n ∈ N) Θ⋆
n = 0 and Ω :=

⋂︂
n∈N

Ωn ̸= ∅. (2.19)

Then the sequence (xn)n∈N ⊂ K generated by the perturbed APSMb

(∀n ∈ N) xn+1 = Tn (xn + βnyn) , x0 ∈ K (2.20)

satisfies the following:

(a) The sequence (xn)n∈N is quasi-Fejér monotone of Type-I relative to Ω, so (xn)n∈N

is bounded.

(b) Moreover, if in addition to (2.19),
(︁
∃(ε1, ε2) ∈ R2

+
)︁

(∀n ∈ N) λn ∈ [ε1, 2 − ε2] ⊂
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2.2. Adaptive Projected Subgradient Method

(0, 2) and (Θ′
n(xn + βnyn))n∈N is bounded, then limn→∞ Θn(xn + βnyn) = 0.

(c) Assume (2.19) and suppose that Ω has some relative interior w.r.t. a hyperplane
W ⊂ H, i.e., (∃ũ ∈ Ω ∩ W) and (∃ε > 0) satisfying U := {u ∈ W | ∥u − ũ∥ ≤
ε} ⊂ Ω. Then by using (∀n ∈ N) λn ∈ [ε1, 2−ε2] ⊂ (0, 2), the sequence (xn)n∈N in
(2.20) converges strongly to a point û ∈ K, i.e., limn→∞ ∥xn− û∥ = 0. Moreover,
limn→∞ Θn(û) = 0 provided that (i) (Θ′

n(xn+βnyn))n∈N is bounded and (ii) there
exists bounded (Θ′

n(û))n∈N, where (∀n ∈ N) Θ′
n(û) ∈ ∂Θn(û).

(d) In addition to (2.19) and the conditions (i) and (ii) in (c), assume that Ω has an
interior point ũ, i.e., (∃ρ > 0) satisfying {v ∈ H | ∥v − ũ∥ ≤ ρ} ⊂ Ω. Define
(xn)n∈N by using (∀n ∈ N) λn ∈ [ε1, 2− ε2] ⊂ (0, 2), and let û := limn→∞ xn ⊂ K
(the existence of û is guaranteed by (c)). In this case, if

(∀ε > 0)(∀r > 0)(∃δ > 0) inf
d(xn,lev≤0Θn)≥ε

∥ũ−xn∥≤r

Θn(xn) ≥ δ,

the limit û satisfies û ∈ lim inf
n→∞

Ωn, where lim inf
n→∞

Ωn :=
⋃︁∞
n=0

⋂︁
k≥n Ωk and the

overbar denotes the closure of a set.

Proof.

(a) Note that (∀n ∈ N) lev≤0Θn ̸= ∅ by assumption. Hence by Fact 1.11, (∀n ∈ N)
the mapping Tn is quasi-nonexpansive. According to Proposition 2.1, the sequence
(xn)n∈N is quasi-Fejér monotone of Type-I relative to Ω. This in turn implies that
(xn)n∈N is bounded (see Fact 1.15).

(b) Introducing the shorthand (∀n ∈ N) zn := xn + βnyn and

Φn =

⎧⎨⎩λn
Θn(zn)

∥Θ′
n(zn)∥2 Θ′

n(zn) if Θ′
n(zn) ̸= 0,

0 otherwise
(2.21)

we can write (∀n ∈ N) (∀xn ∈ K) (∀z ∈ Ω)

∥xn+1 − z∥2 = ∥PK(zn −Φn)− PK(z)∥2

(i)
≤ ∥xn + βnyn −Φn − z∥2

= ∥xn − z∥2 + 2⟨βnyn −Φn,xn − z⟩

+ ∥βnyn −Φn∥2
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2. Bounded Perturbation Resilience of Iterative Algorithms

= ∥xn − z∥2 + 2⟨βnyn −Φn,xn − z⟩

+ β2
n∥yn∥2 − 2⟨Φn, βnyn⟩+ ∥Φn∥2

= ∥xn − z∥2 − 2⟨Φn,xn + βnyn − z⟩

+ 2βn⟨yn,xn − z⟩+ β2
n∥yn∥2 + ∥Φn∥2

(ii)
≤ ∥xn − z∥2 − 2⟨Φn, zn − z⟩+ ∥Φn∥2

+ 2βn∥yn∥∥xn − z∥+ β2
n∥yn∥2

where (i) follows from nonexpansivity of PK, and (ii) is an application of the
Cauchy-Schwarz inequality.

Since (xn)n∈N and (yn)n∈N are bounded, for any bounded subset U ⊂ Ω there
exists r > 0 such that (∀z ∈ U) (∀n ∈ N) ∥xn − z∥ ≤ r and ∥yn∥ ≤ r. Hence by
defining c := (2r2 + r2∑︁

n∈N βn) and (γn)n∈N := (cβn)n∈N we have (∀z ∈ U)

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − 2 ⟨Φn, zn − z⟩+ ∥Φn∥2 + 2βnr2 + β2
nr

2

≤ ∥xn − z∥2 − 2 ⟨Φn, zn − z⟩+ ∥Φn∥2 + γn.

If Θn(zn) = 0 or Θ′
n(zn) = 0, (2.21) yields Φn = 0, whereby

∥xn+1 − z∥2 ≤ ∥xn − z∥2 + γn. (2.22)

Otherwise, i.e., if Θn(zn) ̸= 0 and Θ′
n(zn) ̸= 0, it follows from (1.1) that

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − 2λn
Θn(zn)
∥Θ′

n(zn)∥2
⟨︁
Θ′
n(zn), zn − z

⟩︁
+ λ2

n

Θn(zn)2

∥Θ′
n(zn)∥2 + γn

≤ ∥xn − z∥2 − 2λn
Θn(zn)
∥Θ′

n(zn)∥2 (Θn(zn)−Θn(z))

+ λ2
n

Θn(zn)2

∥Θ′
n(zn)∥2 + γn

= ∥xn − z∥2

− λn
(︃

2
(︃

1− Θn(z)
Θn(zn)

)︃
− λn

)︃ Θ2
n(zn)

∥Θ′
n(zn)∥2 + γn. (2.23)
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2.2. Adaptive Projected Subgradient Method

Since (∀n ∈ N) λn ∈ [ε1, 2− ε2] and (∀n ∈ N) (∀z ∈ U ⊂ Ω) Θn(z) = 0, we have

λn

(︃
2
(︃

1− Θn(z)
Θn(zn)

)︃
− λn

)︃
≥ ε1ε2.

Hence, by defining a sequence

(∀n ∈ N) cn :=

⎧⎨⎩0 if Θ′
n(zn) = 0

ε1ε2
Θ2

n(zn)
∥Θ′

n(zn)∥2 otherwise,

we can summarize (2.22) and (2.23) as

(∀n ∈ N) ∥xn+1 − z∥2 ≤ ∥xn − z∥2 − cn + γn.

Because (1.1) ensures that Θ′
n(x) = 0 =⇒ Θn(x) = Θ⋆

n = 0, it is sufficient
to consider the case Θ′

n(zn) ̸= 0. Moreover, if this case occurs finitely many
times, there exists N0 such that (∀n ≥ N0) Θ⋆

n = 0. Thus it remains to show that
limk→∞ Θnk

(znk
) = 0, where (nk)k∈N is the subsequence of (n)n∈N comprised of

all elements of the infinite set J := {n ∈ N | Θ′
n(x) ̸= 0}. According to Fact 1.14,

(∥xn−z∥2)n∈N converges and (cn)n∈N is summable, whereby
∑︁
n∈J ε1ε2

Θ2
n(zn)

∥Θ′
n(zn)∥2 <

∞. Moreover, since (∀n ∈ J ) ε1ε2
Θ2

n(zn)
∥Θ′

n(zn)∥2 ≥ 0, it follows that

lim
k→∞

ε1ε2
Θ2
nk

(znk
)

∥Θ′
nk

(znk
)∥2 = 0.

Therefore, boundedness of (Θ′
n(xn + βnyn))n∈N ensures that limn→∞ Θn(xn +

βnyn) = 0.

(c) It holds by assumption in (2.19) that (∀n ∈ N) K ∩ lev≤0Θn ̸= ∅. Therefore,
according to Fact 1.11, the mapping Tn in (2.18) is

(︂
1− λn

2

)︂
-attracting quasi-

nonexpansive. Since the set U ⊂ Ω is bounded and (∀n ∈ N) λn ≤ 2 − ε2,
Proposition 2.2 implies that (∃(γn)n∈N ∈ ℓ1+(N))(∀z ∈ U)

ε2
2 ∥xn+1 − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + γn.

Consequently, since (xn)n∈N is quasi-Fejér of Type-I relative to Ω (see (a)), Theo-
rem 2.2 guarantees that the sequence (xn)n∈N converges strongly to a point û ∈ H.
More precisely, it holds that û ∈ K, because (xn)n∈N is a sequence in the closed set
K. Since (βnyn)n∈N are bounded perturbations, the sequence (zn := xn+βnyn)n∈N
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satisfies limn→∞ zn = limn→∞ xn = û. By assumption (ii) there exists R > 0 such
that (∀n ∈ N) ∥Θ′

n(û)∥ ≤ R. Thus we can use Fact 1.9 and the Cauchy-Schwartz
inequality to obtain

0 ≤ Θn(û) ≤ Θn(zn)−
⟨︁
zn − û,Θ′

n(û)
⟩︁

≤ Θn(zn) +R∥zn − û∥ → 0.

(d) The proof is identical to the proof of [YO05, Theorem 2(d)].
aThe projection onto K for Θ′

n(x) = 0 ensures that the perturbed APSM generates a sequence in
K regardless of the perturbations. It is not part of the definition in [YO05], where the absence of
perturbations guarantees that (∀n ∈ N) un ∈ K.

bWe can assume without loss of generality that x0 ∈ K, since (∀x ∈ H) T0(x) ∈ K.

Remark 2.2. We note that in [YO05], the condition in (2.19) does not concern the
initial n0 iterations, allowing for a finite number of cost functions that lead to an
empty intersection of zero level sets. Nevertheless, Theorem. 2.3 still covers this case
if we let x0 := x̃n0 , where x̃n0 ∈ H denotes the estimate after the first n0 iterations.

2.3. Extrapolated Alternating Projection Methods

Many problems arising in practice can be posed in terms of the two-set feasibility problem1

find x ∈ A ∩ B, (2.24)

where A ⊂ H and B ⊂ H are closed convex sets such that A∩B ̸= ∅. Clearly, Problem 2.24
can be solved using alternating projection methods such as POCS. However, it is well-
known that the convergence of sequences generated by this approach can be very slow
[GPR67], [CCC+12]. To mitigate this problem, the authors of [GPR67] have proposed the
following extrapolated alternating projection method. Starting from an arbitrary point
x0 ∈ H, this algorithm produces a sequence (xn)n∈N in H via

(∀n ∈ N) xn+1 = TGPRPA(xn),

where the mapping TGPR : A → H is given by

TGPR(x) = x + σ(x)(PAPB(x)− x),
1In Remark 2.3 at the end of this section, we show that the multi-set convex feasibility problem in (2.1)

can be expressed in terms of a two-set convex feasibility problem in a product Hilbert space.
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and the function σ : A → [1,∞) defines an extrapolation factor by

σ(x) =

⎧⎨⎩
∥PB(x)−x∥2

⟨PAPB(x)−x,PB(x)−x⟩ if x /∈ B

1 otherwise.
(2.25)

In [Ceg12, Section 5.2.1.1], a more general version of this algorithm is introduced, which
uses a relaxed mapping TGPR

λ : A → H given by

TGPR
λ := I + λ(TGPR − I), (2.26)

where λ ∈ (0, 2) is a relaxation parameter. The algorithm proposed in [Ceg12, Sec-
tion 5.2.1.1] generates a sequence (xn)n∈N in A via the recursion

(∀n ∈ N) xn+1 = PAT
GPR
λn

(xn), x0 ∈ A, (2.27)

where (∀n ∈ N) λn ∈ [ε1, 2− ε2] ⊂ (0, 2).
In the following, we investigate the bounded perturbation resilience of this algorithm.

Since adding perturbations to the iterate xn may result in points xn + βnyn /∈ A =
dom(TGPR), we will use the mapping TGPR

λn
PA instead of PAT

GPR
λn

to define a sequence of
estimates.

Fact 2.1. [Ceg12, Corollary 4.3.14, Remark 2.4.2(d)] Let λ ∈ (0, 2). Then the
mapping TGPR

λ defined in (2.26) is 2−λ
λ -attracting quasi-nonexpansive with fixed point

set Fix(TGPR
λ ) = A ∩ B.

Theorem 2.4. Consider two closed convex sets A ⊂ H and B ⊂ H, let (βnyn)n∈N be
a sequence of bounded perturbations in H, and let (∀n ∈ N) λn ∈ [ε1, 2− ε2] ⊂ (0, 2).
The sequence (xn)n∈N generated by the perturbed extrapolated alternating projection
method

(∀n ∈ N) xn+1 = TGPR
λn

PA(xn + βnyn), x0 ∈ H (2.28)

satisfies the following:

(a) Assume that A ∩ B ̸= ∅. Then the sequence (xn)n∈N converges weakly to a point
in A ∩ B.

(b) Assume that H is finite dimensional and that A ∩ B ̸= ∅. Then the sequence
(xn)n∈N converges strongly to a point in A ∩ B.
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(c) Assume that A∩B has a nonempty relative interior w.r.t. a linear variety V ⊂ H,
i.e., (∃ũ ∈ A ∩ B ∩ V) and (∃ε > 0) satisfying U := {u ∈ V | ∥u − ũ∥ ≤ ε} ⊂ Ω.
Then the sequence (PV(xn))n∈N converges strongly to a point in V.

(d) Assume that A∩ B has a nonempty relative interior w.r.t. a hyperplane W ⊂ H,
i.e., (∃ũ ∈ A∩B ∩W) and (∃ε > 0) satisfying U := {u ∈ W | ∥u− ũ∥ ≤ ε} ⊂ Ω.
Then the sequence (xn)n∈N in (2.28) converges strongly to a point in A ∩ B.

Proof.

(a) By Fact 1.8, Fact 2.1, and firm (quasi-)nonexpansivity of PA, the mapping TGPR
λ PA

is
(︂
1− λ

2

)︂
-attracting quasi-nonexpansive with Fix(TGPR

λ PA) = A ∩ B. Since
(∀n ∈ N) λn ≤ 2−ε2, TGPR

λn
PA is ε2

2 -attracting quasi-nonexpansive, which implies
the following:

• According to Proposition 2.1, (xn)n∈N is quasi-Fejér of Type-I relative to
A ∩ B. Therefore, Proposition 2.3 shows that the sequence (zn)n∈N defined
by (∀n ∈ N) zn := xn + βnyn is also quasi-Fejér of Type-I relative to A∩B,
so Fact 1.15 ensures that (zn)n∈N is bounded.

• By Proposition 2.2 (∃z ∈ A ∩ B) (∃(γn)n∈N ∈ ℓ1+(N)) such that

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − κ∥xn+1 − xn∥2 + γn,

so Fact 1.14 ensures that limn→∞ ∥xn+1 − xn∥ = 0.

Consequently, we have that

0 = lim
n→∞

∥xn+1 − xn∥2

= lim
n→∞

∥TGPR
λn

PA(zn)− zn + βnyn∥2

= lim
n→∞

(︂
∥TGPR

λn
PA(zn)− zn∥2 + β2

n∥yn∥2 + 2βn⟨TGPR
λn

PA(zn)− zn,yn⟩
)︂

≥ lim
n→∞

(︂
∥TGPR

λn
PA(zn)− zn∥2 + β2

n∥yn∥2⏞ ⏟⏟ ⏞
(i)
→0

− 2βn∥TGPR
λn

PA(zn)− zn∥ · ∥yn∥⏞ ⏟⏟ ⏞
(ii)
→ 0

)︂

= lim
n→∞

∥TGPR
λn

PA(zn)− zn∥2 ≥ 0.

Here (i) follows from boundedness of (yn)n∈N and (ii) follows from boundedness
of (yn)n∈N and (zn)n∈N, quasi-nonexpansivity of TGPR

λn
PA, and Proposition 2.4.

Next, we show that ∥PAPBPA(zn)− zn∥ → 0 whenever ∥TGPR
λn

PA(zn)− zn∥ → 0.
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To see this, we substitute

∥TGPR
λn

PA(zn)− zn∥2

= ∥PA(zn) + λnσ(PA(zn)) (PAPBPA(zn)− PA(zn))− zn∥2

= ∥PA(zn)− zn∥2 + ∥λnσ(PA(zn)) (PAPBPA(zn)− PA(zn)) ∥2

+ 2λnσ(PA(zn))⏞ ⏟⏟ ⏞
≥0

⟨PAPBPA(zn)− PA(zn), PA(zn)− zn⟩⏞ ⏟⏟ ⏞
≥0

,

where nonnegativity of the last term follows from Fact 1.1. Hence we can write

∥TGPR
λn

PA(zn)−zn∥2 ≥ ∥PA(zn)−zn∥2 +λnσ(PA(zn))⏞ ⏟⏟ ⏞
≥ε1

∥PAPBPA(zn)−PA(zn)∥2,

where σ(PA(zn)) ≥ 1 and λn ≥ ε1 > 0 is bounded away from zero. As a result,
nonnegativity of the norm and ∥TGPR

λn
PA(zn) − zn∥ → 0 imply that ∥PA(zn) −

zn∥ → 0 and ∥PAPBPA(zn)−PA(zn)∥ → 0. Hence the reverse triangle inequality
yields

0 = lim
n→∞

∥PAPBPA(zn)− PA(zn)∥

≥ lim
n→∞

(︂
∥PAPBPA(zn)− zn∥ − ∥zn − PA(zn)∥⏞ ⏟⏟ ⏞

→0

)︂
= lim

n→∞
∥PAPBPA(zn)− zn∥ ≥ 0.

Because PAPBPA is nonexpansive with Fix(PAPBPA) = A∩B, Fact 1.16 guaran-
tees that all weak cluster points of the bounded sequence (zn)n∈N are contained in
A∩B. Consequently, as (zn)n∈N is quasi-Fejér of Type-I (and hence by Fact 1.13
of Type-III), Fact 1.17 guarantees the weak convergence of (zn)n∈N to a point
û ∈ A ∩ B. Finally, limn→∞ βnyn = 0 implies that (xn = zn − βnyn)n∈N con-
verges weakly to û.

(b) This is immediate from (a) and Fact 1.12(c).

(c) This follows from Type-I quasi-Fejér monotonicity of (xn)n∈N and Lemma 2.2

(d) Since (∀n ∈ N), TGPR
λn

PA is ε2
2 -attracting quasi-nonexpansive Fix(TGPR

λn
PA) =

A ∩ B has a nonempty relative interior w.r.t. a hyperplane, Proposition 2.2 and
Theorem 2.2 imply strong convergence of (xn)n∈N to a point û ∈ H. As we showed
in (a), the set of weak cluster points (which by Fact 1.12(b) includes the strong
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limit point û) is a subset of A ∩ B, so û ∈ A ∩ B.

A special case of Problem 2.24, where one of the sets (say, A) is an affine subspace,
is considered in [BCK06]. The authors propose an extrapolated alternating projection
method for affine-convex feasibility problems. Starting from a point x0 ∈ A, this algorithm
produces a sequence (xn)n∈N in A by applying the update rule

(∀n ∈ N) xn+1 = TEAPM
λ (xn), (2.29)

where λ ∈ (0, 2) and (∀x ∈ A)(∀λ ∈ (0, 2), the mapping TEAPM
λ : A → A is given by

TEAPM
λ (x) = x + λK(x) (PAPB(x)− x) . (2.30)

The extrapolation factor determined by the function K : A → [1,∞)

(∀x ∈ A) K(x) =

⎧⎨⎩
∥PB(x)−x∥2

∥PAPB(x)−x∥2 if x /∈ B

1 otherwise
(2.31)

was originally introduced in [Pie84]. It was observed in [CCC+12] that the extrapolated
alternating projection method in (2.29) can achieve considerable convergence acceleration
compared to projection methods without extrapolation, such as POCS.

Theorem 2.5 assesses the bounded perturbation resilience of the algorithm in (2.29). We
consider a slightly more general definition of this algorithm, in which the relaxation pa-
rameter λ may vary throughout the iterations. Since adding perturbations βnyn to xn may
result in points xn + βnyn /∈ A = dom(TEAPM

λ ), we project the perturbed estimate onto
A before applying the mapping TEAPM

λn
at each iteration n.2 Note that this modification

does not change the unperturbed algorithm in (2.29), because (∀x ∈ A) PA(x) = x.

Theorem 2.5. Consider a closed affine subspace A ⊂ H and a closed convex set
B ⊂ H, let (βnyn)n∈N be a sequence of bounded perturbations in H, and let (∀n ∈ N)
λn ∈ [ε1, 2 − ε2] for small ε1, ε2 > 0. The sequence (xn)n∈N in A generated by the
perturbed extrapolated alternating projection method

(∀n ∈ N) xn+1 = TEAPM
λn

PA(xn + βnyn), x0 ∈ A (2.32)

satisfies the following:

2Alternatively, we could allow only such perturbations yn that lie direction of the affine subspace A, i.e.,
that satisfy yn + PA(0) ∈ A.
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(a) If A ∩ B ̸= ∅, the sequence (xn)n∈N converges weakly to a point in A ∩ B.

(b) If H is finite dimensional and A∩B ̸= ∅, the sequence (xn)n∈N converges strongly
to a point in A ∩ B.

(c) If B has a nonempty relative interior w.r.t. the affine subspace A, i.e., (∃ũ ∈
A ∩ B) and (∃ε > 0) satisfying U := {u ∈ A | ∥u − ũ∥ ≤ ε} ⊂ B, the sequence
(xn)n∈N converges strongly to a point in A ∩ B.

Proof.

(a) (∀x ∈ A) PAPB(x) − x ∈ A0, where A0 := A − PA(0) is the linear subspace
associated with the affine subspace A. Moreover, PAPB(x)− PB(x) is orthogonal
to A0. Therefore (∀x ∈ A)

∥PAPB(x)− x∥2 = ⟨PAPB(x)− x, PB(x)− x⟩

+ ⟨PAPB(x)− x, PAPB(x)− PB(x)⟩⏞ ⏟⏟ ⏞
=0

,

i.e., the extrapolation factors in (2.25) and (2.31) satisfy (∀x ∈ A) K(x) = σ(x).
Consequently, the algorithm in (2.32) is a particular case of the algorithm in
(2.28) for affine sets A, whereby weak convergence of (xn)n∈N to a point in A∩B
follows directly from Theorem 2.4(a).

(b) This follows directly from Theorem 2.4(b).

(c) According to Theorem. 2.4(b). the sequence (PA(xn))n∈N converges strongly to a
point û ∈ A. Moreover, (xn)n∈N = (PA(xn))n∈N because (∀n ∈ N) xn ∈ A. By
Fact 1.12(b), the strong limit point û is also a weak cluster point, so it follows
from (a) that û ∈ A ∩ B.

Although both algorithms in Theorem 2.4 and Theorem 2.5 are extrapolated alternating
projection methods, we adopt the naming from [CCC+12], where the algorithm in The-
orem 2.5 is referred to as extrapolated alternating projection method (EAPM). Thus we
refer to the algorithm in Theorem 2.4 as Gurin-Polyak-Raik (GPR) algorithm, through-
out this thesis. Since many practical problems involve more than two constraint sets, it is
worth mentioning that the algorithms in this section can be used to solve the more general
convex feasibility problem in (2.1) by using Pierra’s product space formalism [Pie75, Pie84]
(see also [Com97], [SY98, Section 2.9]). We sketch this idea in the following remark.
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Remark 2.3. Let (H, ⟨·, ·⟩) be a real Hilbert space with induced norm ∥ · ∥ and let
C1, . . . , CK be a family of closed convex subsets of H such that C⋆ =

⋂︁K
k=1 Ck ̸= ∅. A

point x⋆ ∈ C⋆ can be found by applying the EAPM in (2.29) to Problem (2.24) in a
product Hilbert space (HK , ⟨⟨·, ·⟩⟩) with inner product

(︂
∀X = (x1, . . . ,xK) ∈ HK

)︂ (︂
∀Y = (y1, . . . ,xK) ∈ HK

)︂
⟨⟨X,Y⟩⟩ :=

K∑︂
k=1

wk⟨xk,yk⟩

and induced norm

(︂
∀X = (x1, . . . ,xK) ∈ HK

)︂
|||X||| =

⌜⃓⃓⎷ K∑︂
k=1

wk∥xk∥2,

where w1, . . . , wk are positive weights such that
∑︁K
k=1wk = 1. To represent the multi-

set feasibility problem in (2.1) in terms of a two-set feasibility problem in the product
space

(︂
HK , ⟨⟨·, ·⟩⟩

)︂
, we define a closed subspace A = {(x1, . . . ,xK) ∈ HK | x1 = · · · =

xK} and a closed convex set B = {(x1, . . . ,xK) ∈ HK | (∀k ∈ {1, . . . ,K}) xk ∈ Ck}.
It is easy to verify that the EAPM applied to the two-set problem in the product
Hilbert space (HK , ⟨⟨·, ·⟩⟩) is equivalent to the extrapolated parallel projection method
(EPPM)a [Pie84]

(∀n ∈ N) x(n+1) = x(n) + λnL
(︂
x(n)

)︂(︄ K∑︂
k=1

wkPCk

(︂
x(n)

)︂
− x(n)

)︄
, x(0) ∈ H

where (∀n ∈ N) λn ∈ [ε1, 2− ε2] ⊂ (0, 2) and

(∀x ∈ H) L(x) =

⎧⎪⎪⎨⎪⎪⎩
∑︁K

k=1 wk∥PCk
(x)−x∥2⃦⃦∑︁K

k=1 wkPCk
(x)−x

⃦⃦2 if x /∈ C⋆

1 otherwise.

To see this, note that the projections of a point X = (x1, . . . ,xK) ∈ HK onto A and
B are given by [SY98, Eq. (2.9-11)]

PA(X) =
(︄

K∑︂
k=1

wkxk, . . . ,
K∑︂
k=1

wkxk

)︄
(2.33)

and [SY98, Eq. (2.9-8)]

PB(X) = (PC1(x1), . . . , PCK
(xK)) , (2.34)
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respectively. Substituting (2.33) and (2.34) in (2.29), (2.30), and (2.31), we can show
that the EAPM generates a sequence

(︂
X(n) = (x(n), . . . ,x(n))

)︂
n∈N

in A by applying
the recursion X(0) ∈ A, (∀n ∈ N)

X(n+1) = X(n) + λnK
(︂
X(n)

)︂(︄(︄ K∑︂
k=1

wkPCk

(︂
x(n)

)︂
, . . . ,

K∑︂
k=1

wkPCk

(︂
x(n)

)︂)︄
−X(n)

)︄
,

where (∀n ∈ N) λn ∈ [ε1, 2− ε2] ⊂ (0, 2) and (∀X = (x, . . . ,x) ∈ A)

K(X) =

⎧⎪⎨⎪⎩
|||PB(X)−X|||2

|||PAPB(X)−X|||2 if X /∈ B

1 otherwise

=

⎧⎪⎨⎪⎩
∑︁K

k=1 wk∥PCk
(x)−x∥2∑︁K

i=1 wi∥
∑︁K

k=1 wkPCk
(x)−x∥2

if X /∈ B

1 otherwise

=

⎧⎪⎨⎪⎩
∑︁K

k=1 wk∥PCk
(x)−x∥2

∥
∑︁K

k=1 wkPCk
(x)−x∥2

if X /∈ B

1 otherwise

= L(x).

Consequently, the sequence
(︂
x(n)

)︂
n∈N

in H produced by the EPPM converges to

a point in C⋆, if and only if the sequence
(︂
X(n)

)︂
n∈N

in HK produced by the EAPM
converges to a point inA∩B. Thus Theorem 2.5 also ensures the bounded perturbation
resilience of the EPPM.

aThe original definition of the EPPM in [Pie84], which is also used in [Com97] and [SY98], restricts
the relaxation parameters to (∀n ∈ N) λn ∈ [ε, 1] ⊂ (0, 1]. In this remark, we derive a more
general variant of the EPPM, which allows for step sizes that are twice as large. This algorithm
is a special case of the EPPM2 in [Com97]. However, the variant considered here is sometimes
also referred to as EPPM (see, e.g., [CCC+12]).
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In this chapter, we use Theorem 2.1 to devise an algorithm with convergence guarantees to
address the nonconvex multi-group multicast beamforming problem with QoS constraints
and per-antenna power constraints. We formulate a convex relaxation of the problem as
a semidefinite program (SDP) in a real Hilbert space, which allows us to approximate
a point in the feasible set by iteratively applying a bounded perturbation resilient fixed
point mapping. Inspired by the superiorization methodology, we use this mapping as a
basic algorithm, and we add in each iteration a small perturbation with the intent to
reduce the objective value and the distance to nonconvex rank constraint sets. We prove
that the sequence of perturbations is bounded, so the algorithm is guaranteed to converge
to a feasible point of the relaxed SDP. Simulations show that the proposed approach
outperforms existing algorithms in terms of both computation time and approximation
gap in many cases. The content of this chapter is borrowed from [7] with minimal changes.

3.1. Introduction

Many applications in wireless networks involve multicast communication, which can be
defined as the transmission of identical information to multiple receivers. One example
is connected driving, where applications such as platooning can benefit from transmitting
the same status or control information to a group of vehicles [ZLW+15]. Another example
is the transmission of audio signals for live events, where each spectator can select from
a variety of audio streams. Both use cases can benefit considerably from physical layer
precoders that ensure a given QoS level for the requested stream at each receiver while
reusing the same time and frequency resources for all receivers.

Physical layer multicasting schemes have been extensively investigated in the last two
decades. The authors of [SDL06] show that the performance of multicast transmission
can be greatly improved by exploiting channel state information (CSI) at the transmitter.
They consider two beamforming problems for single-group multicast beamforming, the
max-min fair (MMF) multicast beamforming problem and the QoS constrained multicast
beamforming problem. While the MMF formulation aims at maximizing the lowest signal-
to-noise ratio (SNR) among a group of users subject to a unit power constraint on the
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beamforming vector, the objective of the QoS constrained formulation is to minimize the
transmit power subject to SNR constraints for the individual users. Moreover, the authors
of [SDL06] show that the solutions to both problems are equivalent up to a scaling factor.

The more general case with multiple cochannel multicast groups is considered in [KSL08].
Unlike the single-group case, the QoS constrained and MMF versions of the multi-group
multicast beamforming problem are different in the sense that a solution to one version
cannot generally be obtained by scaling a solution to the other. However, algorithms for
the QoS constrained formulation can be straightforwardly extended to approximate the
MMF version, by performing a bisection search over the target signal-to-interference-plus-
noise ratio (SINR) values. In the presence of per-antenna power constraints, the MMF
version and other variations such as the sum-rate maximization [CCO14a] and weighted
max-min fair [CCO14b] formulations can be approximated by performing a bisection over
instances of a per-antenna power minimization problem [CCO14b]. These formulations
are outside the scope of this work. In this chapter, we will therefore restrict our attention
to the QoS constained problem.

The QoS-constrained multi-group multicast beamforming problem is a well-studied non-
convex quadratically constrained quadratic program (QCQP), for which various algorith-
mic approximations have been proposed. Existing approaches such as semidefinite relax-
ation with Gaussian randomization [SDL06, KSL08] and successive convex approximation
(SCA) algorithms — also known as convex-concave procedures (CCPs) — involve solving
a sequence of convex subproblems. Solutions to these subproblems can be approximated
either using off-the-shelf interior-point methods [MHG+14, CCO15] or using first order al-
gorithms such as the alternating direction method of multipliers (ADMM) [HS16, CT17].
While the use of interior-point methods typically results in a high computational com-
plexity, the ADMM can require a large number of iterations to achieve a certain accuracy.
Regardless of the algorithm used to approximate each subproblem, the CCP results in
nested approximation loops. Terminating the inner iteration after a finite number of steps
can hinder the feasibiltiy of estimates, which is required to ensure that the CCP con-
verges. By contrast, if we assume the singular value decomposition (SVD) of a matrix to
be computable,1 the algorithm proposed in [7], which is presented in this chapter, is free
of nested optimization loops.

In this chapter, we consider the QoS-constrained multi-group multicast beamforming
problem in [KSL08] with optional per-antenna power constraints as introduced in [CT17].
We propose an algorithmic approximation based on superiorization of a bounded pertur-
bation resilient fixed point mapping. To do so, we formulate the problem in a product
Hilbert space composed of subspaces of Hermitian matrices. This allows us to approximate

1The convergence of algorithms for computing the SVD is well-studied (see, e.g., [VLG83]).
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a feasible point of the relaxed problem with the POCS algorithm in (2.3). The bounded
perturbation resilience of POCS, which is guaranteed by Theorem 2.1, allows us to add
small perturbations in each iteration with the intent to reduce the objective value and
the distance to the nonconvex rank-one constraints. In this way, the proposed algorithm
follows the set theoretic philosophy of the POCS algorithm in combined with the general
framework of superiorization, applied to a particular problem in communications. Simula-
tions show that, compared to existing methods, the proposed approach can provide better
approximations at a lower computational cost in many cases.

3.2. Problem Statement

In Section 3.2.1, we define the system model and state the multi-group multicast beam-
forming problem with QoS- and per-antenna-power-constraints, and we reformulate it in
terms of a nonconvex SDP. A well-known approach to approximate solutions to such
problems resorts to solving a convex relaxation: First, the original problem is relaxed and
solved using, e.g., interior point methods. Subsequently, randomization techniques are ap-
plied to obtain candidate solutions to the original problem [KSL08], [LMS+10]. However,
in real-time applications, the complexity of interior point solvers becomes prohibitive as
it grows very fast with the system size (i.e., the number of users and the number of anten-
nas). Therefore, in Section 3.2.2, we formulate the problem in a real product Hilbert space
composed of complex (Hermitian) matrices. This formulation makes the problem acces-
sible by a variety of first order algorithms with low complexity and provable convergence
properties.

3.2.1. System Model and Original Problem

Following the system model in [KSL08], we consider the downlink in a network with a
transmitter equipped with N antenna elements, each of them represented by an element
of the set N := {1, . . . , N}. Each user k ∈ K := {1, . . . ,K} is equipped with a single
receive antenna. The users are grouped into M disjoint multicast groups Gm ⊂ K indexed
by m ∈ M := {1, . . . ,M}, such that

⋃︁M
m=1 Gm = K. Each member of a multicast group

Gm is intended to receive the same information-bearing symbol xm ∈ C. The receive
signal for the kth user can be written as yk =

∑︁M
m=1 wH

mhkxm+nk, where wm ∈ CN is the
beamforming vector for the mth multicast group, hk ∈ CN is the instantaneous channel to
user k, and nk ∈ C — drawn independently from the distribution CN (0, σ2

k) — is the noise
sample at the receiver. Consequently, the transmit power for group Gm is proportional to
∥wm∥22.
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In this chapter, we consider the multi-group multicast beamforming problem with QoS-
constraints [KSL08], which has the objective to minimize the total transmit power subject
to constraints on the QoS expressed in terms of SINR requirements. We use the following
problem formulation from [CT17], with an individual power-constraint for each transmit
antenna:

minimize
{wm∈CN }M

m=1

M∑︂
m=1
∥wm∥22 (3.1a)

s.t. (∀m ∈M)(∀k ∈ Gm) |wH
mhk|2∑︁

l ̸=m |wH
l hk|2 + σ2

k

≥ γk (3.1b)

(∀i ∈ N )
M∑︂
m=1

wH
meieTi wm ≤ pi (3.1c)

The objective function in (3.1a) corresponds to the total transmit power. The inequalities
in (3.1b) constitute the SINR-constraints, where γk is the SINR required by user k. The
inequalities in (3.1c) correspond to the per-antenna power constraints, where ei ∈ RN is
the ith Cartesian unit vector.

The problem in (3.1) is a nonconvex QCQP, which is known to be NP-hard [SDL06].
A well-known strategy for approximating solutions to such problems is the semidefinite
relaxation technique [KSL08], [LMS+10]. By this technique, we obtain a convex relax-
ation of the original problem by reformulating it as a nonconvex SDP and by dropping the
nonconvex rank constraints. More precisely, using the trace identity tr(AB) = tr(BA) for
matrices A,B of compatible dimensions, we can write ∥wm∥22 = wH

mwm = tr(wH
mwm) =

tr(wmwH
m) and |wH

mhk|2 = wH
mhk(wH

mhk)∗ = tr(wH
mhkhHk wm) = tr(wmwH

mhkhHk ). By
defining (∀k ∈ K) Qk = hkhHk , and replacing the expression wmwH

m by a positive semidef-
inite rank-one matrix Xm ∈ CN×N for all m ∈M, we obtain the nonconvex SDP

minimize
{Xm∈CN×N }M

m=1

M∑︂
m=1

tr(Xm) (3.2a)

s.t. (∀m ∈M)(∀k ∈ Gm) tr(QkXm) ≥ γk
∑︂
l ̸=m

tr(QkXl) + γkσ
2
k (3.2b)

(∀i ∈ N )
M∑︂
m=1

tr(eieTi Xm) ≤ pi (3.2c)

(∀m ∈M) Xm ≽ 0 (3.2d)

(∀m ∈M) rank(Xm) ≤ 1, (3.2e)

The formulation in (3.2) is equivalent to (3.1) in the sense that {Xm = wmwH
m}Mm=1 solves
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(3.2) if and only if {wm}Mm=1 solves (3.1). A convex relaxation of Problem (3.2) can be
obtained by simply dropping the rank constraints in (3.2e). The approach in [SDL06],
[KSL08] solves this relaxed problem and, subsequently, generates candidate approxima-
tions for Problem (3.2) (and hence (3.1)) using randomization techniques. A solution
to the relaxed problem is typically found using general-purpose interior point solvers,
which results in high computational cost for large-scale problems. In the multi-group
setting [KSL08], each randomization step involves solving an additional power control
problem, which further increases the computational burden.

3.2.2. Problem Formulation in a Real Hilbert Space

The objective of this section is to show that Problem (3.2) can be formulated in a real
Hilbert space, which enables us to approach the problem by means of efficient projection-
based methods. To this end, we consider the real vector space V := CN×N of complex
N×N -matrices. More precisely, we define vector addition in the usual way, and we restrict
scalar multiplication to real scalars a ∈ R, where each coefficient of a vector X ∈ V is
multiplied by a to obtain the vector aX ∈ V . In this way, V is a real vector space, i.e., a
vector space over the field R.

If we equip the space V with a real inner product2

(∀X,Y ∈ V) ⟨X,Y⟩ := Re
{︂

tr
(︂
XHY

)︂}︂
, (3.3)

which induces the standard Frobenius norm

||X|| =
√︂
⟨X,X⟩ =

√︂
tr (XHX),

we obtain a real Hilbert space (V, ⟨·, ·⟩).

Remark 3.1. The function ⟨·, ·⟩ defined in (3.3) is a real inner product.
Proof: See Appendix A.1

In the remainder of this chapter, we restrict our attention to the subspace H := {X ∈
V |X = XH} of Hermitian matrices. Following the notation in [SY98], we define a product
space HM as the M -fold Cartesian product

HM := H× · · · × H⏞ ⏟⏟ ⏞
M times

2See Remark 3.1.
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of H. In this vector space, the sum of two vectors X = (X1, . . . ,XM ) ∈ HM and
Y = (Y1, . . . ,YM ) ∈ HM is given by X+Y := (X1 + Y1, . . . ,XM + YM ) and scalar mul-
tiplication is restricted to real scalars a ∈ R, where a (X1, . . . ,XM ) := (aX1, . . . , aXM ).
We equip the space HM with the inner product

⟨⟨X,Y⟩⟩ :=
M∑︂
m=1
⟨Xm,Ym⟩, (3.4)

which induces the norm

|||X|||2 = ⟨⟨X,X⟩⟩ =
M∑︂
m=1
∥Xm∥2,

where (∀m ∈M) Xm ∈ H and Ym ∈ H. Consequently,
(︂
HM , ⟨⟨·, ·⟩⟩

)︂
is also a real Hilbert

space.

In order to pose Problem (3.2) in this Hilbert space, we express the objective function
in (3.2a) and the constraints in (3.2b)–(3.2e) in terms of a convex function and closed sets
in
(︂
HM , ⟨⟨·, ·⟩⟩

)︂
as shown below:

1) The objective function in (3.2a) can be written as the following inner product:

M∑︂
m=1

tr(Xm) = ⟨⟨J,X⟩⟩, (3.5)

where J = (IN , . . . , IN ). This follows from (3.3), (3.4), and the fact that (∀W ∈ H)
Im{tr(W)} = 0.

2) The SINR constraint for user k ∈ K in (3.2b) corresponds to the closed half-space

Qk =
{︂

X ∈ HM
⃓⃓⃓
⟨⟨X,Zk⟩⟩ ≥ σ2

k

}︂
, (3.6)

where (∀k ∈ K) Zk ∈ HM is given by

Zk =
(︂
−Qk, · · · ,−Qk⏞ ⏟⏟ ⏞

1,··· ,gk−1

, γ−1
k Qk⏞ ⏟⏟ ⏞
gk

,−Qk, · · · ,−Qk⏞ ⏟⏟ ⏞
gk+1,··· ,M

)︂
.

Here, we introduced indices {gk}k∈K that assign to each receiver k ∈ K the multicast
group Gm to which it belongs (i.e., gk = m, if k ∈ Gm). In order to verify that the set
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Qk in (3.6) indeed represents the SINR constraint for user k in (3.2b), we rearrange3

⟨⟨X,Zk⟩⟩ = 1
γk
⟨Xgk

,Qk⟩ −
∑︂
l∈M
l ̸=gk

⟨Xl,Qk⟩.

Using the definition of the inner product in (3.3), and the fact that (∀W ∈ HM )
WH = W and Im{tr(W)} = 0, we can rewrite the constraint Qk as

tr(Xgk
Qk)− γk

∑︂
l∈M
l ̸=gk

tr(XlQk) ≥ γkσ2
k,

which corresponds to the kth SINR constraint in (3.2b).

3) The per-antenna power constraints in (3.2c) are expressed by the closed convex set

P =
{︂

X ∈ HM
⃓⃓⃓

(∀i ∈ N ) ⟨⟨Di,X⟩⟩ ≤ pi
}︂
,

where
(∀i ∈ N ) Di := (eieTi , . . . , eieTi ) ∈ HM . (3.7)

This follows immediately from (3.3) and (3.4).

4) The PSD constraints in (3.2d) correspond to the closed convex cone C+ given by

C+ =
{︂

(X1, . . . ,XM ) ∈ HM
⃓⃓⃓

(∀m ∈M) Xm ≽ 0
}︂
. (3.8)

5) The rank constraints in (3.2e) can be represented by the nonconvex set

R =
{︂

X ∈ HM | (∀m ∈M) rank(Xm) ≤ 1
}︂
. (3.9)

Consequently, we can pose Problem (3.2) as

minimize
X∈HM

⟨⟨J,X⟩⟩ (3.10)

s.t. (∀k ∈ K) X ∈ Qk
X ∈ P , X ∈ C+, X ∈ R.

The problems in (3.2) and (3.10) are equivalent in the sense that {Xm ∈ V}m∈M solves
3In the remainder of this chapter, we use the convention that Xm ∈ H denotes the mth component matrix

of an M -tuple X ∈ HM .
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3. Multicast Beamforming

Problem (3.2) if and only if (X1, . . . ,XM ) ∈ HM solves Problem (3.10). The advantage
of the formulation in (3.10) is that it enables us to (i) streamline notation, (ii) express the
updates of the algorithm proposed later in Section 3.3 in terms of well-known projections,
and (iii) apply the convergence results for real Hilbert spaces, which were presented in
Chapter 2.

It is worth noting that all constraint sets described above are closed, so a projection
onto each of the sets exists for any point X ∈ HM . This property is crucial to derive
projection-based algorithms, such as the proposed algorithm. In particular, note that
we cannot replace the inequality in (3.2e) with an equality, as commonly done in the
literature. The reason is that, with an equality, the corresponding set is not closed, as
shown in Remarks 3.2 and 3.3, and the practical implication is that the projection may
not exist everywhere. Specifically, this happens whenever X = (X1, . . . ,XM ) satisfies
Xm = 0 for some m ∈M, which would leave the update rule at such points undefined in
projection-based methods. This is illustrated for the case X = 0 ∈ HM in Example 3.1
below.

Remark 3.2. The rank constraint set R in (3.9) is closed.
Proof. Let

(︂
X(n)

)︂
n∈N

be a sequence of points in R converging to a point X⋆ =

(X⋆
1, . . . ,X⋆

M ) ∈ HM and denote by (∀m ∈ M)(∀n ∈ N) X(n)
m = U(n)

m S(n)
m (V(n)

m )H

the SVD of the mth component matrix of X(n). It follows from X(n) ∈ R that
(∀m ∈ M) S(n)

m = diag([s(n)
m , 0, . . . , 0]). Since a sequence of zeros can only converge

to zero, the SVD X⋆
m = U⋆

mS⋆m(V⋆
m)H of the mth component matrix of X⋆ satisfies

S⋆m = diag([s⋆m, 0, . . . , 0]) for some s⋆m ∈ R+. Therefore (∀m ∈ M) rank(X⋆
m) ≤ 1, so

X⋆ ∈ R. The above shows that R contains all its limit points, so it is closed.

Remark 3.3. By contrast,

R′ =
{︂

X ∈ HM | (∀m ∈M) rank(Xm) = 1
}︂

is not a closed set, since for all X ∈ R′ and α ∈ (0, 1), the sequence (αnX)n∈N in R′

converges to 0 /∈ R′.

Example 3.1. The set-valued projection of 0 ∈ HM onto the set R′ in Remark 3.3 is empty.
Proof. Suppose that ΠR′(0) ̸= ∅ and let Z ∈ ΠR′(0), i.e., Z is any of the closest points

of the set R′ to the zero vector 0. Since ΠR′(0) ⊂ R′, (∀m ∈ M) rank(Zm) = 1, i.e.,
(∀m ∈ M) σ1(Zm) > 0. Therefore, for any α ∈ (0, 1), αZ ∈ R′ and d(0, αZ) < d(0,Z),
i.e., αZ ∈ R′ is closer to the zero vector than Z ∈ R′, thus contradicting our assumption
that Z is one of the closest points in R′ to the vector 0.
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3.3. Algorithmic Solutions

The main difficulty in solving (3.10) is the presence of the nonconvex rank constraint. A
well-known technique for approximating rank-constrained SDPs using convex optimiza-
tion methods is the semidefinite relaxation approach [SDL06], [KSL08], [LMS+10]. This
approach first solves (3.10) without the rank constraint, and then it applies heuristics to
obtain rank-one approximations based on the solution to this relaxed problem. Similarly,
we can obtain a convex relaxation

minimize
X∈HM

⟨⟨J,X⟩⟩ (3.11)

s.t. (∀k ∈ K) X ∈ Qk
X ∈ P , X ∈ C+,

of Problem (3.10) by dropping the nonconvex constraint set R. In principle, we could
solve this relaxed problem using first order techniques for constrained convex minimiza-
tion. For instance, we could apply a projected (sub-)gradient method (see, e.g., [Nes18,
Section 3.2.3]), which interleaves (sub-)gradient steps for the objective function with pro-
jections onto the feasible set of Problem (3.11). However, computing the projection onto
the intersection of all constraint sets in Problem (3.11) typically requires an inner opti-
mization loop because no simple expression for this projection is known. As it was shown
in [CDH+14], superiorization can significantly reduce the computation time compared to
the projected gradient method in some applications if the projection onto the feasible set
is difficult to compute.

The superiorization methodology typically relies on an iterative process that solves a
convex feasibility problem (i.e., that produces a sequence of points converging to a point
within the intersection of all constraint sets) by repeatedly applying a computationally
simple mapping. This iterative algorithm is called the basic algorithm. Based on this
basic algorithm, the superiorization methodology automatically produces a superiorized
version of the basic algorithm, by adding bounded perturbations (see Definition 1.3) to
the iterates of the basic algorithm in every iteration. The perturbations are typically
generated based on subgradient steps for a given objective function, in a way that ensures
the sequence of perturbations to be bounded. By showing that the basic algorithm is
bounded perturbation resilient (i.e., that the resulting sequence is guaranteed to converge
to a feasible point, even when bounded perturbations are added in each iteration), one can
ensure that the sequence produced by the superiorized version of the basic algorithm also
converges to a feasible point. In contrast to constrained minimization, superiorization does
not guarantee that the objective value of the resulting approximation is minimal. However,
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3. Multicast Beamforming

the limit point of the superiorized algorithm typically has a lower objective value than the
limit point of the unperturbed basic algorithm [Cen15].

To apply the superiorization methodology to Problem (3.10), we proceed as follows. In
Section 3.3.1, we propose a bounded perturbation resilient basic algorithm by defining a
mapping T⋆ : HM → HM . Given any point X(0) ∈ HM , this mapping generates a sequence
of points converging to a feasible point of Problem (3.11) by

(∀n ∈ N) X(n+1) = T⋆
(︂
X(n)

)︂
.

In Section 3.3.2, we define a sequence
(︂
β(n)Y(n)

)︂
n∈N

of bounded perturbations, with the
intent to reduce slightly (i) the objective value of Problem (3.10) and (ii) the distance
to the nonconvex rank constraint R in every iteration. As we show in Proposition 3.2
below, the proposed perturbations can achieve both goals simultaneously. The sequence
of perturbations yields a superiorized version of the basic algorithm in (3.3) given by

(∀n ∈ N) X(n+1) = T⋆
(︂
X(n) + β(n)Y(n)

)︂
, X(0) ∈ HM . (3.12)

In Section 3.3.3, we prove that the algorithm in (3.12) converges to a feasible point of Prob-
lem (3.11) by showing that

(︂
β(n)Y(n)

)︂
n∈N

is a sequence of bounded perturbations. The
relation between the proposed method and the superiorization methodology is discussed
in detail in Section 3.3.4. Finally, the proposed algorithm is summarized in Section 3.3.5.

3.3.1. Feasibility-Seeking Basic Algorithm

A feasible point for the relaxed SDP in (3.11) can be found by solving the convex feasibility
problem

find X ∈ HM s.t. X ∈ C⋆ :=
K⋂︂
k=1
Qk ∩ P ∩ C+. (3.13)

A well-known technique for solving problems of this kind is the POCS algorithm (see
Section 2.1), which generates a sequence of estimates by x0 ∈ HM

(∀n ∈ N) xn+1 = T⋆(xn).

Here, the mapping T⋆ : HM → HM is given by

T⋆ := T
µK+2
C+

T
µK+1
P TµK

QK
. . . T µ1

Q1
, (3.14)
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3.3. Algorithmic Solutions

where for a nonempty closed convex set C ∈ HM ,

TµC = I + µ(PC − I)

denotes the relaxed projector onto C with relaxation parameter µ ∈ (0, 2). The formal
expressions for the projections of X ∈ HM onto each of the sets in (3.13) are given below.

1) The SINR constraint sets Qk ∈ HM are half-spaces, the projections onto which are
given by [BC11, Example 29.20] (∀k ∈ K)(∀X ∈ HM )

PQk
(X) =

⎧⎪⎨⎪⎩
X, if X ∈ Qk
X + σ2

k−⟨⟨X,Zk⟩⟩

|||Zk|||2 Zk, otherwise.

2) The per-antenna power constraint set P is an intersection of the N half-spaces defined
by the normal vectors Di in (3.7) for i ∈ N . Since these vectors are mutually orthog-
onal, i.e., (∀i ∈ N )(∀j ∈ N \ {i}) ⟨⟨Di,Dj⟩⟩ = 0, the projection onto P can be written
in closed form as

PP(X) = X +
∑︂

i:pi<⟨⟨X,Di⟩⟩

pi − ⟨⟨X,Di⟩⟩
|||Di|||2

Di,

according to Proposition 1.1. Alternatively, we could prove this result by applying
[SY98, Thm 4.3-1] and Halperin’s Theorem (see [Hal62], [Gin18, Theorem 4.2]).

3) The set C+ is the intersection of PSD cones in orthogonal subspaces of HM . The
projection of X ∈ HM onto C+ is therefore given component-wise by

PC+(X) =
(︁
PH+(X1), . . . , PH+(XM )

)︁
,

where, H+ = {X ∈ H | X ≽ 0} is the cone of PSD matrices in H. We use the
eigendecomposition Xm = VmΛmVH

m with (real) eigenvalues

Λm = diag (λ1(Xm), . . . , λN (Xm)) (3.15)

to define the projection of Xm ∈ H onto H+ as4

PH+(Xm) = VmΛ+
mVH

m, (3.16)

where Λ+
m := diag

(︂
(λ1(Xm))+ , . . . , (λN (Xm))+

)︂
.

4For the case of real symmetric matrices, see, e.g., [GNR20, Lemma 2.1]. The result in [GNR20] is
based on [HJ13, Corollary 7.4.9.3], which assumes complex Hermitian matrices. The generalization
of [GNR20, Lemma 2.1] to complex Hermitian matrices is straightforward.

51



3. Multicast Beamforming

According to Theorem 2.1, the sequence
(︂
X(n)

)︂
n∈N

of vectors X(n) ∈ HM produced by
the update rule in (3.14) is guaranteed to converge to a solution of the feasibility problem
in (3.13) for any X(0) ∈ HM , if a solution exists (i.e., if C⋆ ̸= ∅). Note that this is the
case if the relaxed SDP in (3.11) is feasible. Moreover, Theorem 2.1 also guarantees the
convergence of perturbed variants of POCS.

3.3.2. Proposed Perturbations

In the following, we devise perturbations that steer the iterates of the fixed point algorithm
in (3.12) towards a solution to the nonconvex problem in (3.2) and (3.10). To do so, we
introduce a mapping that reduces the objective value and a mapping that reduces the
distance to rank constraint sets. Then we define the proposed perturbations based on
the composition of these two mappings As proven in Proposition 3.2 below, the resulting
perturbations can achieve both goals simultaneously.

Power Reduction by Bounded Perturbations

In the literature on superiorization, the perturbations are typically defined based on sub-
gradient steps of the objective function (see, e.g., [Cen15]). For the linear objective function
in (3.11), this would result in perturbations of the form −α (IN , . . . , IN ) for some α > 0.
These perturbations are problematic for the problem considered here because we are inter-
ested in solutions comprised of positive semidefinite rank-one matrices, and adding these
perturbations to an iterate X = (X1, . . . ,XM ) may result in indefinite full-rank compo-
nent matrices Xm−αIN . To avoid this problem, we introduce the function f1 : HM → R+

given by

f1(X) :=
M∑︂
m=1
∥Xm∥∗, (3.17)

where ∥ · ∥∗ is the nuclear norm. Since C⋆ ⊂ C+ by (3.13), we have (∀X ∈ C⋆)(∀m ∈
M)(∀i ∈ N ) σi(Xm) = λi(Xm), where λi(Xm) and σi(Xm) denote the ith eigenvalue and
singular value of the mth component matrix of X, respectively. Hence we can write

f1(X) =
M∑︂
m=1

N∑︂
i=1

σi(Xm) (3.18)

=
M∑︂
m=1

N∑︂
i=1

λi(Xm) =
M∑︂
m=1

tr(Xm).

Therefore, by (3.5), minimizing f1 over C⋆ is equivalent to minimizing the linear objective
function in (3.10) (or (3.11)) over C⋆, in the sense that the solution sets to both formulations
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are the same. As we will show below, this surrogate objective function gives rise to power-
reducing perturbations, which are guaranteed not to increase the rank of their arguments’
component matrices (see Remark 3.4).

The power-reducing perturbations are designed according to two criteria. Firstly, they
should decrease the value of the surrogate function f1. Secondly, they should not be too
large in order to avoid slowing down convergence of the basic algorithm. For a given point
X ∈ HM we derive a perturbation Y⋆

τ satisfying these two criteria by solving the problem

Y⋆
τ := Y⋆

τ (X) ∈ arg min
Y∈HM

(︃
τf1(X + Y) + 1

2 |||Y|||
2
)︃
. (3.19)

Here, |||Y|||2 acts as a regularization on the perturbations’ magnitude, and the parameter
τ ≥ 0 balances the two design criteria. The next proposition shows that Y⋆

τ can be easily
computed.

Proposition 3.1. The unique solution to (3.19) is given by

(∀m ∈M) Y⋆
τ |m = χτ (Xm)−Xm, (3.20)

where χτ : H → H is the singular value shrinkage operator [CCS10]

χτ (Xm) := Umχτ (Σm)VH
m, (3.21)

χτ (Σm) = diag
(︃{︂

(σi(Xm)− τ)+

}︂
i∈N

)︃
,

and (∀m ∈M) Xm = UmΣmVm is the singular value decomposition of Xm such that
Σm = diag

(︁
{σi(Xm)}i∈N

)︁
.

Proof: See Appendix A.2.

By defining
(∀X ∈ HM ) σmax(X) := max

m∈M
i∈N

σi(Xm)

we can express the power-reducing perturbation for a point X ∈ HM as Y = TαP (X)−X,
where the mapping TαP := proxασmax(X)f1 is given component-wise by (∀m ∈M)

TαP (X)|m = χτ (Xm) with τ = ασmax(X). (3.22)

Note that T 0
P(X) = X, and (∀α ≥ 1) TαP (X) = 0. Therefore, the magnitude of the

power-reducing perturbations can be controlled by choosing the parameter α ∈ [0, 1].
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Moreover, in contrast to performing subgradient steps for the original cost function in
(3.10), applying the perturbations in (3.22) cannot increase the rank:

Remark 3.4. For all α ≥ 0, TαP maps any point X = (Xm)m∈M ∈ C+ to a point
Z = (Zm)m∈M = TαP (X) ∈ C+ satisfying (∀m ∈ M) rank(Zm) ≤ rank(Xm). This
follows immediately from (3.21).

Incorporating the Rank Constraints by Bounded Perturbations

Next, we define perturbations that steer the iterate towards the rank constraint set R in
(3.9). While objective functions used for superiorization are usually convex, the function
f2 : HM → R+

f2(X) := d(X,R), (3.23)

i.e., the distance to the set R, constitutes a nonconvex superiorization objective, so our
approach does not follow exactly the superiorization methodology in [Cen15] (but we can
still prove convergence).

As the perturbations may steer the iterates away from the feasible set, their magnitude
should not be unnecessarily large. Therefore, we choose the rank-reducing perturbations
as PR(X) − X, where PR(X) ∈ ΠR(X) denotes a (generalized) projection of a given
point X ∈ HM onto the closed nonconvex set R. Since R is a closed set, the set-valued
projection ΠR(X) is nonempty for all X ∈ HM . A projection onto R can be computed
by truncating all but the largest singular value of each component matrix to zero. We
formally state this fact below.

Fact 3.1. Let Xm = UmΣmVH
m ∈ H be the SVD of the mth component matrix of

X with Σm = diag(σ1(Xm), . . . , σN (Xm)). Then, (∀X ∈ HM ) the mth component
matrix of a point PR(X) ∈ ΠR(X) is given by [Luk13, Lemma 3.2]

PR(X)|m = Umdiag (σ1(Xm), 0, . . . , 0) VH
m. (3.24)

Combining Power- and Rank Perturbations

Since both TαP in (3.22) and PR in (3.24) operate on the singular values of the component
matrices, their composition is given by (∀m ∈M)

PRT
α
P (X)|m = (σ1(Xm)− ασmax(X))+ um1vHm1 ∈ H,
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where, (∀m ∈ M) Um = [um1, . . . ,umN ] and Vm = [vm1, . . . ,vmN ]. Moreover, it is
easy to verify that (∀X ∈ HM )(∀α ≥ 0), TαPPR(X) = PRT

α
P (X). We will now use the

composition of TαP and PR to define a mapping Υα : HM → HM by Υα := PRT
α
P − I, i.e.,

(∀X = (Xm)m∈M ∈ HM )(∀m ∈M)

Υα(X)|m = (σ1(Xm)− ασmax(X))+ um1vHm1 −Xm. (3.25)

Finally, we define the sequence
(︂
β(n)Y(n)

)︂
n∈N

of perturbations in (3.12) by

(∀n ∈ N) Y(n) := Υα(n)

(︂
X(n)

)︂
, (3.26)

where
(︂
α(n)

)︂
n∈N

is a sequence in [0, 1] and
(︂
β(n)

)︂
n∈N

is a summable sequence in [0, 1]. The
following proposition shows that the perturbations in (3.26) can simultaneously reduce the
objective value and the distance to the rank constraint set.

Proposition 3.2. Let α ∈ R+ and λ ∈ [0, 1]. Then each of the following holds for
Υα : HM → HM in (3.25).

(a) The perturbations cannot increase the distance to the set C+, i.e., (∀X ∈ HM )
d(X + λΥα(X), C+) ≤ d(X, C+). In particular, (∀X ∈ HM ) X ∈ C+ =⇒ X +
λΥα(X) ∈ C+.

(b) If α > 0, the perturbations decrease the value of the function f1 in (3.18):
(︂
∀X ∈ HM

)︂
f1 (X + λΥα(X)) < f1(X) whenever f1(X) > 0.

(c) If α > 0 and X ∈ C+, then the perturbations decrease the objective value of
Problem (3.10), i.e., ⟨⟨J,X + λΥα(X)⟩⟩ < ⟨⟨J,X⟩⟩ whenever ⟨⟨J,X⟩⟩ > 0.

(d) If λ > 0, the perturbations decrease the distance to the rank constraint set R.
More precisely,

(︂
∀X ∈ HM

)︂
f2 (X + λΥα(X)) < f2(X) whenever f2(X) > 0.

Proof.

(a) Denote by (∀m ∈ M) Xm = UmΣmVH
m the SVD with singular values Σm =

diag(σ1(Xm), . . . , σN (Xm)), which is used to define (3.25). As we show in Lem-
ma A.2 in the Appendix, there exists an eigendecomposition Xm = VmVmVH

m,
were Λm = diag(λ1(Xm), . . . , λN (Xm)). Now, define Z = (Z1, . . . ,ZM ) ∈ HM as

(∀m ∈M) Zm := (σ1(Xm)− ασmax(X))+ um1vHm1.
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Again, by Lemma A.2, there exists an eigendecomposition Zm = λ1(Zm)vm1vHm1.
Moreover, by Lemma A.3, we can write

λ1(Zm) = vHm1um1σ1(Zm) = vHm1um1 (σ1(Xm)− ασmax(X))+ .

As Xm and Zm have the same first left and right singular vectors (um1 and
vm1), it holds that λ1(Xm) ≥ 0 =⇒ λ1(Zm) ≥ 0. Furthermore, |λ1(Zm)| =
σ1(Zm) ≤ σ1(Xm) = |λ1(Xm)|, so it is immediate from the definition of d(·, C+)
in Lemma A.1 that d(Z, C+) ≤ d(X, C+). Finally, because the distance to a con-
vex set is convex, we have that d(X + λΥα(X), C+) = d((1 − λ)X + λZ, C+) ≤
(1− λ)d(X, C+) + λd(Z, C+) ≤ d(X, C+).

(b) It follows from (3.21) and (3.22) that (∀X ∈ HM )(∀α > 0) f1(X) > 0 =⇒
f1(TαP (X)) < f1(X). Moreover, by (3.24) we have that (∀λ ∈ [0, 1]) f1((1−λ)X+
λPR(X)) ≤ f1(X). This implies f1(X+λΥα(X)) = f1 ((1− λ)X + λPRT

α
P (X)) ≤

f1 (TαP (X)) < f1(X) whenever f1(X) > 0.

(c) This result follows from (a) and (b), since (∀X ∈ C+) ⟨⟨J,X⟩⟩ = f1(X) according
to (3.18).

(d) Since R is closed, we can write

f2(X) = d(X,R) = |||X− PR(X)||| =

⌜⃓⃓⎷ ∑︂
m∈M

N∑︂
i=2

σ2
i (Xm).

Therefore, it follows from (3.21) that (∀X ∈ HM )(∀α ∈ R+) f2(TαP (X)) ≤ f2(X).
Moreover, by (3.24), (∀λ ∈ (0, 1]) f2(X) > 0 implies that f2((1−λ)X+λPR(X)) <
f2(X). This in turn implies f2(X + λΥα(X)) = f2 ((1− λ)X + λPRT

α
P (X)) <

f2 (TαP (X)) ≤ f2(X) whenever f2(X) > 0.

With the perturbations defined in (3.26), the iteration in (3.12) yields the update rule

(∀n ∈ N) X(n+1) = T⋆
(︂
X(n) + β(n)Υα(n)

(︂
X(n)

)︂)︂
(3.27)

of the proposed algorithm, where X(0) ∈ HM is arbitrary,
(︂
α(n)

)︂
n∈N

is a sequence in [0, 1],

and
(︂
β(n)

)︂
n∈N

is a summable sequence in [0, 1].

56



3.3. Algorithmic Solutions

3.3.3. Convergence of the Proposed Algorithm

We will now examine the convergence of the proposed algorithm in (3.27). For this purpose,
let

(︂
β(n)

)︂
n∈N
∈ ℓ1+(N), let

(︂
α(n)

)︂
n∈N

be a sequence in R+, and denote by
(︂
Y(n)

)︂
n∈N

the

sequence of perturbations according to (3.26). Then the sequence
(︂
X(n)

)︂
n∈N

produced by
the algorithm in (3.27) converges to a feasible point of Problem (3.11) for all X(0) ∈ HM .

Theorem 2.1 proves the weak convergence of the sequence
(︂
X(n)

)︂
n∈N

produced by
the superiorized POCS algorithm in (3.27), given that the set C⋆ is nonempty and that(︂
β(n)Y(n)

)︂
n∈N

is a sequence of bounded perturbations. Moreover, since HM is finite di-

mensional, the convergence of
(︂
X(n)

)︂
n∈N

to a point in C⋆ is strong. Therefore, it remains

to show that the sequence
(︂
Y(n)

)︂
n∈N

is bounded for all sequences
(︂
α(n)

)︂
n∈N

in R+ and(︂
β(n)

)︂
n∈N
∈ ℓ1+(N), regardless of the choice of X(0) ∈ HM . To this end, we note that

(∀n ∈ N)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

Y(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

for any sequence
(︂
α(n)

)︂
n∈N

of nonnegative numbers:

Lemma 3.1. The mapping Υα in (3.25) satisfies(︂
∀X ∈ HM

)︂
(∀α ∈ R+) |||Υα(X)|||2 ≤ |||X|||2.

Proof. Let (∀m ∈ M) Xm = Umdiag({σi(Xm)}i∈N )VH
m denote the singular value

decomposition of the mth component matrix of X. According to (3.25), the mth com-
ponent matrix of Υα(X) is given by Υα(X)|m = −UmSmVH

m, where (∀m ∈M)

Sm = diag (min(σ1(Xm), τ), σ2(Xm), . . . , σN (Xm))

with τ = ασmax(X). Since (∀W ∈ HM ) ∥W∥2 =
∑︁
i∈N σ2

i (W), we can write

|||Υα(X)|||2 =
M∑︂
m=1
∥Sm∥2 ≤

M∑︂
m=1
∥Xm∥2 = |||X|||2,

which concludes the proof.

Using Lemma 3.1, we can show that the sequence of perturbations in (3.26) is bounded:

Lemma 3.2. Let
(︂
β(n)

)︂
n∈N
∈ ℓ1+(N) and suppose that (∀n ∈ N) α(n) ≥ 0. Then the

sequence of perturbations
(︂
β(n)Y(n)

)︂
with Y(n) defined by (3.26) is bounded.
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Proof. We need to show that (∃R ∈ R)(∀n ∈ N)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

Y(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
≤ R. To this end, observe

that
(︂
∀X(n) ∈ HM

)︂
(∀Z ∈ Fix(T⋆)) it holds that

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
X(n+1) − Z

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
=
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
T⋆
(︂
X(n) + β(n)Y(n)

)︂
− Z

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
(i)
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) + β(n)Y(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

(ii)
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

+ β(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

Y(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
,

where (i) follows from the nonexpansivity of T⋆, and (ii) is a consequence of the
triangle inequality. By Lemma 3.1, the perturbations defined in (3.26) satisfy (∀n ∈ N)⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

Y(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

. Consequently, applying the triangle inequality again yields

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
X(n+1) − Z

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

+ β(n)
(︂⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

+ |||Z|||
)︂
.

By defining (∀n ∈ N) a(n) =
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

and γ(n) = β(n)|||Z|||, we can deduce from

Fact 1.14 that the sequence
(︂
a(n)

)︂
n∈N

converges. This implies that there exists r ∈ R

such that (∀n ∈ N)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
≤ r. Consequently, we have (∀n ∈ N)

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
Y(n)

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓ (i)
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓ (ii)
≤
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n) − Z
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

+ |||Z|||
(iii)
≤ r + |||Z||| =: R

where (i) follows from Lemma 3.1, (ii) follows from the triangle inequality, and (iii)
follows from Fact 1.14.

By combining Fact 1.14 and Lemma 3.2 we can show that the proposed algorithm
converges to a feasible point of the relaxed SDP in (3.11). This is summarized in the
following proposition.

Proposition 3.3. Assume that Problem 3.10 is feasible. Then the sequence produced
by the algorithm in (3.12) with perturbations given by (3.26) is guaranteed to converge
to a feasible point of Problem (3.11) for all X(0) ∈ HM if

(︂
α(n)

)︂
n∈N

is a sequence in

R+ and
(︂
β(n)

)︂
n∈N
∈ ℓ1+(N).

Proof. Since HM is finite dimensional, this follows directly from Theorem 2.1 and
Lemma 3.2.

3.3.4. Relation to the Superiorization Methodology

The author of [Cen15] defines superiorization as follows:
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’The superiorization methodology works by taking an iterative algorithm, inves-
tigating its perturbation resilience, and then, using proactively such permitted
perturbations, forcing the perturbed algorithm to do something useful in addi-
tion to what it is originally designed to do.’

Although our proposed algorithm matches this informal definition, there are some slight
differences to the formal definition in [Cen15], where the perturbations Y(n) are required
to be nonascending vectors for a convex superiorization objective function.

Definition 3.1 (Nonascending Vectors [Cen15]). Given a function ϕ : RJ → R and
a point y ∈ RJ , a vector d ∈ RJ is said to be nonascending for ϕ at y iff ∥d∥ ≤ 1 and
there is a δ > 0 such that for all λ ∈ [0, δ] we have ϕ(y + λd) ≤ ϕ(y).

In our case, the goal of superiorization is two-fold, in the sense that it is expressed by
two separate functions f1 : HM → R and f2 : HM → R. While the function f1 in (3.17)
is convex, the function f2 in (3.23) (i.e., the distance to nonconvex rank constraint set R
in (3.9)) is a nonconvex function. Moreover, we use perturbations that are not restricted
to a unit ball, and therefore they are not necessarily nonascending vectors. However,
since the sequence (Y(n))n∈N is bounded, (∃r > 0)(∀n ∈ N)

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
Y(n)

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
≤ r, so we can

define (∀n ∈ N) β̄(n) = rβ(n) and Ȳ(n) := 1
rY(n). Now Ȳ(n) is nonascending for both

superiorization objectives f1 and f2 for all n ∈ N, and
(︂
β̄

(n))︂
n∈N
∈ ℓ1+(N). Keeping these

slight distinctions in mind, we will refer to the proposed algorithm in (3.12) as Superiorized
Projections onto Convex Sets.

3.3.5. Summary of the Proposed Algorithm

The proposed multi-group multicast beamforming algorithm is summarized in Algorithm 1.
It is defined by the relaxation parameters µ1, . . . , µK+2 of the mapping T⋆ in (3.14), a scalar
a ∈ (0, 1) controlling the decay of the power-reducing perturbations, a scalar b ∈ (0, 1) con-
trolling the decay of the sequence of perturbation scaling factors, i.e., (∀n ∈ N) α(n) = an

and β(n) = bn. The stopping criterion is based on a tolerance value ϵ > 0, and a maximum
number nmax of iterations.

The arguments of the algorithm are the indices g1, . . . , gK assigning a multicast group to
each user, the channel vectors h1, . . . ,hK ∈ CN , SINR requirements γ1, . . . , γK , and noise
powers σ1, . . . , σK of all users as well as the per-antenna power constraints p1, . . . , pN .
At each step, the algorithm computes a perturbation according to (3.25) and applies the
feasibility seeking operator T⋆ in (3.14). It terminates when the relative variation of the
estimate falls within the tolerance ϵ, or when the maximum number nmax of iterations is
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reached. Finally, the beamforming vectors w = {wm}m∈M are computed by extracting
the strongest principal component

(∀m ∈M) wm = ψ(Xm) :=
√︂
σ1(Xm)um1, (3.28)

where (∀m ∈ M) Xm = UmΣmVH
m, Σm = diag (σ1(Xm), . . . , σN (Xm)), and Um =

[um1, · · · ,umN ].

Algorithm 1 Superiorized Projections onto Convex Sets
1: Parameters: {µk}K+2

k=1 , a, b ∈ (0, 1), ϵ > 0, nmax ∈ N
2: Input: {gk}k∈K, {hk}k∈K, {γk}k∈K, {σk}k∈K, {pi}i∈N
3: Output: {wm ∈ CN}m∈M
4: Initialization: Choose arbitrary X(0) ∈ HM
5: for n = 0, . . . , nmax − 1 do
6: Y(n) ← Υan

(︂
X(n)

)︂
▷ Eq. (3.25)

7: X(n+1) ← T⋆
(︂
X(n) + bnY(n)

)︂
▷ Eq. (3.14)

8: if
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓

X(n+1) −X(n)
⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
< ϵ

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
X(n+1)

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
then

9: break
10: end if
11: end for
12: return w =

{︂
ψ
(︂
X(n+1)
m

)︂}︂
m∈M

▷ Eq. (3.28)

3.4. Numerical Results

In this section, we compare Algorithm 1 (S-POCS) to several other methods from the
literature. We choose identical noise levels and target SINRs for all users, i.e., (∀k ∈ K)
σk = σ and γk = γ. For each problem instance, we generate K independent and identically
distributed (i.i.d.) Gaussian channel vectors (∀k ∈ K) hk ∼ CN (0, σ2IN ). In the first
simulation, we drop the per-antenna power constraints, i.e., we set (∀i ∈ N ) pi =∞, and
we consider the following algorithms:

• The proposed method summarized in Algorithm 1 (S-POCS)

• Semidefinite relaxation with Gaussian randomization [KSL08] (SDR-GauRan)

• The successive convex approximation algorithm from [MHG+14, CCO15] (FPP-SCA)

• The ADMM-based convex-concave procedure from [CT17] (CCP-ADMM)

The S-POCS algorithm is as described in Algorithm 1, with parameters a = 0.95, b = 0.999,
ϵ = 10−6, nmax = 105. For the QoS-constraint sets, we use relaxation parameters (∀k ∈ K)
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µk = 1.9, and for the per-antenna power constraint set P and the PSD constraint C+, we
use unrelaxed projections, i.e., µK+2 = µK+1 = 1. We initialize the S-POCS algorithm with
X(0) = 0. The convex optimization problems in the SDR-GauRan and FPP-SCA algorithms
are solved with the interior point solver SDPT3 [TTT99]. Calling this solver from Matlab
results in a small computational overhead. While SDPT3 is written partly in Matlab and
partly in C, the remaining methods are implemented in pure Matlab. The parameters of
the CCP-ADMM algorithm are as specified in [CT17]. FPP-SCA and CCP-ADMM are initialized
with coefficients drawn i.i.d. from CN (0, 1). If [h1, . . .hK ] ∈ CN×K has full column rank,
we initialize CCP-ADMM with the closed-form starting point proposed in [CT17].

The SDR-GauRan algorithm begins by solving the relaxed problem in (3.11), and, sub-
sequently, generates random candidate beamforming vectors using the RandA method
[SDL06], [KSL08]. In the multi-group setting, where M > 1, an additional convex op-
timization problem (multigroup multicast power control (MMPC), [KSL08]) needs to be
solved for each candidate vector. If no feasible MMPC problem is found during the RandA

procedure, we define the output of the SDR-GauRan algorithm to be {ψ(X⋆
m)}m∈M, where

X⋆ ∈ HM is a solution to the relaxed SDP in (3.11).
The FPP-SCA algorithm from [MHG+14] works by solving a sequence of convex subprob-

lems. By introducing slack variables, the feasibility of each subproblem is ensured. This
obviates the need for a feasible initialization point, which is typically required to ensure
convergence of CCP/SCA algorithms. The CCP-ADMM algorithm uses an ADMM algorithm
to find a feasible starting point for the CCP. Subsequently, a similar ADMM algorithm
is used to approximate each subproblem of the CCP. Because the ADMM is a first order
method, the performance of CCP-ADMM is heavily dependent on the stopping criteria of
the inner ADMM algorithm. Unlike CCP-ADMM, the S-POCS algorithm does not require an
initialization phase, and it works by iteratively applying a sequence of mappings, which
can be computed in a fixed number of steps.

Owing to the considerable differences in the functioning of these methods, achieving
a fair comparison of their complexity is difficult. In the worst case, obtaining a solu-
tion with accuracy ϵ > 0 for a convex SDP with k constraints over the n-dimensional
(real-valued) PSD cone can take O

(︂
max{n, k}4n

1
2 log(1/ϵ)

)︂
operations asymptotically

[LMS+10]. CCP/SCA algorithms approximate nonconvex problems, so convergence to an
optimal point can not be guaranteed in general. As a result, their total complexity cannot
be expressed as a function of the accuracy ϵ. The complexity of each FPP-SCA iteration is
O([MN +K]3.5) [MHG+14]. However, general purpose solvers often apply heuristics that
achieve considerable complexity reduction. Therefore, the aforementioned asymptotic re-
sults can be rather pessimistic in practice. The CCP-ADMM involves inverting a matrix, the
cost of which is O(N3) [CT17]. However, this matrix inverse needs to be computed only
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once for each problem, and the complexity of the subsequent iterative steps is significantly
lower. By contrast, the proposed S-POCS algorithm requires M eigen-decompositions in
every iteration, resulting in a per-iteration complexity of O(MN3). Unfortunately, with-
out theoretical guarantees on the convergence rate, the use of per-iteration complexities
is limited to assess the overall computational cost of an algorithm.

Therefore, as in [CT17], [CCC+12], we use the computation time of a specific imple-
mentation to assess the computational cost of each method. Although we exclude the time
required for evaluating the performance, we note that the computation time required by
each of the methods severely depends on the particular implementation. All algorithms
are run on identical nodes of a high-performance computing central processing unit (CPU)
cluster. This implementation does not exploit the potential of parallel computation using
graphics processing units (GPUs), from which we expect significant acceleration espe-
cially for CCP-ADMM. Nevertheless, we emphasize that the proposed algorithm also achieves
a smaller approximation gap in many scenarios.

The authors of [CT17] assess the performance of the considered algorithms by comparing
the transmit power achieved by the resulting beamformers. However, none of the methods
considered here can guarantee feasibility of the beamforming vectors, when the algorithms
are terminated after a finite number of iterations. Furthermore, in the multi-group case,
it may not be possible to scale an arbitrary candidate beamformer w = {wm ∈ CN}m∈M

such that it satisfies all constraints in Problem (3.1). In principle, we could evaluate
the performance by observing both the objective value (i.e., the transmit power of the
beamformers) and a measure of constraints violation such as the normalized proximity
function used in [CCC+12]. However, defining this measure of constraints violation is
not straightforward, as the considered methods approach the problem in different spaces.
Moreover, we are interested in expressing the quality of a beamforming vector by a single
value to simplify the presentation. Therefore, we will compare the performance based on
the minimal SINR achieved by the beamformer

√︁
ρ(w) ·w with

ρ(w) = min
(︄

P ⋆SDR∑︁M
m=1 wH

mwm

,min
i∈N

(︄
pi∑︁M

m=1 |wim|2

)︄)︄
.

The scaled vector
√︁
ρ(w) ·w satisfies all power constraints, and its total power is bounded

by the optimal objective value P ⋆SDR of the relaxed SDP in (3.11). More compactly, given a
candidate beamformer w = {wm ∈ CN}m∈M for Problem (3.1), we assess its performance
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based on the function5

SINRmin
ρ (w) = min

k∈K

|wH
mhk|2∑︁

l ̸=m |wH
l hk|2 + σ2

k
ρ(w)

. (3.29)

Since P ⋆SDR is a lower bound on the objective value of the original problem in (3.1), it
holds (∀{wm ∈ CN}m∈M) that SINRmin

ρ (w) ≤ γ, where equality can only be achieved, if
the relaxed problem in (3.11) has a solution composed of rank-one matrices.

3.4.1. Performance vs. Computation Time

We will now examine how the figure of merit in (3.29) evolves over time for beamforming
vectors produced by the respective algorithms. Figure 3.1 shows the performance com-
parison for an exemplary scenario with N = 20 antennas, and K = 20 users split evenly
into M = 2 groups, where σ = 1, γ = 1, and (∀i ∈ N ) pi = ∞. It can be seen that the
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Figure 3.1.: SINRmin
ρ (w(t)) over time in a system with N = 20 antennas and K = 20 users

users split evenly into M = 2 multicast groups.

S-POCS algorithm quickly converges to a point achieving an SINR close to the specified
target value γ. The discontinuities in the SINR curve for the CCP-ADMM algorithm are
due to the inner- and outer optimization loops. For the SDR-GauRan algorithm, the SINR

5For the sake of simplicity, we will refer to the figure of merit SINRmin
ρ in (3.29), as SINR in the following.

Note that SINRmin
ρ < γ does not imply that w is infeasible, because SINRmin

ρ is the minimal SINR
achieved by the scaled beamformer

√︁
ρ(w) · w.
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increases whenever the randomization produces a beamformer with better performance
than the previous one. The SINR of the FPP-SCA algorithm improves continuously, albeit
more slowly than the S-POCS and CCP-ADMM algorithms.
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Figure 3.2.: SINRmin
ρ (w(t)) over time in a system with N = 20 antennas and K = 20

users split evenly into M = 2 multicast groups. The shaded regions include
the outcomes for 100%, 75%, 50%, and 25% out of 100 problem instances,
respectively, and the bold line represents the median.

Next, we evaluate the performance over 100 randomly generated problems. Since the
SINR does not increase monotonically for all of the methods considered, we assume that
each algorithm can keep track of the best beamformer produced so far. In this way,
the oscillations in the SINR metric for the CCP-ADMM algorithm do not have a negative
impact on its average performance. Figure 3.2 shows the performance of the beamforming
vectors computed with the respective algorithms over time for a system with N = 20
transmit antennas, and K = 20 users split evenly into M = 2 multicast groups. The
shaded regions correspond to the 100%, 75%, 50%, and 25% quantiles over all randomly
generated problems. More precisely, the margins of the shaded regions correspond to
the 1st, 13th, 26th, 38th, 63rd, 75th, 88th, and 100th out of 100 sorted y-axis values.
For each algorithm, the median is represented by a bold line. The S-POCS algorithm
achieves the highest median SINR, while requiring the lowest computation time among all
methods considered. Moreover, it can be seen that the variation around this median value
is less severe compared to the remaining approaches. Put differently, the time required
for reaching a certain SINR varies much less severely for the S-POCS algorithm than for
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the remaining methods. This can be of particular interest in delay sensitive applications,
where a beamforming vector for a given channel realization must be computed within a
fixed time period.

3.4.2. Varying number of antennas

In this subsection, we investigate the impact of the transmit antenna array size N on
the performance of the respective beamforming algorithms. To do so, we generate 100
random problem instances for each array size N with K = 20 users split evenly in to
M = 2 multicast groups. We choose unit target SINR and unit noise power for all users,
and unit per-antenna power constraints, i.e., γ = 1, σ = 1 and (∀i ∈ N) pi = 1. For the
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Figure 3.3.: (a) SINRmin
ρ (w) and (b) computation time for K = 20 users split evenly into

M = 2 groups for varying antenna array sizes N .

SDR-GauRan algorithm, we generate 200 candidate beamforming vectors for each problem
instance. We use the CCP-ADMM algorithm with parameters as specified in [CT17]. Since the
inner ADMM iteration converges slowly for some problem instances, we set the maximal
number of steps of the ADMM to jmax = 300. For the outer CCP loop, we use the stopping
criteria specified in [CT17], i.e., we stop the algorithm once the relative decrease of the
objective value is below 10−3 or tmax = 30 outer iterations are exceeded. For the FPP-SCA

algorithm, we use a fixed number of 30 successive convex approximation steps.
Figure 3.3(a) shows the figure of merit in (3.29) for different numbers N of transmit

antennas, averaged over 100 random problem instances each. For all N , S-POCS achieves
highest value for SINRmin

ρ (·), followed by the FPP-SCA, CCP-ADMM, and SDR-GauRan algo-
rithms. For N ≥ 80, the S-POCS algorithm achieves an SINR of SINRmin

ρ (wS-POCS) ≥
−0.05 dB. By contrast, the remaining methods do not exceed SINRmin

ρ (wFPP-SCA) =
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−0.12 dB, SINRmin
ρ (wCCP-ADMM) ≥ −0.15 dB, SINRmin

ρ (wSDR-GauRan) ≥ −1.18 dB, respec-
tively. The corresponding average computation times are shown in Figure 3.3(b). The
S-POCS algorithm requires 0.26 %–2.38 % of the computation time required by SDR-GauRan,
0.95 %–11.64 % of the computation time required by FPP-SCA, and 6.49 %–233.6 % of the
computation time required by CCP-ADMM. For N ≥ 80, the computation time of S-POCS

exceeds that of CCP-ADMM.

3.4.3. Varying number of users

In the following simulation, we fix an array size of N = 50 antenna elements, and we
evaluate the performance of each method for varying numbers K of users split evenly
into M = 4 multicast groups. Figure 3.4(a) shows the figure of merit in (3.29) averaged
over 100 random problem instances for each K. As before, we choose γ = 1, σ = 1, and
(∀i ∈ N ) pi = 1. The second y-axis shows the average rank6 of the M component matrices
of the solution X⋆ to the relaxed SDP in (3.11) computed by SDR-GauRan. For K ≤ 8, the
components of X⋆ are rank-one in all cases. With increasing K, the average rank grows
monotonically, reaching 2.88 for K = 128.

As expected, the optimality gap (represented by the difference between the target SINR
the scaled SINR figure of merit SINRmin

ρ in (3.29)) increases with the average rank of
solutions to the relaxed SDP. While all algorithms achieve close to optimal performance
for small numbers of users, the SINR in (3.29) decreases considerably faster for SDR-GauRan

than for the remaining methods. For all values of K, S-POCS achieves the highest value
for SINRmin

ρ (·) among all methods.
The corresponding average computation times are shown in Figure 3.4(b). S-POCS

requires 3.23 %–19.59 % of the computation time required by SDR-GauRan, 4.07 %–11.72 %
of the computation time required by FPP-SCA, and 19.78 %–1858 % of the computation
time required by CCP-ADMM. While the CCP-ADMM takes only a fraction of the time required
by S-POCS for small K, it slows down considerably as K increases. For moderate and
large numbers of users, S-POCS outperforms the remaining methods in terms of both
approximation gap and computation time.

3.4.4. Varying Target SINR

In the following simulation, we evaluate the impact of the target SINR on the respective
algorithms in a system with N = 30 antenna elements, K = 20 users split evenly into
M = 2 multicast groups, and unit noise power σ = 1. Since the target SINR has a strong

6More precisely, we determine the rank of a matrix by counting the number of singular values with
magnitude greater than 10−6.
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Figure 3.4.: (a) SINRmin
ρ (w) for a system with N = 50 transmit antennas and a varying

number of users split evenly into M = 4 multicast groups. The right y-axis
shows the average rank of solutions to the relaxed SDP in (3.11). (b) The
corresponding computation times.

impact on the transmit power, we set (∀i ∈ N ) pi = ∞, to avoid generating infeasible
instances of Problem (3.1). Figure 3.5(a) shows the figure of merit in (3.29) achieved by
each method for the respective target SINR. Except for the SDR-GauRan algorithm, which
exhibits a gap of about 2 dB to the target SINR, all methods achieve close to optimal
performance for each target SINR. Figure 3.5(b) shows the computation time required by
each algorithm for varying target SINR γ. The average computation time of SDR-GauRan

and FPP-SCA is almost constant. For CCP-ADMM, the computation decreases slightly with
an increasing target SINR. While the proposed S-POCS algorithm converges quickly for low
target SINR levels, its computation time exceeds that of the CCP-ADMM for target SINRs
above 8 dB. This indicates that the best choice of first order algorithms for multicast
beamforming depends on the regime in which the system is operated.

3.5. Conclusion and Final Remarks

In this chapter, we presented an algorithm for multi-group multicast beamforming with
per-antenna power constraints. We showed that the sequence produced by this algorithm
is guaranteed to converge to a feasible point of the relaxed SDP, while the perturbations
added in each iteration reduce the objective value and the distance to the nonconvex
rank constraints. Numerical comparisons show that the proposed method outperforms
state-of-the-art algorithms in terms of both approximation gap and computation time in
many cases. While for very small problem dimensions, existing algorithms are similarly
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Figure 3.5.: (a) SINRmin
ρ (w) for a system with N = 30 transmit antennas and K = 20 users

split evenly into M = 2 multicast groups. (b) The corresponding computation
times.

or even more efficient in terms of performance versus complexity, the advantage of the
proposed method is particularly pronounced in the low target SINR regime as well as for
large numbers of receivers. This makes the proposed method particularly relevant for low-
energy or massive access applications. In comparison to other techniques, the computation
time of the proposed method varies less severely across different problem instances of the
same dimension. In communication systems, which are typically subject to strict latency
constraints, the iteration can be terminated after a fixed number of steps without suffering
severe performance loss. The applicability of the proposed algorithm is not restricted to
the multicast beamforming problem considered here. A slight modification of the rank
constraint naturally leads to algorithms for rank-two Alamouti multicast beamforming
(see [WSM12], [WMS13]) or general rank multicast beamforming (see [LWP13], [TP20]).
Several advantages of the proposed method are summarized below:

• The proposed method is guaranteed to converge to a feasible point of the relaxed
SDP.

• The perturbations added in each iteration provably reduce both the objective value
and the distance to the rank constraint.

• The proposed method is free from nested optimization loops, so its implementation
does not require trading off inner against outer optimization steps.

• The bounded perturbation resilience of POCS guarantees the convergence of the
proposed algorithm under mild conditions, even if projections onto the PSD-cone
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are only computed approximately.

• The simple structure of the proposed method allows for a straightforward implemen-
tation in real-world systems.

• The proposed algorithm typically achieves most progress towards a solution dur-
ing the initial iterations. This allows a simple trade-off between performance and
complexity by choosing the maximal number of iterations.

• Unlike CCP/SCA algorithms, the proposed method can be extended straightfor-
wardly to higher-rank multicast beamforming settings.
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4. MIMO Detection

In this chapter, we use Theorem 2.3 to devise a superiorized APSM with provable con-
vergence properties to tackle the nonconvex MIMO detection problem. Although various
low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaus-
sian channels, they typically incur high performance losses when more realistic channel
models are considered. In this chapter, we propose a set-theoretic framework for MIMO
detection. Compared to existing low-complexity iterative detectors such as AMP, the
proposed algorithms can achieve considerably lower symbol error ratios over correlated
channels. At the same time, the proposed methods do not require matrix inverses, such
that their complexity is similar to AMP. This chapter is an extended version of [10]. Most
results in this chapter, together with the results in Section 2.2, are included in the journal
paper [11], which has been submitted for publication. A major part of the formulations
are identical to the version in [11].

4.1. Introduction

Throughout the past decades, data rates in mobile networks have been growing ex-
ponentially [FZ08]. On a global scale, mobile data consumption is increasing rapidly
[Cis14, Cis19]. In the near future, the growing number of mobile subscriptions, improve-
ments in the performance of mobile devices, and new service types such as Internet of
Things (IoT) communication are expected to continue driving the growth of global mo-
bile data consumption [Eri21]. This continuing trend calls for an increasingly efficient use
of spectral resources in order to meet the growing demand for mobile data. It is well-
known that multi-antenna systems can increase the achievable rate without broadening
the bandwidth [Tel99]. Therefore, such MIMO communication systems have gained much
attention during the past two decades. While commercial fourth generation (4G) base
stations typically only use two or four antennas for transmission and reception [KCKP16],
future communication systems are envisioned to rely on base stations with large antenna
arrays, which simultaneously serve many users [LVdP17].

Signals transmitted over MIMO channels typically suffer from co-channel interference,
which complicates signal detection. In fact, the problem of optimal detection in MIMO
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systems is known to be NP-hard [vEB81, Ver89, Mic01]. The MIMO detection problem has
been studied for decades. Yet the growing interest in large-scale multi-antenna systems still
drives the need for low-complexity approximation techniques. A comprehensive overview
of MIMO detection algorithms can be found in [YH15] and [AJS19]. The authors of
[JGMS15] propose a low-complextity MIMO detector based on AMP. They show that
this individually-optimal large-MIMO AMP (IO-LAMA) algorithm is optimal for MIMO
detection over i.i.d. Gaussian channels in the large-system limit under some additional
conditions. In [MP17], the authors relax the assumption of i.i.d. Gaussian channels
by proposing an orthogonal approximate message passing (OAMP) algorithm for MIMO
detection over the more general class of unitarily invariant channel matrices. In contrast
to the AMP detector proposed in [JGMS15], each iteration of OAMP involves a matrix
inversion in order to compute the linear minimum mean square error (LMMSE) estimate,
making OAMP more computationally complex than IO-LAMA. Many recent publications
on MIMO detection [SDW17, SDW19, GDN18, USMC19, NL20, KAHF20, HWJL18b]
propose deep-unfolded versions of iterative detectors. Despite their celebrated success,
some of these techniques have been found to suffer considerable performance losses on
realistic channels. The authors of [KAHF20] mitigate this problem by proposing an online
training scheme, which in turn increases the computational cost compared to deep-unfolded
algorithms that are trained offline.

In this chapter, we approach MIMO detection from a set-theoretic perspective. By
posing the problem in a real Hilbert space, we can apply Theorem 2.3 to devise iterative
MIMO detectors with provable convergence properties based on a superiorized APSM.
The proposed detectors have a per-iteration complexity similar to IO-LAMA. At the same
time, unlike IO-LAMA, the proposed methods are guaranteed to converge for arbitrary
channel matrices. Owing to their iterative structure, the proposed algorithms can be
readily used as a basis for deep-unfolded detection algorithms. Simulations show that,
despite their low complexity, the proposed methods can outperform the more complex
OAMP detector on realistic channels. Moreover, deep-unfolded versions of the proposed
methods can achieve competitive performance within considerably fewer iterations.

4.2. Problem Statement

We consider a MIMO system with NT transmit- and NR receive antennas. For square
constellations such as quadrature phase shift keying (QPSK) and quadrature amplitude
modulation (QAM), which are commonly used in practice, we can describe the system
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using the real-valued signal model [Tel99]

y = Hs + w,

where y ∈ R2NR is the received signal, H ∈ R2NR×2NT) is the channel matrix, s ∈ R2NT

is the transmit signal with coefficients (∀i ∈ IT := {1, . . . , 2NT}) si ∈ A ⊂ R drawn
independently from a uniform distribution over the set A of real-valued constellation
points, and w ∼ N (0, σ2

2 I2NR) is a vector of i.i.d. Gaussian noise samples.

The goal of MIMO detection is to estimate the transmit signal vector x based on knowl-
edge of the channel H and the received signal vector y. Since the entries of s are distributed
uniformly over the constellation alphabet and w is a vector of Gaussian noise, the optimal
detector uses the maximum likelihood (ML) criterion given by

s⋆ ∈ arg max
x∈S

p (y|x) = arg min
x∈S

∥Hx− y∥22, (4.1)

where S := A2NT ⊂ R2NT is the discrete set of feasible transmit signal vectors. The
ML problem is known to be NP-hard [Mic01] (and in fact, NP-complete [DPDM17]).
Therefore, various suboptimal approximations have been proposed.

4.3. Algorithmic Solutions

In this chapter, we approach the problem in (4.1) from a set-theoretic perspective, which
allows us to devise low-complexity approximation techniques with provable convergence
properties without imposing any additional assumptions. To apply the results from Chap-
ter 2, we formulate Problem (4.1) in a real Hilbert space

(︂
H := R2NT , ⟨·, ·⟩

)︂
equipped with

standard Euclidean inner product

(∀x,y ∈ H) ⟨x,y⟩ := yTx

inducing the Euclidean norm ∥x∥ =
√︁
⟨x,x⟩. In this Hilbert space, we can express the

ML problem in (4.1) as
minimize

x∈H
∥Hx− y∥2 + ιS(x), (4.2)

where and ιS : H → R+ ∩ {+∞} is the indicator function of S given by

(∀x ∈ H) ιS(x) =

⎧⎨⎩0 if x ∈ S

+∞ otherwise.
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In this work, we propose a low-complexity approximation technique for the problem in
(4.2) by following similar steps as in Section 3.3. In Section 4.3.1, we replace the finite
set S in Problem (4.2) with its convex hull and we propose an APSM to approximate a
solution to the relaxed problem. Subsequently, in Section 4.3.2, we propose superiorized
version of this algorithm by adding bounded perturbations in each iteration with the intent
to steer the iterate towards a solution to the nonconvex ML problem. Similarly to AMP,
which alternates between gradient steps and (Gaussian) denoising steps, the proposed
algorithm interleaves subgradient projections onto sublevel sets of increasing cost with
denoising steps defined by hard slicing or soft thresholding. A convergence proof for the
proposed method is provided in Section 4.3.3.

4.3.1. An Adaptive Projected Subgradient Method for MIMO Detection

In principle, a solution to the ML problem can be approximated by iterative techniques
that interleave gradient steps for the cost function with projections onto the nonconvex
constraint set in (4.1). Such algorithms, based on projected gradient methods or the
ADMM, have been discussed in [LYSM17, SDW19, USMC19]. However, owing to the
projection onto the nonconvex constellation alphabet, convergence of these algorithms
can usually not be guaranteed, or the convergence proof imposes stringent assumptions on
the channel matrix [LYSM17]. Instead of directly approaching the nonconvex ML problem
in (4.1), some authors [TRL01, TAXH16, WDCS16] have applied iterative algorithms to
a relaxed version of Problem (4.1), in which the discrete set S is replaced with its convex
hull

B := {x ∈ H | ∥x∥∞ ≤ amax} ,

where amax = max
a∈A

|a|. In the following, we devise basic algorithm based on an APSM
that aims at minimizing the objective of (4.1) over the closed convex set B. According to
Theorem 2.3 and 2.2, convergence of the APSM can only be guaranteed if all but finitely
many of its cost functions attain the value zero. Hence we cannot directly use the objective
function in (4.1) as a cost function for all iterations of the APSM. If the optimal objective
value ρ⋆ = ∥Hs⋆−y∥22 of Problem (4.1) were known, we could use the APSM to solve the
problem

minimize
x∈B

(︂
∥Hx− y∥2 − ρ⋆

)︂
+
.

This convex minimization problem is equivalent to the convex feasibility problem

find x ∈ Cρ⋆ ∩ B,
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where (∀ρ ≥ 0) Cρ :=
{︁
x ∈ H | ∥Hx− y∥2 ≤ ρ

}︁
is a sublevel set of the objective function

in (4.1), also known as stochastic property set [YSY02]. In the following, we build upon
a technique shown in [CSSK18], where the objective is to solve the problem

find x ∈

⎛⎝ ⋂︂
n≥n0

Cρn

⎞⎠ ∩ B,
for some n0 ∈ N, given a sequence (Cρn)n∈N of stochastic property sets. As in [CSSK18],
we define a sequence of continuous convex functions Θn : H → R+ by

(∀n ∈ N)(∀x ∈ H) Θn(x) :=
(︂
∥Hx− y∥2 − ρn

)︂
+

and we use the APSM to minimize asymptotically this sequence of functions over the set
B by iteratively applying the recursion

(∀n ∈ N) xn+1 := Tn(xn), x0 ∈ H (4.3)

where

Tn(x) :=

⎧⎪⎨⎪⎩PB
(︂
x− µn Θn(x)

∥Θ′
n(x)∥2 Θ′

n(x)
)︂

if Θn(x) > 0

PB(x) otherwise.
(4.4)

Here, (∀n ∈ N) Θ′
n : H → H defines a subgradient

(∀x ∈ H) ∂Θn(x) ∋ Θ′
n(x) =

⎧⎨⎩2HT (Hx− y) if Θn(x) > 0

0 otherwise

of Θn at x, and µn ∈ [ε1, 2−ε2] ⊂ (0, 2) is a relaxation parameter. If we choose the elements
of (ρn)n∈N to increase monotonically in such a way that (∃n0 ∈ N) ρn > ρ⋆, the recursion
in (4.3) is guaranteed to converge (see Section 4.3.3). Moreover, if ρ0 is sufficiently small
and (ρn)n∈N increases sufficiently slowly, the final objective value limn→∞ ∥Hxn−y∥2 will
be close to optimal.

4.3.2. Superiorization

Replacing the discrete constellation alphabet S with its convex hull B ⊃ S can potentially
limit the performance of the algorithm in (4.3), as it ignores available information on the
prior distribution of x. Therefore, we use the APSM in (4.3) as a basic algorithm, and we
devise a superiorized version by adding small perturbations to its iterates with the intent
to reduce slightly the value of some superiorization objective. According to Theorem 2.3,
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convergence of the sequence generated by the recursion

(∀n ∈ N) xn+1 := Tn(xn + βnvn), x0 ∈ H (4.5)

can still be guaranteed if (βnvn)n∈N are bounded perturbations according to Definition 1.3.
Objective functions for superiorization are typically convex. Nevertheless, as in Chap-

ter 3, we will consider nonconvex objective functions in the following. Moreover, in slight
deviation from [CDH10] and [Cen15], we use proximal mappings instead of subgradients
of the superiorization objective to define the perturbations. This allows for a simple
trade-off between the perturbations’ magnitude and their contribution to reducing the
objective value. In order to incorporate our prior information about the transmit signal,
we are interested in superiorization objective functions f : H → R+ ∪ {+∞} that satisfy
f(x) = 0 ⇐⇒ x ∈ S. One example of such a function is the indicator function fℓ2 := ιS .

The proximal mapping associated with fℓ2 is given by proxfℓ2
(x) = PS(x). Here, PS de-

notes a projection onto the set S. Since S is not convex, this point is not unique for all
x ∈ H. However, a projection onto S always exists because the set is closed. Therefore,
we can devise perturbations of the form

(∀n ∈ N) v(ℓ2)
n := PS(xn)− xn. (4.6)

As the primary objective of MIMO detection is to reduce the symbol error ratio (SER),
one could instead use a superiorization objective that penalizes the number of coefficients
of the estimate x̂ which lie outside the the set of valid constellation points, i.e.,

∑︂
k:x̂k /∈A

1 = ∥x̂− PS(x̂)∥0, (4.7)

where ∥ · ∥0 denotes the ℓ0 pseudo-norm. Borrowing a well-known result from compressed
sensing [Don06], we replace the ℓ0 pseudo-norm in (4.7) with the ℓ1-norm to define an
alternative superiorization objective (∀x ∈ H) fℓ1(x) := ∥x − PS(x)∥1. Note that fℓ1 is
still nonconvex due to the projection onto the nonconvex set S. Nevertheless, we can
derive a proximal mapping associated with τfℓ1 as follows:

Proposition 4.1. Let A ⊂ R be a discrete set of equidistant real-valued constellation
points and let S = A2NT ⊂ H. Then a proximal mapping associated with τfℓ1 is given
by

proxτfℓ1
(x) = ϕτ (x− PS(x)) + PS(x),
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where (∀τ ≥ 0) ϕτ : H → H is the soft-thresholding operator

(∀x ∈ H)(∀i ∈ IT) ϕτ (x)|i := sgn(xi)(|xi| − τ)+.

Proof: See Appendix B.

Using Proposition 4.1, we can define perturbations of the form

(∀n ∈ N) v(ℓ1)
n := proxτnfℓ1

(xn)− xn. (4.8)

4.3.3. Convergence of the Proposed Algorithms

In the following, we investigate the convergence of the proposed algorithms. According
to Theorem 2.3 and Remark 2.2, the sequence produced by superiorized APSM in (4.5)
converges (strongly) to a point x⋆ ∈ B, given that the perturbations are bounded and that

(C1) (∃n0 ∈ N)(∀n ≥ n0) Θ⋆
n = 0, i.e., Ωn := {x ∈ B | Θn(x) = Θ⋆

n} = B ∩ Cρn , and
Ω :=

⋂︁
n≥n0 Ωn ̸= ∅

(C2) (∃z ∈ Ω)(∃η > 0) {x ∈ H | ∥x− z∥ ≤ η} ⊂ Ω, i.e., the set Ω has an interior point.

Moreover, the point x⋆ minimizes all but finitely many functions of the sequence (Θn)n∈N

if

(C3) (Θ′
n(xn + βnyn))n∈N is bounded

(C4) there exists a bounded sequence (Θ′
n(x⋆))n∈N, where (∀n ∈ N) Θ′

n(x⋆) ∈ ∂Θn(x⋆).

The objective of the remainder of this subsection is to show that these conditions are
satisfied. We begin by showing that the proposed perturbations are bounded.

Proposition 4.2. The proposed perturbations in (4.6) and (4.8) are bounded.
Proof. Since B is compact, we can define c := maxx∈B ∥x∥. By (4.4) and the defi-

nition of a projection, (∀n ∈ N) xn ∈ B and (∀x ∈ H)PS(x) ∈ S ⊂ B. Consequently,
we have

∥v(ℓ2)
n ∥ = ∥PS(x)− xn∥ ≤ ∥PS(x)∥+ ∥xn∥ ≤ 2c

and

∥v(ℓ1)
n ∥ = ∥ϕτ (x− PS(x)) + PS(x)− xn∥

≤ ∥ϕτ (x− PS(x)) ∥+ ∥PS(x)− xn∥

≤ 2∥PS(x)− xn∥ ≤ 4c,
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which concludes the proof.

Finally, we apply Theorem 2.3 and Proposition 4.2 to prove the convergence of the
proposed method.

Proposition 4.3. Let (ρn)n∈N be a sequence in R+ satisfying (∃n0 ∈ N) (∃η > 0)
(∀n ≥ n0) ρn ≥ ρ⋆ + η. Then the proposed algorithm in (4.5) with perturbations
according to (4.6) or (4.8) and (βn)n∈N ∈ ℓ1+(N) is guaranteed to converge to a point
x⋆ ∈ B minimizing all but finitely many functions of the sequence (Θn)n∈N.

Proof. In light of Theorem 2.3, it remains to show that the conditions (C1)-(C4)
above are satisfied. Let s⋆ denote a solution to Problem (4.1).

(C1) By assumption, (∀n ≥ n0) ρn ≥ ρ⋆ = ∥Hs⋆ − y∥2, whereby 0 ≤ Θ⋆
n ≤(︁

∥Hs⋆ − y∥2 − ρn
)︁

+ ≤ 0. Moreover, (∀n ≥ n0) s⋆ ∈ Cρn ∩ B = Ωn, i.e., Ω ̸= ∅.

(C2) Define E := {x ∈ H | ∥s⋆ − x∥ ≤ ε} with some positive ε ≤
√
ρ⋆+η−

√
ρ⋆

∥H∥2
. All

u ∈ H with ∥u∥ ≤ 1 satisfy

∥H(s⋆ + εu) + y∥2 = ρ⋆ + 2ε⟨Hs⋆ − y,Hu⟩+ ε2∥Hu∥2

≤ ρ⋆ + 2ε
√︁
ρ⋆∥H∥2 + ε2∥H∥22

≤ ρ⋆ + η.

Therefore, by the premise of this proposition, (∀n ≥ n0) (∀x ∈ E) Θn(x) = 0,
i.e., E ⊂ Cρn. Now, we define a set with nonempty interior by Q := {x ∈
H | (∀i ∈ IT) sl ≤ xi ≤ su}, where (∀i ∈ IT)

s̃i := sgn(s⋆i ) ·
(︃
|s⋆i | −

ε√
2NT

)︃
,

sl := min(s̃i, si), and su := max(s̃i, si). Note that (∀n ≥ n0) Q ⊂ E ⊂ Cρn.
Moreover, Q ⊂ B for sufficiently small ε > 0, so it holds that Q ⊂ Ω.

(C3) Let (∀n ∈ N) zn := xn + βnyn. Since (∀n ∈ N) Θn(x) = 0 =⇒ Θ′
n(x) = 0,

it is sufficient to consider the case Θn(x) > 0. In this case, we have that
Θ′
n(x) = 2HT (Hx− y), so (∀xn ∈ B)

∥Θ′
n(zn)∥

(i)
≤ 2∥HTHzn∥+ 2∥HTy∥
(ii)
≤ 2∥HTH∥2 · ∥zn∥+ 2∥HTy∥
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(iii)
≤ 2∥HTH∥2 · (∥xn∥+ βn∥yn∥) + 2∥HTy∥

(iv)
≤ 2

(︃
c+ rmax

n∈N
βn

)︃
∥HTH∥2 + 2∥HTy∥.

Here, (i) and (iii) follow from the triangle inequality, (ii) follows from the defi-
nition of an operator norm, and (iv) follows from the definition of the constant c
in Proposition 4.2 and the fact that (∃r ∈ R) (∀n ∈ N) ∥yn∥ ≤ r. Consequently,
the sequence of subgradients (Θ′

n(xn + βnyn))n∈N is bounded.

(C4) Since (xn)n∈N is a convergent sequence in the compact set B, its limit x⋆ also
belongs to B. Therefore, we can apply the same argument as above.

4.3.4. Summary of the Proposed Algorithms

The proposed iterative MIMO dectector based on superiorized APSM is summarized in
Algorithm 2 below.

Algorithm 2 Superiorized APSM for MIMO Detection
1: Parameters: (ρn ≥ 0)n∈N, (µn ∈ (0, 2))n∈N, (βn ≥ 0)n∈N, (τn ≥ 0)n∈N

2: Input: H ∈ R2NR×2NT ,y ∈ R2NR

3: Output: x̂ ∈ R2NT

4: Initialization: Choose arbitrary x0 ∈ H
5: for n = 0, . . . , nmax − 1 do
6: vn = proxτnfℓj

(xn)− xn, j ∈ {1, 2} ▷ perturbation according to (4.6) or (4.8)
7: zn = xn + βnvn
8: Θn(zn) = (∥Hzn − y∥2 − ρn)+

9: Θ′
n(zn) = 2HT (Hzn − y)

10: xn+1 =

⎧⎨⎩PB
(︂
zn − µn Θn(zn)

∥Θ′
n(zn)∥2 Θ′

n(zn)
)︂

if Θn(zn) > 0

PB(zn) otherwise
11: end for
12: return x̂ = xn+1

4.3.5. Deep-Unfolded APSM for MIMO Detection

The superiorized APSM summarized in Algorithm 2 comprises four sequences of design
parameters, which have a considerable impact on its performance. Since no theoretical
criteria on the optimal choice of these parameters are available, we apply deep unfolding
to learn suitable parameters based on simulated data. To do so, we create independent
training and test datasets using the same system parameters but different random user
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equipment (UE) placements. As the weights are trained in an offline manner, they need
to generalize across arbitrary channel realizations. In order to achieve this, we create
batches of size b of (single-subcarrier) detection problem tuples (Hi,xi,yi) corresponding
to different random UE locations, where i = 1, . . . , b. Once the model has been trained,
inference is carried out using the dataset from [KAHF20], where one problem realization
corresponds to a unique UE arrangement with an arbitrary number of subcarriers.

Owing to the vanishing gradient problem, training the unfolded algorithm in a single
shot is difficult. Many existing works (e.g., [KAHF20]) mitigate the vanishing gradient
problem by averaging the loss (e.g., the mean squared error) over all layers

Θ({x̂l},x) = 1
2NTL

L∑︂
l=1
∥x̂l − x∥22,

where L denotes the number of layers in the network. However, this approach can result in
suboptimal choices of the weights, as the performance of the trained network only depends
on the loss in the output layer. Therefore, instead of averaging the loss over all layers,
we adopt the incremental training technique proposed in [ITW19]. This training method
consists of multiple generations. In the lth generation, an unfolded model with l layers is
trained based on the loss function

Θ({x̂l},x) = 1
2NT

∥x̂l − x∥22.

At the beginning of the subsequent generation l+ 1, the next layer is added to the model
and training is performed based on the loss in the (l + 1)th layer. To ensure that the
learned parameters are nonnegative, we learn the quantities log(ρl), log(µl), log(βl), and
log(τl), instead of the actual parameters ρl, µl, βl, and τl for l ∈ {1, . . . , L}. The actual
parameters are computed by applying the exponential function to the learned weights
in the forward pass. Moreover, to reduce the number of iterations required by APSM
(and hence the number of layers required for its deep-unfolded version), we initialize the
algorithm with the LMMSE estimate x̂0 = (HTH + σ2I)−1HTy.

4.4. Numerical Results

In this section, we compare the performance of the following algorithms:

• The APSM basic algorithm in (4.3) (APSM)

• The superiorized APSM in (4.5) with perturbations according to (4.6) (APSM-L2)

• The superiorized APSM in (4.5) with perturbations according to (4.8) (APSM-L1)
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• The AMP-based MIMO detector (IO-LAMA) proposed in [JGMS15] (AMP)

• The detector based on OAMP [MP17] (OAMP)

• The LMMSE estimate given by xLMMSE = (HTH + σ2I)−1HTy (LMMSE).

We consider a system with NT = 16 single antenna transmitters and NR = 64 receive
antennas and 16-QAM constellation. As in [KAHF20], we assume perfect power allocation,
i.e., we normalize the columns of the channel matrix H to unit Euclidean norm. For the
APSM algorithms, we set (∀n ∈ N) ρn = 5 · 10−5 · 1.06n and µn = 0.7. The perturbations
of APSM-L2 are scaled using the sequence (βn = bn)n∈N with b = 0.9. For APSM-L1, we set
(∀n ∈ N) τn = 0.005 and βn = 0.9999.

4.4.1. Performance of the Untrained Detectors

(a) (b)

Figure 4.1.: SER as a function of the number of iterations averaged over (a) 10000 realiza-
tions of i.i.d. Gaussian channels with 9 dB SNR and (b) 10000 3GPP channels
with 18 dB SNR.

Figure 4.1(a) shows the SER throughout the iterations, averaged over 10000 i.i.d. Gaus-
sian channel matrices with 9 dB SNR. It can be seen that both AMP and OAMP achieve max-
imum likelihood performance within about 10 iterations. The proposed methods do not
achieve ML performance. However, they still outperform LMMSE. Figure 4.1(b) shows the
he SER as a function of the number of iterations averaged over 10000 single-subcarrier 3rd
Generation Partnership Project (3GPP) MIMO channels with 18 dB SNR. The channels
are generated with the Quasi Deterministic Radio Channel Generator (QuaDRiGa) [Fra19]
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using the code provided with [KAHF20]. The simulation adopts the 3GPP_3D_UMa_NLOS

scenario for a base station (BS) equipped with a 4 × 8 dual polarized antenna array
(NR = 64) according to [3GP17] and NT = 16 UEs equipped with omnidirectional anten-
nas.

While all APSM-type algorithms achieve a SER below LMMSE, AMP fails to reduce the
SER throughout the iterations. Superiorization based on the indicator function fℓ2 = ιS

(APSM-L2) does not improve the performance compared to the unperturbed basic algorithm
(APSM). By contrast, the SER achieved by APSM-L1 is about an order of magnitude below
SER achieved by the unperturbed basic algorithm APSM, even outperforming the more
complex OAMP detector.

4.4.2. Performance of a Deep-Unfolded APSM Detector

(a) (b)

Figure 4.2.: (a) Loss and SER of the APSMNet model trained at 18 dB SNR as a function
of the training iterations. (b) Weights of the resulting trained APSM-L1 model
with L = 15 layers.

In the following, we train a deep-unfolded instance of APSM-L1 with L = 15 layers using
a batch size of 50 and incremental training with 50000 training iterations per generation.
As described in Subsection 4.3.5, we use the LMMSE estimate as the input to the first
layer. In the style of the unfolded MIMO detectors DetNet [SDW17, SDW19], ADMM-
Net [USMC19], MMNet [KAHF20], or FS-Net [NL20], we refer to this method as APSMNet

in the following. Training is performed using Adam optimizer [KB14] with a learning rate
of 0.0005. Figure 4.2(a) shows the loss value and SER during training as a function of the
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training iterations for an exemplary training run (the respective values are averaged over
periods of 1000 successive training iterations to smooth the curve). It can be seen that
the loss increases whenever a new layer is added to the model. This is due to the fact that
the weights in the newly added layer have not been optimized yet. During the course of a
generation of incremental training, the loss decreases and typically settles at a lower level
than in the previous generation. For some generations, the the loss is still decreasing when
the next layer is added. This indicates that the weights have not yet converged to their
final values. Consequently, we expect that the performance of the trained model could be
further improved by increasing the number of training iterations.

Figure 4.2(b) shows the weights learned by the same exemplary incremental training
procedure. Interestingly, the learned parameters exhibit an oscillating behavior through-
out the layers of the network. This effect has also been observed in [ITW19]. A theoretical
explanation for this oscillating behavior, which relates the learned step size parameters to
Chebyshev steps, was recently provided in [TW20a], [TW20b].

Figure 4.3.: SER for different methods averaged over 10000 3GPP channels as a function
of the SNR.

Figure 4.3 shows a performance comparison between untrained APSM with L = 200
iterations (APSM-L1), trained APSM with L = 15 layers (APSMNet), OAMP [MP17] with
L = 30 iterations (OAMP), and LMMSE. The APSMNet instances have been trained using
an independent training dataset. For low SNRs, APSM-L1 and APSMNet achieve the same
SER as OAMP. In the high SNR regime, both APSM-L1 and APSMNet outperform OAMP. This
is remarkable, as APSMNet uses only one matrix inverse to initialize x̂0, whereas OAMP
needs to compute matrix inverses in each iteration, resulting in a considerably higher
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computational cost.

4.5. Conclusion

In this chapter, we proposed iterative MIMO detectors with convergence guarantees based
on a superiorized adaptive projected subgradient method. Unlike IO-LAMA, the proposed
methods are not restricted to i.i.d. Gaussian channels. Simulations show that the proposed
methods can outperform OAMP on realistic channels. Furthermore, we showed that even
lower symbol error ratios can be achieved with deep-unfolded variants of the proposed
algorithms. In contrast to OAMP, the APSM-based detectors do not require matrix
inverses, so they have a per-iteration complexity similar to IO-LAMA. The proposed
deep-unfolded detectors require only one matrix inverse, and they achieve a lower SER
than OAMP within only 15 iterations.
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5. Online Channel Estimation for Hybrid
Beamforming Architectures

In this chapter, we propose online channel estimation algorithms based on the APSM in
Theorem 2.3. The results are based on our initial work in [6], where we proposed algorithms
for online channel estimation and tracking for hybrid beamforming architectures in a
narrowband setting. In the following, we extend the approach in [6] to a wideband setting,
and we additionally take into account random variations in the delay and phase shift of
subsequent channel realizations. Some passages in this chapter are borrowed from [6].

5.1. Introduction

Massive MIMO systems are envisioned to increase greatly the rates experienced by users in
future mobile networks. By exploiting channel state information, multi-antenna transceivers
can precode and combine the transmit and receive signals, in order to improve the per-
formance of communication systems. In fully digital beamforming architectures, every
antenna is connected to a dedicated radio frequency (RF) chain. Consequently, both
power consumption and hardware costs of these fully digital architectures grow rapidly
as the number of antenna elements increases, potentially prohibiting their deployment es-
pecially in systems with large-scale antenna arrays. Hybrid analog-/digital beamforming
architectures use an analog network of digitally controlled phase shifters or switches to
map the transmit and receive signals for all antenna elements to a lower number of RF
chains. These architectures are a promising means of reducing power consumption and
hardware costs in large multi-antenna transceivers. However, compared to fully digital
beamforming architectures, hybrid architectures render channel estimation more difficult,
because only a subspace of the channel can be observed at any time instant. For this rea-
son, multiple measurements (pilot signals in subsequent time slots) are required to obtain
an accurate estimate of the channel. Wireless channels can vary quickly in high mobility
scenarios, so the time required to collect sufficiently many samples can exceed the coher-
ence time of the channel even if compressive sensing techniques are applied. This calls for
channel estimation schemes that exploit temporal correlations between channel samples.
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A major part of the literature on channel estimation for hybrid beamforming consid-
ers the estimation of static channels. The schemes proposed in [AEALH14, BLW15,
MRRA+15, LGL16, VAHP17] estimate the channel based on multiple training symbols
that are transmitted sequentially. In these papers, the authors (implicitly or explicitly)
impose the block fading model, which assumes the channel to remain constant for a certain
number of observations [MH99]. The authors of [YWJG18, HWJL18a, CYX+19] propose
channel estimation schemes for hybrid architectures with electromagnetic (EM) lens an-
tenna arrays. The methods proposed in these works yield high quality channel estimates
based on a single training symbol. However, their complexity may be prohibitive in mobile
scenarios with short channel coherence time. To the best of our knowledge, computation-
ally simple online methods for estimating and tracking fast time-varying channels with
hybrid architectures have not been proposed so far.

In [6], we proposed online channel estimation algorithms for hybrid analog-digital beam-
forming architechtures that estimate and track the channel by exploiting side-information
such as sparsity in the angular domain. In contrast to previous works, the proposed
methods do not rely on the conventional block fading assumption, but rather they allow
for small variations in subsequent channel realizations. Moreover, we proposed an adap-
tive data-driven analog beamforming scheme that reduces the channel estimation error
compared to a random analog beamforming policy.

This chapter extends the results in [6], which are restricted to narrowband channels
having only a single subcarrier, to wideband channels with multiple subcarriers. In ad-
dition to that, we augment the system model by introducing random delay and phase
variations to subsequent channel observations, which model the effects of hardware in-
accuracies and switching processes at the UE. To compensate for these variations, we
propose a mechanism in Subsection 5.3.5, which estimates the delay and phase differences
between subsequent channel realizations. We derive theoretical lower bounds on the phase
and delay estimation error, and we assess the the performance of the proposed phase and
delay estimation scheme using an idealized signal model. The proposed phase and delay
compensation scheme is integrated with two online channel estimation algorithms. The
first algorithm, described in Subsection 5.3.2, uses a variant of the APSM in (2.18) without
adding perturbations. The second algorithm, which is introduced in Subsection 5.3.3, is a
heuristic that is motivated by a superiorized variant of the APSM in (2.18), in which we
heuristically set (∀n ∈ N) βn = 1.

Simulations with a spatially consistent quasi-deterministic channel model are provided
for a single moving UE. We show that proposed online channel estimation scheme can
outperform batch optimization techniques in terms of both accuracy and computational
cost, while permitting an adaptation of the analog combiners at runtime. Moreover, in
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contrast to the baseline, the proposed method can be used to estimate wideband channels
with random delay and phase variations. The simulations reveal that a significant perfor-
mance improvement can be achieved by jointly estimating the channels on all subcarriers,
compared to a parallel implementation of narrowband channel estimators.

5.2. Problem Statement

In this chapter, we consider the uplink in a single-cell wireless system OFDM with NF

subcarriers indexed by k ∈ Isc := {1, . . . , NF}. The network comprises a BS equippend
with NR antenna elements, which are connected to LR < NR RF chains, and a single UE
equipped with NT antenna elements, each of them having a separate RF chain. Trans-
mission takes place in regular time intervals of duration τ , which are indexed by n ∈ N.
The signal transmitted on the kth subcarrier during the nth time interval is denoted by
xn,k ∈ CNT , so that the received signal after analog-to-digital conversion is given by

(∀n ∈ N)(∀k ∈ Isc) yn,k = BnHn,kxn,k + nn,k = (xTn,k ⊗Bn)hn,k + nn,k. (5.1)

Here, Bn ∈ CLR×NR represents the analog combiner, hn,k := vec(Hn,k) is the vectorized
channel matrix, and nn,k ∼ CN (0, σ2ILR) is a vector of i.i.d. complex Gaussian noise
samples. The entire wideband channel at time interval n can be represented by the matrix
Hn = [hn,1, . . . ,hn,NF ] ∈ CNRNT×NF . To simplify the notation, we define (∀n ∈ N)
Xn = [xn,1, . . . ,xn,NF ] ∈ CNT×NF and Yn = [yn,1, . . . ,yn,NF ] ∈ CNR×NF . The objective
of the methods proposed in this chapter is to estimate and track the sequence (Hn)n∈N

as the UE moves along a specified trajectory. The channel is assumed to be spatially
(and hence temporally) consistent, i.e., the variations ∥Hn+1−Hn∥F between subsequent
channel realizations are assumed to be small if the time interval duration τ is sufficiently
short. Therefore we do not use the conventional block fading assumption.

In practical systems, hardware imperfections can introduce varying phase shifts to sig-
nals transmitted in subsequent time intervals. Moreover, technical processes such as tem-
porarily switching off the transceiver of the UE can add random offsets to the signal
delay. As the digital baseband signal is restricted to a subspace of the channel by the
analog combining hardware, multiple subsequent channel observations are required to
reconstruct the channel coefficients. Therefore, phase shifts and delays between two sub-
sequent channel observations can cause severe reconstruction errors. These effects can be
taken into account by introducing a channel model in which delay and phase of the receive
signal vary randomly between subsequent channel observations. To this end, consider
the (spatially/temporally consistent) sequence (Hn)n∈N of wideband channels introduced
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above. Given random delay1 τn ∼ U(0, 1) and phase shift φn ∼ U(0, 2π), the channel
H̃n = [h̃n,1, . . . , h̃n,NF ] at time interval n ∈ N, including switching processes and hardware
imperfections at the UE, can be modeled as

(∀k ∈ Isc) h̃n,k = ejφne−j2π(k−1)τnhn,k, (5.2)

which results in the receive signal

(∀k ∈ Isc) ỹn,k = ejφne−j2π(k−1)τnBnHn,kxn,k + nn,k. (5.3)

5.3. Algorithmic Solutions

The goal of the methods presented in the following is to estimate and track the se-
quence (Hn)n∈N of channel matrices based on the known pilots (Xn)n∈N, analog combiners
(Bn)n∈N, and received signals (Yn)n∈N.

5.3.1. Channel Estimation using Existing Batch Methods

In this subsection, we restrict our attention to the narrowband setting, in which the system
model is described by (5.1) with NF = 1. Dropping the subcarrier index k for notational
convenience, we obtain

(∀n ∈ N) yn = (xTn ⊗Bn)hn + nn, (5.4)

where yn ∈ CNR , nn ∈ CNR , xn ∈ CNT , and hn ∈ CNRNT . Many techniques in the litera-
ture (e.g., [AEALH14, BLW15, MRRA+15, LGL16, VAHP17]) work by collecting batches
of the signals (Bn,xn,yn) and by xploiting sparsity of the angular domain representation
of the channel. For example, suppose that the vectorized channel hn has a sparse repre-
sentation θn such that hn = Ψθn, where Ψ ∈ CNTNR×NTNR is nonsingular. Under the
block fading model, a good estimate of hn can be obtained by solving the least absolute
shrinkage and selection operator (LASSO) [Tib96] problem

ĥn ∈ arg min
h∈CNTNR

1
Nb

(Nb+1)
⌊︂

n
Nb

⌋︂
−1∑︂

i=Nb

⌊︂
n

Nb

⌋︂
⃦⃦⃦(︂

xTi ⊗Bi

)︂
h− yi

⃦⃦⃦2

2
+ λb

⃦⃦⃦
Ψ−1h

⃦⃦⃦
1
, (5.5)

1Without loss of generality, we set the OFDM symbol duration (without cyclic prefix) to 1 for notational
convenience. Note that this does not limit the choice of τ in our simulations.
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where λb is a nonnegative regularization parameter, and Nb is the batch size. The resulting
channel estimate is used to perform detection for the entire duration Nb∆t of a batch.
Aside from the computational complexity of solving Problem (5.5), which can be avoided
by matching pursuit algorithms (see, e.g., [MRRA+15]), this formulation has the additional
drawback that the channel estimate is not available before the last time interval in the
respective batch. As a result, the analog combiner cannot be adapted immediately after
a new channel realization is observed. Furthermore, if the channel estimate is used for
precoding in the downlink, it might be outdated as soon as it becomes available.

In principle, this method can be extended to the wideband setting in (5.1) by estimat-
ing each of the NF subchannels independently. However, this approach does not exploit
correlations in the frequency domain (or more precisely, sparsity of the channel impulse
response). Although formulating Problem (5.5) jointly over all subcarriers is straight-
forward, the resulting number of NRNTNF complex variables likely prohibits the use of
general purpose solvers, even for offline simulations [KKL+07]. Moreover, batch methods
are not suited for the generalized system model in (5.3), as the randomly varying delay
and phase shift violate the underlying block fading assumption.

5.3.2. Online Algorithm for Channel Estimation and Tracking

To overcome the limitations of batch methods, we propose an online channel estimation
and tracking technique with low complexity in the following. Generalizing the narrowband
formulation in [6] to the wideband setting in (5.1), we pose the channel estimation problem
in a real Hilbert space

(︂
H = CNRNTNF , ⟨·, ·⟩

)︂
with inner product

(∀x,y ∈ H) ⟨x,y⟩ := Re{yHx}, (5.6)

inducing the Euclidean norm (∀x ∈ H) ∥x∥ =
√︁
⟨x,x⟩ = ∥x∥2. The following proposition

shows that (H, ⟨·, ·⟩) is in fact a real Hilbert space.

Proposition 5.1. The Hilbert space H = (CN , ⟨·, ·⟩) equipped with the inner product
(∀x,y ∈ H) ⟨x,y⟩ := Re{xHy} is isometrically isomorphic to a real Hilbert space
with standard Euclidean inner product.

Proof. Consider the bijective linear mapping ξ : CN → R2N defined by (∀x ∈ CN )

ξ(x) :=
[︂
Re{x}T , Im{x}T

]︂T
. (5.7)
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Then (∀x ∈ CN )

⟨x,y⟩ = Re{xHy} = Re{x}TRe{y}+ Im{x}T Im{y} = ξ(x)T ξ(y),

which completes the proof.

For the remainder of this Chapter we define N := NRNTNF. Moreover, we use the
shorthand (∀k ∈ Isc) h[k] = h(k−1)NF+1:kNF ∈ CNRNT to denote the kth component vector

of a vector h =
[︂
h[1]T , . . . ,h[NF]T

]︂T
∈ H.

In order to devise an APSM channel estimation algorithm we define 1) a sequence
of closed convex sets (Sn ⊂ H)n∈N comprising all points that are consistent with the
respective channel observation according to (5.1), 2) (∀n ∈ N) a convex cost function
Θn : H → R+ that takes the value zero for arguments x ∈

⋂︁n
k=1 Sn, and 3) a closed convex

set K representing prior knowledge on the true channel. Then the update rule follows
from (2.18). We detail these three steps below.

1) Denote by Pn ⊂ Isc the set of subcarrier indices, on which pilot signals are transmitted
at time interval n. In the absence of measurement noise, the set of vectorized channels
that satisfy (5.1) is the affine subspace

Sn =
{︂

h ∈ H
⃓⃓⃓

(∀k ∈ Pn) (xTn,k ⊗Bn)h[k] = yn,k
}︂
. (5.8)

Extending the set Sn by a tolerance margin that allows for a positive noise power is
straightforward. However, we restrict our attention to the formulation in (5.8) for the
simplicity of presentation.

2) We consider the sequence of cost functions given by

(∀n ∈ N) Θn : H → R+, Θn(h) := 1
cn

∑︂
i∈Tn

w
(n)
i d(ĥn,Si)d(h,Si), (5.9)

where cn =
∑︁
i∈Tn

w
(n)
i d (xn,Si) is a positive scaling factor, ĥn is the channel estimate

in the nth iteration, and Tn = {n− L, . . . , n} is a discrete set indexing the L+ 1 most
recent time intervals at time n. A convenient choice for the weights is

(∀n ∈ N)(∀i ∈ Tn) w
(n)
i := ηn−i∑︁

l∈Tn
ηn−l , (5.10)

where η ∈ (0, 1]. In this way, for η < 1, the weight given to past measurements decays
exponentially, whereas η = 1 results in a uniform weighting. Nonsmooth cost functions
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of the type in (5.9) have been widely used in the literature (see, e.g., [YO05, YCY05,
CY08, TSY10]).

Given a nonempty closed convex set K ⊂ H, we can substitute the cost functions in
(5.9) in the definition of the APSM in (2.18) to obtain a sequence (TK

n )n∈N of mappings
(∀n ∈ N) TK

n : H → H given by

TK
n (h) := PK

⎛⎝h + µnMn

⎛⎝∑︂
i∈Tn

w
(n)
i PSi(h)− h

⎞⎠⎞⎠ , (5.11)

where (∀n ∈ N) µn ∈ [ε1, 2− ε2] ⊂ (0, 2), and

Mn =
∑︁
i∈Tn

w
(n)
i

⃦⃦⃦
PSi

(︂
ĥn
)︂
− ĥn

⃦⃦⃦2

⃦⃦⃦∑︁
i∈Tn

w
(n)
i PSi

(︂
ĥn
)︂
− ĥn

⃦⃦⃦2 . (5.12)

3) If the channel has a sparse representation of the form hn = Ψθn, this side-information
can be encoded in the constraint set K of the APSM in (5.11). A common choice for
encouraging sparsity in a given domain Ψ is the ℓ1-norm constraint

A :=
{︂

h ∈ H
⃓⃓⃓
∥Ψ−1h∥1 ≤ z

}︂
, (5.13)

for some z > 0. If Ψ is a unitary matrix, the projection onto A can be computed in a
fixed number of steps, as stated in Proposition 5.3 below. Using the ℓ1-norm constraint
in (5.13), we can now define a sequence of channel estimates by

(∀n ∈ N) ĥn+1 = TA
n (ĥn), ĥ0 ∈ H. (5.14)

Although the convergence of the APSM can only be guaranteed if the intersection of all sets
in (5.8) contains the true time-invariant channel vector, many studies have successfully
applied it to solve online learning and adaptive filtering problems (see, e.g., [TSY10,
YSY02, CYM09]). To implement the mapping TA

n , we need to compute the projections
onto the sets Sn and A. The projection onto the set Sn is given in Proposition 5.2
below.

Proposition 5.2. For all n ∈ N the projection pn = PSn(h) of a point h ∈ H onto
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Sn is given component-wise by

(∀k ∈ Isc) pn[k] =

⎧⎨⎩h[k]−A†
n,k (An,kh[k]− yn,k) if k ∈ Pn

h[k] otherwise,
(5.15)

where (∀n ∈ N)(∀k ∈ Pn) An,k = xTn,k ⊗Bn.
Proof. By defining (∀k ∈ Isc \ Pn) An,k := 0 ∈ CLR×NTNR , An :=

⨁︁NF
k=1 An,k, and

bn = [bTn,1, . . . ,bTn,NF
]T , where

(∀k ∈ Isc) bn,k :=

⎧⎨⎩yn,k if k ∈ Pn
0 ∈ CLR otherwise,

we can rewrite (5.8) as
Sn = {h ∈ H | Anh = bn} .

In the real Euclidean Hilbert space space R2N , which is isometrically isomorphic to H
(see Proposition 5.1), the complex vector-matrix multiplication Anh can be expressed
by ÂnξN (h) = ξLRNF(bn), where

Ân =
[︄
Re{An} −Im{An}
Im{An} Re{An}

]︄
.

Consequently, Sn is an affine subspace, the projection onto which is given by [SY98,
Section 4.5]

PSn(h) = h−A†
n (Anh− bn) .

The Moore-Penrose inverse of the direct sum satisfies
(︂⨁︁M

m=1 Am

)︂†
=
⨁︁M

m=1 A†
m.

Hence the projection can be computed for each subcarrier independently, which yields
the result in (5.15).

Lemma 5.1. Let (H = CN , ⟨·, ·⟩) be a real Hilbert space with inner product defined
in (5.6) and let f : H → R∪ {+∞} be a proper closed function and let U ∈ CN×N be
a unitary matrix. Then the proximal mapping associated with f(U·) can be expressed
in terms of the proximal mapping associated with f(·), where

(∀x ∈ H) proxf(U·)(x) = UHproxf(·)(Ux).

Proof. According to Proposition 5.1, we can represent x ∈ H in terms of the
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real Euclidean vector x̂ = ξ(x) ∈ R2N , by applying the bijective linear mapping ξ.
Moreover, by [Tel99, Eq. (4a)], the matrix

Û =
[︄
Re{U} −Im{U}
Im{U} Re{U}

]︄
∈ R2N×2N

is orthogonal whenever U is unitary. Hence by defining f̂ : R2N → R ∪ {+∞} such
that (∀x ∈ H) f̂(ξ(x)) = f(x) and applying Fact 1.2 we obtain

proxf(U·)(x) = ξ−1
(︂
ÛTproxf̂(·)(Ûx̂)

)︂
= UHproxf(·)(Ux),

which is the desired result.

The projection onto the set A in (5.13) is given in Proposition 5.3, which requires
Algorithm 3.

Algorithm 3 Algorithm for projection onto the simplex [DSSSC08]
1: Input: v ∈ RN and a simplex D = {v ∈ RN+ |

∑︁N
i=1 vi ≤ z}

2: Sort v into u : u1 ≥ u2 ≥ · · · ≥ uN
3: Find ρ = max

{︂
i ∈ {1, . . . , N}

⃓⃓⃓
ui − 1

i

(︂∑︁i
r=1 ur − z

)︂
> 0

}︂
4: Define θ = 1

ρ (
∑︁ρ
i=1 ui − z)

5: Output: PD(v) = w, where wi = max {vi − θ, 0}

Proposition 5.3. Let A be the closed convex set in (5.13) defined by some unitary ma-
trix Ψ and z > 0. The projection of x ∈ CN onto A is given by PA(x) = ΨPB(ΨHx)
where B =

{︂
x ∈ CN | ∥x∥1 ≤ z

}︂
. The projection onto B is given by (∀x ∈ H)

PB(x) = QxPD(QH
x x) where Qx := diag(exp(j∠x1), . . . , exp(j∠xN )) and PD is de-

fined in Algorithm 3.
Proof. Note that (∀x ∈ H) QH

x x ∈ RN and QH
x x ∈ D ⇐⇒ x ∈ B. Thus (∀x ∈ H)

ιB(x) = ιD(QHx). Hence by Lemma 5.1 it holds that (∀x ∈ H)

PB(x) = proxιB(·)(x) = proxιD(QH
x ·)(x) = QxproxιD(·)(QH

x x) = QxPD(QH
x x).

Applying Lemma 5.1 again yields PA(x) = ΨPB(ΨHx), which concludes the proof.

A drawback of the algorithm in (5.11) is that it requires knowledge of a suitable upper-
bound z on the ℓ1-norm to define the set A, and the optimal choice of Z is highly dependent
on the problem dimensions. To mitigate this problem, we proposed a heuristic in [6],
in which the projection onto A is replaced by the proximal mapping associated with a
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weighted ℓ1-norm. In Subsection 5.3.3, we provide some theoretical justification for this
heuristic by applying Theorem 2.3.

5.3.3. Weighted ℓ1-Norm Regularization via Superiorization

According to Theorem 2.3, perturbed versions of the APSM exhibit the same desirable
properties as their unperturbed counterparts, except for monotone approximation. There-
fore, we devise a superiorized variant of the algorithm in (5.11) by dropping the ℓ1-norm
constraint A (i.e., by defining K = H), by introducing a sparsity encouraging superioriza-
tion objective, and by devising bounded perturbations (βnvn)n∈N that aim at reducing the
value of this objective function. The superiorized version of (5.14) generates a sequence
by

(∀n ∈ N) ĥn+1 = TH
n

(︂
ĥn + βnvn

)︂
, ĥ0 ∈ H.

It has been observed in [CWB08] that the performance of sparse reconstruction algo-
rithms can be improved, compared to plain ℓ1 minimization, by solving a sequence of
reweighted ℓ1 minimization problems. Hence we devise a sequence (fn)n∈N of superioriza-
tion objective functions, where (∀n ∈ N) fn : H → R+ is given by

(∀x ∈ H) fn(x) := λ∥Ψx∥ω(n)
1 . (5.16)

Here, Ψ ∈ CN is a unitary matrix, λ ∈ R+ is a regularization constant, and (∀ω ∈ RN++)
∥ · ∥ω1 : H → R+ is a weighted ℓ1-norm given by

(∀x ∈ H) ∥x∥ω1 =
N∑︂
i=1

ωi|xi| =
N∑︂
i=1

ωi

√︂
(Re{xi})2 + (Im{xi})2. (5.17)

To define the sequence of weight vectors
(︂
ω(n)

)︂
n∈N

, we use the iterative reweighting
scheme proposed in [CWB08], where (∀n ∈ N) (∀i ∈ {1, . . . , N})

ω
(0)
i = 1; (∀n > 0) ω

(n)
i = 1⃓⃓⃓

θ
(n)
i

⃓⃓⃓
+ ν

; θ(n) = ΨH ĥn, (5.18)

Similarly to Chapters 3 and 4 (where the same superiorization objective was used
throughout all iterations), we use the proximal mapping associated with fn to define
perturbation vn. A formal definition of this proximal mapping is provided in the following
propositions.
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Proposition 5.4. The proximal mapping associated with the weighted ℓ1-norm in
(5.17) is given bya proxλ∥·∥ω

1
: H → H

proxλ∥·∥ω
1
(x) =

N∑︂
i=1

xi

(︃
1− λωi
|xi|

)︃
+

ei.

Proof: See Appendix C.1.
aNote that the weighted ℓ1-norm is defined for complex vectors x ∈ H = CN whereas the proximal

mapping is derived with respect to their real representation ξ(x) ∈ R2N .

Proposition 5.5. For all n ∈ N the proximal mapping associated with the function
fn in (5.16) is given by

proxfn
(x) = Ψprox

λ∥·∥ω(n)
1

(ΨHx),

where proxλ∥·∥ω
1

is defined in Proposition 5.4.
Proof. Since Ψ is a unitary matrix and (∀n ∈ N) fn = λ∥ · ∥ω(n)

1 is a proper closed
function, this proposition follows immediately from Lemma 5.1.

Applying the proximal mapping in Proposition 5.5 to the channel estimate ĥn reduces
the weighted ℓ1-norm of its sparse representation ΨH ĥn. Therefore, we define perturba-
tions by

(∀n ∈ N) vn := proxfn

(︂
ĥn
)︂
− ĥn.

We note that, for (βn)n∈N ∈ ℓ1+(N), boundedness of this type of perturbation can be
guaranteed using arguments analogous to those in Lemmas 3.1 and 3.2. However, we
omit the formal proof, and we heuristically choose (∀n ∈ N) βn = 1, which results in
(βn)n∈N ̸= ℓ1+(N). This choice of the sequence (βn)n∈N yields (∀n ∈ N)

h̆n = proxfn

(︂
ĥn
)︂
, ĥ0 ∈ H

h̆n+1 = proxfn+1

(︂
TH
n

(︂
h̆n
)︂)︂
.

As the choice of the initial point is arbitrary, this algorithm is equivalent to the heuristic
proposed in [6], which is given by

(∀n ∈ N) ĥn+1 = Tn(ĥn), ĥ0 ∈ H.
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Here, (∀n ∈ N) the mapping Tn : H → H is defined by (∀h ∈ H)

Tn(h) = proxfn+1

⎛⎝h + µnMn

⎛⎝∑︂
k∈Tn

w
(n)
k PSk

(h)− h

⎞⎠⎞⎠ , (5.19)

where w(n)
k and Mn are as defined in (5.10) and (5.12), respectively, and µn ∈ [ε1, 2−ε2] ⊂

(0, 2). To accelerate the convergence of the proposed algorithms, the update rules in
(5.11) and (5.19) can be applied t times in each iteration n, resulting in the recursions
ĥn+1 = (TA

n )t(ĥn) and ĥn+1 = T
t
n(ĥn), respectively.

5.3.4. A Sparse Representation of the Channel

The algorithms presented above exploit sparsity of the channel in a certain domain. When
both transmitter and receiver are equipped with a uniform linear array (ULA), a sparse
representation of the channel Hn,k ∈ CNR×NT can be obtained by a two-dimensional
discrete Fourier transform (DFT) FH

NR
Hn,kFNT (see, e.g., [HGPR+16]), where FNR ∈

CNR×NR and FNT ∈ CNT×NT are unitary DFT matrices. Applying the identity vec(ABC) =(︂
CT ⊗A

)︂
vec(B), we can express this sparse representation by θ̄n,k = Ψ̄Hhn,k, where

Ψ̄H := (FT
NT
⊗ FH

NR
) and hn,k = vec(Hn,k). Note that the Kronecker product of two uni-

tary matrices is unitary [RS89, Property 2.5], so Ψ̄ is a unitary matrix. For uniform planar
arrays (UPAs), the matrix Ψ̄ can be constructed in a similar way from lower-dimensional
DFT matrices, which implement DFTs on fibers of a tensor that is obtained by reshaping
the channel matrix Hn,k into vertical and horizontal antenna elements at the transmitter
and the receiver.

In addition to sparsity in the angular domain, we can exploit sparsity of the channel
impulse response, which is commonly assumed for wideband channels [Mol05]. To do so,
we define Θ̄n = [θ̄n,1, . . . , θ̄NF ] and Θn = Θ̄nFH

NF
, where FNF ∈ CNF×NF is a unitary DFT

matrix. Applying once more the identity vec(ABC) =
(︂
CT ⊗A

)︂
vec(B), we can express

the vectorized channel in the time- and angular domain by

θn = vec(Θn) = ΨHhn,

where ΨH = F∗
NF
⊗ Ψ̄H = F∗

NF
⊗ FT

NT
⊗ FH

NR
is unitary. Note that multiplication by

Ψ or ΨH can be implemented very efficiently via low-dimensional fast Fourier transforms
(FFTs) on fibers of a tensor that is obtained by reshaping the channel vector hn.
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5.3.5. Delay and Phase Compensation

The proposed online algorithms in Sections 5.3.2 and 5.3.3 do not assume that the channel
remains constant. However, large variations of the channel coefficients in subsequent time
intervals can render tracking the channel impossible. One reason for this is that the
cost function in (5.9) depends on measurements obtained in multiple time intervals, so
the true current channel might be far outside the set of minimizers of this cost function
if the difference between subsequent channel realizations is large. Note that this is the
case for the generalized channel model in (5.3), in which the absolute phase shift and
delay vary randomly between subsequent channel observations. Therefore, applying the
proposed online algorithms to the generalized channel model in (5.2) calls for a mechanism
that compensates for the random delay and phase variations. To simplify the following
presentation, we assume that known pilot signals are transmitted on all subcarriers in each
time interval n, i.e., (∀n ∈ N) Pn = Isc. The application of the proposed delay and phase
estimation scheme in the general case Pn ⊂ Isc is described in Remark 5.1.

According to (5.2), the sequence of channels (H̃n)n∈N is composed of a sequence (Hn)n∈N

of spatially consistent (and hence slowly varying) channels, where each channel realization
experiences a random absolute delay and phase shift. More formally, by introducing the
shorthand (∀φ ∈ [0, 2π])(∀τ ∈ [0, 1])

Q(φ, τ) := ejφdiag
(︂
1, e−j2πτ , . . . , e−j2π(NF−1)τ

)︂
, (5.20)

we can express (5.2) as (∀n ∈ N) H̃n = HnQ(φn, τn). Although the decomposition of
H̃n into τn, φn, and Hn is ambiguous, it is always possible to decompose (H̃n)n∈N into a
sequence (Ȟn)n∈N of slowly varying channels (i.e., (∀n ∈ N)

⃦⃦⃦
Ȟn+1 − Ȟn

⃦⃦⃦
F

is small) and
the corresponding delays (τ̌n)n∈N and phase shifts (φ̌n)n∈N such that

(∀n ∈ N) H̃n = ȞnQ(φ̌n, τ̌n).

Therefore, we can use the proposed algorithms to track the sequence (Ȟn)n∈N of slowly
varying channels. Given an estimate Ĥn = [ĥn,1, . . . , ĥn,NF ] ≈ Ȟn, a prediction Ŷn =
[ŷn,1, . . . , ŷn,NF ] of the (noiseless) receive signal at time interval n ∈ N can be computed
based on the known pilot signals and analog combining matrix as

(∀k ∈ Isc) ŷn,k =
(︂
xTn,k ⊗Bn

)︂
ĥn,k. (5.21)

Upon reception of the true receive signal Ỹn = [ỹn,1, . . .yn,NF ], we can estimate the
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delay and phase offset as

(φ̂n, τ̂n) ∈ arg min
φ,τ

⃦⃦⃦
Ỹn − ŶnQ(φ, τ)

⃦⃦⃦2

F
. (5.22)

Then we can construct the constraint set Sn in (5.8) using the delay- and phase compen-
sated versions of the receive signal Ỹ(t) given by

Yn := Ỹn (Q(φ̂n, τ̂n))H ,

and compute the next estimate ĥn+1 = vec(Ĥn+1) = T tn(ĥn) of the delay- and phase
compensated channel by t-fold application of either of the mappings Tn = TA

n in (5.11)
or Tn = Tn in (5.19). Finally, the sequence (H̃n)n∈N of channels including random delay
and phase variations can be approximated by H̃n ≈ Ĥn+1Q(φ̂n, τ̂n).

Proposed Phase and Delay Estimators

In the following, we propose an algorithm for the delay and phase estimation problem
in (5.22). To illustrate this approach, we consider an idealized noiseless setting in which
Ỹn = ŶnQ(φn, τn). Then in Proposition 5.6, we show that the proposed estimators in
fact approximate a solution to Problem 5.22. A very common technique for estimating
delay and phase shift is based on the cross-correlation. To illustrate this idea, consider two
continuous (complex valued) time-domain signals s1(t) and s2(t), where s2 is a delayed
and phase-shifted version of s1 given by

s2(t) = ejφs1(t− τ0).

Under this model, the cross-correlation

Rs1s2(τ) =
∫︂ ∞

−∞
s∗

1(t)s2(t+ τ)dτ

=
∫︂ ∞

−∞
s∗

1(t)ejφs1(t− τ0 + τ)dτ

= ejφRs1s1(τ − τ0)

is a translated and phase-shifted version of the auto-correlation of s1(t). It follows from
the Cauchy-Schwartz inequality, that the auto-correlation achieves its maximum at zero.
Thus the cross-correlation function Rs1s2(τ) has a maximum at τ = τ0. Moreover, the
auto-correlation is real-valued at the origin in general, i.e., Im{Rs1,s1(0)} = 0. Therefore,
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the phase shift φ can be obtained from the cross-correlation function, since

∠Rs1s2(τ0) = ∠ejφRs1s1(0) = φ.

Consequently, under mild assumptions on the wave-form of s1(t), both delay and phase
shift can in principle be recovered with arbitrary precision in the absence of noise. For
discrete signals, however, the resolution is restricted by the sampling rate. To alleviate
this problem, we can compute the discrete cross-correlation of an upsampled time-domain
version of the discrete frequency-domain signals considered in this work. To this end, we
note that the delay is assumed to be restricted to one OFDM symbol duration, which
allows us to estimate delay and phase shift based on the cyclic cross-correlation.

As the delay and phase estimation problem in (5.22) is solved independently for each
time interval n, we drop the index n in the following derivation for notational convenience.
Denoting by (∀l ∈ {1, . . . , LR}) ŷl = (ŷl,1, . . . , ŷl,Nf

)T ∈ CNF and ỹl = (ỹl,1, . . . , ỹl,Nf
)T ∈

CNF the predicted and received signals according to (5.28), we obtain one upsampled
cross-correlation for each RF chain, which we denote by rl. To combine the observations
from all RF chains, we sum over all cyclic cross-correlation vectors rl, as we expect all LR

vectors rl to be in phase at the position of their largest peak. The resulting sum of all
cross-correlations is given by

r =
LR∑︂
l=1

rl = FH
LR∑︂
l=1

ŷ∗
l ⊙ ỹl. (5.23)

Here F ∈ CNF×MNF is a DFT matrix with upsampling factor M , which is given by

(∀k ∈ Isc)(∀i ∈ {1, . . . ,MNF}) Fi,k = 1√
MNF

e
−j2πk i−1

MNF . (5.24)

In practice, the cross-correlation in (5.23) can be computed very efficiently using the FFT-
algorithm. Now we compute

i⋆ ∈ arg max
i∈{1,...,MNF}

|ri|,

and estimate the delay and phase shift according to

τ̂ = i⋆ − 1
MNF

and φ̂ = ∠ck⋆ . (5.25)

The following proposition shows that the estimators in (5.25) are in fact suited to
approximate solutions to Problem (5.22).
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Proposition 5.6. The estimates φ̂ and τ̂ in (5.25) approximate a solution to Prob-
lem (5.22) as M →∞.

Proof. Dropping the time index n, we can write the objective function in (5.22) as

⃦⃦⃦
Ỹ− ŶQ(φ, τ)

⃦⃦⃦2

F
= ∥Ỹ∥2F − 2Re

{︃
tr
(︃(︂

ŶQ(φ, τ)
)︂H

Ỹ
)︃}︃

+ ∥ŶQ(φ, τ)∥2F

= ∥Ỹ∥2F − 2Re
{︂

tr
(︂
(Q(φ, τ))H ŶHỸ

)︂}︂
+ ∥Ŷ∥2F ,

where the second equality follows from the fact that Q(φ, τ) is a unitary matrix and
the that Frobenius norm is invariant under uniform transformation. Since both Ỹ and
Ŷ are independent from the optimization variables φ and τ , we have that

arg min
φ,τ

⃦⃦⃦
Ỹ− ŶQ(φ, τ)

⃦⃦⃦2

F
= arg max

φ,τ
Re
{︂

tr
(︂
(Q(φ, τ))H ŶHỸ

)︂}︂
.

By definition in (5.20), Q(φ, τ) is a diagonal matrix. Moreover, for complex matrices
A and B of identical size, tr(AHB) = vec(A)Hvec(B), so it holds that

Re
{︂

tr
(︂
(Q(φ, τ))H ŶHỸ

)︂}︂
= Re

{︂
(diag (Q(φ, τ)))H diag

(︂
ŶHỸ

)︂}︂
= Re

⎧⎨⎩
NF∑︂
k=1

LR∑︂
l=1

Ŷ
∗
l,kỸ l,ke

−jφej2πkτ

⎫⎬⎭ .
Hence by defining a vector c ∈ CNF entry-wise as

(∀n ∈ Isc) ck :=
LR∑︂
l=1

Ŷ
∗
l,kỸ l,k (5.26)

we obtain a reformulation of Problem (5.22) given by

(φ⋆, τ⋆) ∈ arg max
φ,τ

Re

⎧⎨⎩e−jφ
NF∑︂
k=1

ckej2πkτ
⎫⎬⎭ . (5.27)

A solution to this problem can be approximated by discretizing the continuous variable
τ . This can be done by via the DFT matrix F defined in (5.24), resulting in τ̂ = i⋆−1

MNF
,

where
(φ̂, i⋆) ∈ arg max

φ,i
Re
{︂
e−jφri

}︂
,

and r = FHc ∈ CMNF. Clearly, the real part of e−jφri is maximized when |ri| is
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maximal and φ = ∠ri, which corresponds to the estimators proposed in (5.25). As the
upsampling factor M increases, the grid points τi approximate arbitrarily closely the
continuous value τ in (5.27). Moreover, the objective function in (5.27) is infinitely
differentialble w.r.t. τ , so it is smooth. Therefore, |ri⋆ | approaches the optimal value
of (5.27), as M increases, which proves the proposition.

Remark 5.1. We note that estimates of φ and τ can also be obtained for Pn ̸= Isc, i.e.,
if not all subcarriers carry pilot signals. Because receive signal can only be predicted
for pilot subcarries, we simply set (∀k ∈ Isc \ Pn) ck = 0 in (5.26).

Lower Bounds on the Delay and Phase Estimation Errors

In order to assess the performance of the proposed delay and phase estimators, we now
derive bounds on the achievable error variance for the phase and delay estimation problem.
To this end, note that the error variance of any unbiased estimator is lower-bounded by
the Cramér-Rao lower bound (CRLB). In the following, we consider the ideal setting in
which the channel is static and known perfectly (except for the random delay and phase
shift), i.e., (∀k ∈ Isc), Ĥn,k = Hn,k. In this case, (∀n ∈ N) (∀k ∈ Isc)

ŷn,k = BnHn,kxn,k and ỹn,k = ejφne−j2π(k−1)τnBnHn,kxn,k + nn,k,

where nn,k ∼ CN (0, σ2INR). Consequently, the measured receive signal Ỹn is a noisy,
delayed, and phase-shifted version of the predicted receive signal Ŷn. To simplify the
proof, we suppose that BnHn,kxn,k ∼ CN (0, γ

σ2 INR), where γ denotes the SNR. Then the
CRLBs for delay and phase estimation are given by Proposition 5.7.

Proposition 5.7. Let P ⊂ Isc, let (∀k ∈ P) ŷk ∼ CN
(︂
0, γ

σ2 INR

)︂
, and define

(∀k ∈ P) ỹk = ejφe−j2π(k−1)τ ŷk + nk, (5.28)

where τ ∼ U(0, 1), φ ∼ U(0, 2π), and (∀k ∈ P) nk ∼ CN (0, σ2INR).
Then the CRLBs for unbiased estimators of phase φ and delay τ are given by

var{φ} ≥ 1
2γLR

(︂
|P| − C2

1
C2

)︂ and var{τ} ≥ 1
8π2γLR

(︂
C2 −

C2
1

|P|

)︂ ,
where C1 :=

∑︁
k∈P(k−1) and C2 :=

∑︁
k∈P(k−1)2. For the special case P = Isc these
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expressions are simplify to

var{φ} ≥ 2NF − 1
γLRNF(NF + 1) and var{τ} ≥ 3

2π2γLRNF(N2
F − 1)

.

Proof: See Appendix C.2

For P = Isc, Proposition 5.7 shows the following important facts about minimum vari-
ance unbiased delay and phase estimators. The minimal variance of an unbiased delay
estimator is heavily dependent on the number of subcarriers. Asymptotically, the CRLB
for delay estimation scales with the third power of the reciprocal of NF, and linearly
with the reciprocal of LR. Consequently, increasing the number of subcarriers improves
the precision of a minimum variance unbiased delay estimator more drastically than in-
creasing the number of RF chains. In case of the phase estimator, the minimal variance
asymptotically decreases proportional to the reciprocals of both NF and LR.

5.3.6. Data-driven Analog Combining Scheme

The algorithms proposed in Subsections 5.3.2 and 5.3.3 can be applied independently
of the analog combining policy (Bn)n∈N. A common approach in the literature (see,
e.g., [ALH15]) is to draw the phases of the constant magnitude entries of Bn in each
time interval i.i.d. from a discrete set of quantized angles. In the following, we propose a
data-driven combining scheme that exploits channel estimates from previous time intervals
to increase the signal power at the RF chains. For a fully connected analog combining
network consisting of digitally controlled phase shifters with q bits, the set of potential
analog combining matrices is given by

Lq :=
{︂

B ∈ CLR×NR
⃓⃓⃓

(∀(i, k) ∈ ILR × INR) |Bik| = 1, ∠Bik mod 21−qπ = 0
}︂
,

where INR = {1, . . . , NR} and ILR = {1, . . . , LR}. In this architecture, the analog com-
biner that maximizes the SNR at the RF chains in time interval n ∈ N is given by

B⋆
n ∈ arg max

B∈Lq

1
σ2NRNF

E

⎡⎣NF∑︂
k=1
∥BHn,kxn,k∥22

⎤⎦ . (5.29)

If E
[︂
xn,kxHn,k

]︂
= P I for transmit power P > 0, we can rewrite (5.29) as

B⋆
n ∈ arg max

B∈Lq

tr

⎛⎝E
⎡⎣NF∑︂
k=1

Hn,kHH
n,k

⎤⎦BHB

⎞⎠ , (5.30)
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where the covariance matrix can be approximated by Rn ≈ E
[︂∑︁NF

k=1 Hn,kHH
n,k

]︂
, based on

the channel estimates in the previous time steps

(∀n ∈ N) Rn+1 := Rn + α

⎛⎝NF∑︂
k=1

Ĥn,kĤ
H
n,k −Rn

⎞⎠ , R0 := INR . (5.31)

Here, the constant α ∈ (0, 1] determines how fast Rn adapts to new estimates of the
channel. Solving Problem (5.30) is difficult because of its combinatorial nature. Therefore,
we devise a low-complexity heuristic by replacing the constraint set Lq in (5.30) with

C :=
{︂

B ∈ CLR×NR | ∥BHB∥F ≤ r
}︂
,

for some r > 0.2 Approximating the covariance matrix according to (5.31) and replacing
the nonconvex set Lq by by the convex set C yields the relaxed problem

W⋆
n ∈ arg max

B∈C
tr
(︂
BHBRn

)︂
. (5.32)

Now, we solve this relaxed problem and we project the result onto the nonconvex set Lq.
Using the Eckart-Young-Mirsky theorem [EY36], [Mir60, Theorem 2], we can deduce as a
solution to (5.32) the matrix W⋆

n = a(S(n)
1:LR,1:LR

)
1
2 (U(n)

1:NR,1:LR
)H for a > 0 such that the

constraint is satisfied with equality. Here, Rn = U(n)S(n)(U(n))H ≽ 0, in which S(n) is
a diagonal matrix of singular values of Rn arranged in nonascending order. Because the
(generalized) projection

PLq (W) = exp
(︄
j21−qπ

⌊︄
ϕ

(n)
ik

2π 2q + 1
2

⌋︄)︄
, ϕ

(n)
ik = ∠Wik (5.33)

of W ∈ CLR×NR onto Lq is independent of |Wik|, a projection of W⋆
n onto Lq is given by

Bn = PLq

(︃(︂
U(n)

1:NR,1:LR

)︂H)︃
. (5.34)

By setting the phase shifters according to (5.34), we can expect to improve the SNR at
the RF chains given that a good estimate of the channel covariance matrix is available;
i.e., given that

⃦⃦⃦
Rn − E

[︂∑︁NF
k=1 Hn,kHH

n,k

]︂⃦⃦⃦
F

is sufficiently small. To achieve this, we
implement a simple trade-off between exploration and exploitation. At each time instant
n, we either draw a random analog combiner from a uniform distribution over Lq (with

2Since the projection onto the nonconvex set Lq in (5.33) only depends on the phase of its argument,
the final result in (5.34) is independent of the scaling factor r. Thus we can set r = 1 without loss of
generality.
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probability pexplore ∈ [0, 1])), or we use the analog combiner in (5.34) (with probability
1− pexplore).

5.3.7. Summary of the Proposed Channel Estimation Scheme

The propopsed online channel estimation and tracking scheme with data-driven analog
combining and phase and delay compensation is summarized in Algorithm 4 below. Here,

Algorithm 4 Online Channel Estimation and Tracking for Hybrid Beamforming Archi-
tectures

1: Parameters: pexplore, α, (µn)n∈N, (Tn)n∈N, η ∈ (0, 1], {(Tn)n∈N = (TA
n )n∈N, z} or

{(Tn)n∈N = (Tn)n∈N, λ, ν}, t
2: Initialization: R0 = INR , ĥ0 ∈ CNRNTNF

3: for n ∈ N do
4: Draw bn ∼ U(0, 1)
5: if bn ≤ pexplore then
6: Draw Bn from a uniform distribution over Lq ▷ exploration
7: else
8: Compute Bn according to (5.34) ▷ exploitation
9: end if

10: Predict Ŷn according to (5.21)
11: Measure Ỹn

12: Estimate (φ̂n, τ̂n) according to (5.25)
13: Define Sn using Yn = Ỹn (Q(φ̂n, τ̂n))H
14: Compute ĥn+1 = T tn(ĥn) with Tn = TA

n (5.11) or Tn = Tn (5.19)
15: Compute Rn+1 according to (5.31)
16: Output channel estimate Ĥn+1Q(φn, τn) ≈ H̃n

17: end for

pexplore ∈ [0, 1] is the exploration probability, α ∈ [0, 1] is the learning rate in (5.31),
(µn)n∈N ⊂ [ε1, 2− ε2] ⊂ (0, 2) is the sequence of relaxation parameters in (5.11) or (5.19),
the sequence (Tn)n∈N in N indicates the sets time intervals used in the cost function at time
interval n, and η ∈ (0, 1] determines the weighting in (5.10). For the original APSM TA

n in
(5.11), z > 0 denotes the size of the ℓ1-norm constraint in (5.13). For the heuristic Tn in
(5.19), λ > 0 and ν > 0 denote the scaling factor of the superiorization objective in (5.16)
and the stabilization constant in (5.18), respectively. The positive integer t determines
the number of algorithmic updates computed in each time interval.

5.4. Numerical Results

In this section, we evaluate the performance of the proposed methods using simulated chan-
nel matrices obtained with the Quasi Deterministic Radio Channel Generator (QuaDRiGa)

104



5.4. Numerical Results

[Fra19]. This Matlab-based simulator generates spatially consistent channels that reflect
the spatio-temporal correlations typical of wireless channels. The simulation results are
averaged over 200 scenarios according to Table 5.4, divided evenly into line-of-sight and
non-line-of-sight scenarios. In each scenario, the UE orientation and the direction of the
track are drawn uniformly at random. The starting positions of the track are chosen such
that the angles of arrival are uniformly distributed over the interval [−60◦, 60◦], and the
distances to the BS are uniformly distributed over the interval [50 m, 500 m]. For each
scenario, a tensor of 100 channel matrices is generated and scaled such that the average
power of all elements is equal to one.

Table 5.1.: Simulation Parameters

BS antenna height 25 m
UE antenna height 1.5 m
UE speed 30 km/h
Scenario BERLIN_UMa_LOS; BERLIN_UMa_NLOS
Carrier frequency 2.53 GHz
Interval duration 250µs
BS antenna NR = 64, 4× 8 dual polarized [3GP17]
UE antenna NT = 4, ULA
Analog combiner q = 3 bit phase shifters, fully-connected
RF chains LR = 16

In Subsection 5.4.1, we compare the performance of the proposed algorithms with the
baseline in (5.5). To achieve a fair comparison, we consider the narrowband signal model in
(5.4) which is free from random delay and phase variations. Subsection 5.4.2 compares the
variance of the phase and delay estimators proposed in Subsection 5.3.5 to the lower bounds
in 5.7. In Subsection 5.4.3 we investigate the performance of the proposed algorithms when
applied to the wideband signal model in (5.3) with randomly varying delay and phase shift.

For the simulations in Subsections 5.4.1 and 5.4.3 we define

SNRdB := 10 log10

(︄
E
[︁
∥Hn,kxn,k∥22

]︁
NRσ2

)︄
,

where the expectation is with respect to transmit signals and subcarriers. This definition
of the SNR ensures that the noise power is independent of the analog combiner Bn. The
performance of algorithms is assessed via the normalized mean squared error (NMSE)

NMSE
(︂
ĥn
)︂

= ∥ĥn − hn∥2

∥hn∥2
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In each time interval, the UE transmits pilot signals (∀k ∈ Isc) xn,k ∈ CNT with unit
magnitude entries, the phase of which is drawn i.i.d. from U(0, 2π). The receive signal
yn,k is determined by the respective signal model.

5.4.1. Narrowband Channels

Although the signal model in (5.1) does not satisfy the block fading assumption, it is
free from random delay and phase variations, i.e., the sequence of channels is temporally
consistent. In the following simulation, we use this signal model to compare the batch
method in (5.5) with the proposed online channel estimation algorithms. As the baseline
in (5.5) assumes narrowband channels, we set NF = 1, resulting in the signal model in
(5.4). Figure 5.1 shows the NMSE for SNRdB = 20 dB averaged over all 200 scenarios.

Figure 5.1.: NMSE for different methods averaged over 200 scenarios

The curve labeled batch refers to the solution to (5.5) obtained with a standard interior
point solver. We use a batch size of Nb = 11 and a regularization parameter λb = 1.5.
These parameters have been found to achieve the lowest average NMSE using grid search.
The update rules defined by the mappings (TA

n )t and T tn in (5.11) and (5.19) are denoted
by prop1 and prop2, respectively. For these methods, the relaxation parameter is chosen
as (∀n ∈ N) µn := 1 and the buffer size in (5.9) is |Tn| = min(n, 5), i.e., the cost function in
(5.9) takes into account the 5 most recent measurements. The weighting in (5.10) is defined
by η = 0.8 and for each time int t = 5, i.e., each of the respective mappings are applied
t = 5 times in each time interval n. For prop1, the size of the ℓ1-norm ball in (5.13) is set to
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z = 30, which was found to achieve the best average NMSE. For prop2, the regularization
parameter of the weighted ℓ1-norm is set to λ = 0.003, and the stabilization constant in
(5.18) is ν = 0.05. For the proposed online methods, two analog combining schemes are
considered. Curves labeled random correspond to the case in which the entries of Bn are
drawn i.i.d. from a uniform distribution over Lq, whereas curves labeled data-driven

correspond to the combining scheme proposed in Subsection 5.3.6, where pexplore = 0.15
and α = 0.9. In both cases, the resolution of the digitally controlled phase shifters is set
to q = 3 bit.

Because the batch method produces a single channel estimate for the entire batch,
the NMSE increases towards beginning and end of each batch as the true channel varies
continuously. For the random analog combining policy, prop1 and prop2 incur a slightly
higher NMSE than the batch method. The proposed data-driven analog combining policy
considerably reduces the NMSE to the random policy for both prop1 and prop2. Moreover,
independently of the analog combining policy, the heuristic prop2 using the weighted ℓ1-
norm achieves a lower NMSE than the original APSM prop1. The proposed methods with
data-driven analog combining outperform the baseline. However, none of the algorithms
achieves an NMSE below 0.16. On average, proposed online algorithms required less than
4 % of the computation time required by the batch method in our simulations. This is
despite the fact that the batch method needs to solve only one optimization problem
every Nb time intervals, and that the proposed online algorithms were not implemented
on GPUs. We note that the estimation error of all methods can be reduced by decreasing
the speed of the UE or by reducing the time interval duration τ . As will be shown in
Subsection 5.4.3, the performance of the proposed algorithms can also be improved by
jointly processing multiple subcarriers.

5.4.2. Performance of the Proposed Delay and Phase Estimators

In the following, we compare the variance of the estimators proposed in Section 5.3.5 to
the respective CRLBs. The simulations are performed in the simplified system model in
Proposition 5.6, where the actual receive signal Ỹn is a noisy, delayed, and phase-shifted
version of the predicted receive signal Ŷn, and the entries of Ŷn are drawn i.i.d. from
a complex Gaussian distribution. Since the phase is periodic with period 2π, we define
phase error as

εφ(φ, φ̂) = min
i∈Z
|φ̂− φ− 2πi|2.

This definition avoids the dependency of the estimation error on the absolute value of φ,
as for φ close to −π, small deviations can result in an extremely large the absolute error
|φ − φ̂|. Moreover, we note that the proposed method cannot resolve delays above one
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symbol duration (i.e. τ > 1). Since we assume that the random delays are restricted to
the interval [0, 1), we can define the delay estimation error in the same way.

ετ (τ, τ̂) = min
i∈Z
|τ̂ − τ − i|2.

Note that the restriction of φ and τ to the intervals [0, 2π) and [0, 1), respectively, do
not limit the applicability of the proposed method for channel tracking, as adding integer
multiples of the respective period does not change the reconstructed channel coefficients.
Figure 5.2 shows the unbiased sample variance

(a) (b)

Figure 5.2.: Performance of the proposed (a) phase and (b) delay estimators in a system
with NF = 256 subcarriers, |P| = 32 pilot subcarriers, LR = 16 RF chains,
and upsampling factors M ∈ {32, 128, 512}.

var{φ} = 1
K − 1

K∑︂
n=1

εφ(φn, φ̂n) and var{τ} = 1
K − 1

K∑︂
n=1

ετ (τn, τ̂n)

of the phase and delay estimators for K = 10000 random realizations according to the
signal model in (5.6) for a system with NF = 256 subcarriers, |P| = 32 pilot subcarriers
and LR = 16 RF chains as a function of the SNR. The set of pilot subcarriers used in
the simulation comprises eight equidistant blocks of four adjacent subcarrier indices each,
i.e., P = {15, 16, 17, 18, 47, 48, . . . , 210, 239, 240, 241, 242} ⊂ Isc. In the high SNR regime,
both estimators achieve a variance close to the CRLB for sufficiently large upsampling
factors. With an upsampling factor of M = 512 both estimators nearly achieve the CRLB
for SNRs below 20 dB. Clearly, precision can be traded for computational complexity in
both cases.
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Although the proposed scheme can be used with any set P ⊂ Isc of pilot subcarrier
indices, we note that the choice of P has a significant impact on the performance of the
proposed estimators. In particular, an equidistant pilot subcarrier spacing results in a pe-
riodically repeating cross-correlation vector r, which renders delay estimation ambiguous.

5.4.3. Wideband Channels

The goal of this subsection is to evaluate the performance of the proposed scheme for the
wideband signal model in (5.3), in which the delay and phase shift vary randomly between
subsequent time intervals. Owing to this random variation, the batch method in (5.5) can
not be applied in this case so it is excluded from the comparison.

We compare the NMSE of the proposed methods in the same simulation setting con-
sidered in Subsection 5.4.1, with the only differences being that we increase the number
of subcarriers to NF = 256, and that we introduce random phase and delay variations to
the channel in subsequent time intervals. The proposed algorithms can be readily applied
to this setting, using the phase and delay compensation scheme in Subsection 5.3.5. Here,
we use an upsampling factor of M = 512, which achieved close to optimal performance
in the simulation in Subsection 5.4.2. As the increased number of subcarriers results in
an increased ℓ1-norm of the true channel, we change the ℓ1-norm constraint of prop1 to
z = 2000, which again was found to achieve good average performance for NF = 256 via
grid search. For prop2, we use the exact same parameters as in Subsection 5.4.1.

Figure 5.3.: NMSE for different methods averaged over 200 scenarios
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As can be seen in Figure 5.3, all methods achieve a considerably lower NMSE than in
the narrowband setting. As before, the heuristic in (5.19) performs slightly better than the
original APSM in (5.11), and for both methods, the data-driven analog combining policy
outperforms the random policy. It is interesting to note that no parameter changes were
necessary for the heuristic in (5.19) even though the number of subcarriers was increased
by a factor of 256. Whereas none of the methods reached an NMSE below 0.16 in the
narrowband setting, all online algorithms settle at an NMSE below 0.04 within only 10
time intervals for NF = 256. This shows that the estimation error can be reduced by
jointly performing channel estimation over all subcarriers, which allows to exploit sparsity
of the channel in both angular domain and delay domain. We note that this performance
improvement is despite the fact that random delays and phase shifts are introduced in the
simulation in Figure 5.3, rendering the problem more challenging, or even infeasible for
batch methods. Moreover, joint estimation over all subcarriers using batch methods based
on general-purpose solvers is likely to be prohibitive even for constant channels, due to
the problem dimension of N = NRNTNF = 65536 complex variables.

5.5. Conclusion

In this chapter, we used the APSM in Theorem 2.3 to devise online algorithms for estimat-
ing and tracking time-varying wideband channels with hybrid-beamforming architectures.
We introduced a phase and delay estimation scheme to compensate for random delay and
phase variations, and we compared its performance to the theoretical lower bound. Fur-
thermore, we proposed a data-driven analog combining policy that leverages the online
nature of the proposed channel estimation technique to improve its performance. Simula-
tions in a narrowband setting show that the proposed algorithms can outperform existing
batch methods. Moreover, the proposed algorithms can exploit channel sparsity in the
time domain by jointly processing multiple subcarriers. The numerical results show that
jointly estimating the entire wideband channel reduces considerably the estimation error
compared to the narrowband setting. While the parameters of the unperturbed APSM
algorithm with ℓ1-norm constraint need to be adapted depending on the number of sub-
carriers, the proposed heuristic, which is inspired by superiorization, can be applied to a
wide range of subcarriers without changing its parameters.
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In this chapter, we consider the PAPR problem in OFDM systems. We present algorithmic
solutions that were originally proposed in [1]. The content of this chapter is an extended
version of [1] that regards heuristics proposed in [1] in light of the theoretical results derived
in Chapter 2. In particular, we propose PAPR reduction techniques based on the POCS
algorithm in Theorem 2.1, the GPR algorithm in 2.4, and the EAPM in Theorem 2.5.
Some passages of the following text are borrowed from [1] without changes.

6.1. Introduction

In OFDM systems with a large number of subcarriers, the time domain transmit signals
are known to exhibit a high PAPR [WFB+13, KJ03]. Because the constellation points
in the frequency domain constitute random variables, their weighted sum (represented by
the Fourier transform) causes the time-domain samples to approach a Gaussian distri-
bution as the number of subcarriers increases [KJ03]. Amplifying an OFDM signal with
N subcarriers without introducing nonlinear distortions requires a power amplifier with
a linear region N times as large as the average power [WFB+13]. Since power ampli-
fiers with a high dynamic range are inefficient in terms of both energy consumption and
manufacturing costs, operating the power amplifier purely in the linear region typically
results in a low SNR at the receiver. By contrast, operating the amplifier in the nonlinear
region introduces undesired nonlinear signal distortions, which equally reduce the channel
capacity [SA09].

To mitigate the PAPR problem, an enormous research effort has been directed towards
the development of practical PAPR reduction techniques, including basic approaches such
as coding, interleaving, or selective mapping [RM13]. In this work, we focus on set-
theoretic approaches to the PAPR reduction problem because they open up the door to
the development of flexible, low-complexity PAPR reduction techniques that can be easily
implemented in state-of-the-art OFDM systems with large numbers of subcarriers and
very strict latency requirements. The basic idea behind many approaches to the PAPR
reduction problem is to modify the waveform of the transmission signal while satisfying
certain constraints such as spectral mask and error vector magnitude (EVM) constraints.
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In general, these constraints depend on parameters that can change from symbol to symbol
(e.g., allocation of pilot and data subcarriers or the constellation size might change between
subsequent OFDM symbols), so there is a strong need for PAPR reduction techniques that
have enough flexibility to systematically incorporate fast-changing constraints. Against
this background, set-theoretic approaches provide a natural framework for dealing with
the PAPR reduction problem in modern OFDM systems.

The contribution of the work in this chapter can be summarized as follows. First, we
develop a set-theoretic framework for implementing PAPR reduction algorithms that can
flexibly combine different frequency-domain constraints and adapt constraints on a time
scale of two consecutive OFDM symbols. In particular, we propose a PAPR reduction
algorithm for tone reservation (TR) [TC98, CY09] and iterative clipping and filtering
(ICF) [Arm02] (affine/linear frequency constraints) based on the EAPM in Theorem 2.5.
In addition, we propose a generalization of this algorithm to non-affine frequency-domain
constraints based on the GPR approach in Theorem 2.4. The proposed generalization can
deal with arbitrary combinations of constraints related to EVM, spectral masks, active
constellation extension (ACE) [KJ03], and compensation carriers. Moreover, we present
a heuristic extension, which is motivated by superiorization, to incorporate a nonconvex
equality constraint on the magnitude of compensation subcarriers. In this way, these
subcarriers can be used simultaneously for peak compensation and for channel estimation
with phaseless pilots [WBJ15a, WBJ15b].

6.2. System Model and Basic Definitions

Let c ∈ CN be an OFDM symbol with N subcarriers in the frequency domain, each of
them containing a complex valued constellation point. Since peaks in the time-domain
signal, which is obtained by applying the inverse discrete Fourier transform to c, can in-
crease owing to digital-to-analog conversion, we typically approximate the analog signal
by digitally upsampling with a factor of L ≥ 4 [SGAK03]. By doing so, we gain infor-
mation about the magnitude of peaks in the analog time-domain signal. More precisely,
upsampling can be captured by defining a zero-padded vector

ĉ =
[︂
cT ,0T

]︂T
∈ CNL

and a DFT matrix F ∈ CNL×NL with entries

F k,l = 1√
NL

e−j2π νktl
NL ,
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where (∀k, l ∈ {1, . . . , NL}) νk = k −N/2− 1, and tl = l − 1. The digital approximation
of the continuous time-domain signal is thus given by FH ĉ. Note that F is normalized
such that FFH = FHF = I.

A measure commonly used to express the distortion on the data subcarriers of a modified
version x of a given OFDM symbol ĉ is the EVM, defined by

ϵ(x) =

√︄∑︁
k∈Id
|xk − ck|2

NdP0
,

where Id = {i1, . . . , iNd} is the set of data subcarrier indices. In real transceivers,
distortions potentially increasing the EVM or bit error ratio (BER) are mainly intro-
duced by peaks exceeding the linear regions of the amplifiers. Therefore, another im-
portant signal property of a frequency-domain OFDM symbol x is the PAPR, defined
as [KJ04, Erd06, CY09]

PAPR(x) = ∥FHx∥2∞
1
NLE

[︁
∥Sdc∥22

]︁ , (6.1)

where Sd = [ei1 , . . . , eiNd
]T ∈ RNd×N is a row selection matrix for the rows indexed by

Id. In the following, we assume that expected power of all data subcarriers i ∈ Id is
normalized to E

(︁
|ci|2

)︁
= P0, so that (6.1) simplifies to

PAPR(x) = NL
NdP0

∥FHx∥2∞. (6.2)

Amplifier non-linearities affect signals with high PAPR more severely, so PAPR reduction
methods allow for the deployment of less costly amplifiers. These methods are the topic
of the next sections.

6.3. PAPR Reduction by Set Theoretic Estimation

To apply theoretical results for real Hilbert spaces presented in Chapter 2, we pose the
PAPR problem in a real Hilbert space (H = R2NL, ⟨·, ·⟩) equipped with the standard
Euclidean inner product

(∀x,y ∈ H) ⟨x,y⟩ := yTx

inducing the Euclidean norm (∀x ∈ H) ∥x∥ =
√︁
⟨x,x⟩ = ∥x∥2. To represent complex

signal vectors x ∈ CNL using elements x ∈ H of this real Hilbert space, we introduce a
mapping ξ : CNL → H given by

(∀x ∈ CNL) ξ(x) :=
[︂
Re{xT }, Im{xT }

]︂T
,
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and a matrix

F :=
[︄
Re{F} −Im{F}
Im{F} Re{F}

]︄
∈ R2NL×2NL,

such that FTF = FFT = I and (∀x ∈ CNL) Fξ(x) = ξ(Fx). Moreover, we define
ĉ := ξ(ĉ). The maximum norm of a complex vector v ∈ CNL is given by

∥v∥∞ = max
k∈{1,...,NL}

√︂
(Re{vk})2 + (Im{vk})2.

Therefore we define a function1 ∥ · ∥H,∞ : H → R+ by (∀v ∈ H)

∥v∥H,∞ := max
k∈{1,...,NL}

√︂
v2
k + v2

k+NL, (6.3)

so that (∀v ∈ CNL) ∥ξ(v)∥H,∞ = ∥v∥∞.

6.3.1. Problem Statement

The idea of set theoretic PAPR reduction is to minimize time-domain peaks subject to
constraints specifying certain desirable signal properties in the frequency-domain, such
as the maximal EVM or spectral masks. If these constraint sets can be expressed by a
closed convex set F ⊂ H, PAPR reduction can be posed in terms of a constrained convex
minimization problem the objective of which is given by (6.2). Since scaling the objective
function does not change the solution set, the feasible vector with lowest PAPR can be
found by solving the problem

minimize
x∈H

∥FTx∥H,∞

s.t. x ∈ F
(6.4)

A solution x⋆ to the Problem (6.4) can be obtained with interior point methods or pro-
jected subgradient methods, but the complexity of this approach may be prohibitive in
real-time applications. Therefore, several simple suboptimal techniques have been pro-
posed. Examples include ICF [Arm02], TR [TC98, CY09], or ACE methods [KJ03]. The
idea of these techniques is to reduce the objective value in (6.4) to a pre-defined thresh-
old value θ ≥ ∥FTx⋆∥H,∞. Formally, these methods replace the problem in (6.4) by the
feasibility problem

find
x∈H

x ∈ F ∩ T (6.5)

1It is straightforward to verify that the function in (6.3) satisfies all axioms of a norm on H.
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where T =
{︂

x ∈ H | ∥FTx∥H,∞ ≤ θ
}︂

is the set of signals bounded by magnitude θ in
the time domain. All of the aforementioned techniques can be related to this problem by
choosing the constraint set F accordingly. If the projection onto F is simple to compute,
Problem (6.5) can be solved with projection methods [SY98], which only involve operations
with low computational complexity, while typically achieving much of the progress towards
the solution during the initial iterations [CCC+12].

6.3.2. Some Relevant Constraint Sets

This section shows how the set F ⊂ H can be constructed as the intersection of multiple
constraint sets, the projections onto which are simple to compute. To this end, we define
exemplary realizations of constraint sets that are commonly used in the literature. To
streamline the notation, we will use the following convention for finite sets indexing certain
frequency bins. If I ⊂ {1, . . . , NL} is a set of frequency bin indices of a vector v ∈ CNL,
we use the superscript H to denote a finite set indexing the corresponding entries of a
vector v = ξ(v) ∈ H by defining

IH = I ∪ {k ∈ N | k −NL ∈ I}.

Subspace of in-band signals

As the modified OFDM signal is downsampled to the original rate (with subcarriers in-
dexed by the set Iin = {1, . . . , N}) before transmission, the out-of-band radiation (i.e
nonzero values in frequency bins exceeding the original bandwidth) caused by clipping
needs to be removed. Therefore, the transmit signal should be restricted to the subspace

C1 :=
{︂

x ∈ H
⃓⃓⃓

(∀k /∈ IH
in ), xk = 0

}︂
of in-band signals. The projection of a point x ∈ H onto C1 can be written entry-wise as

(∀k ∈ {1, . . . , 2NL}) PC1(x)|k =

⎧⎨⎩xk if k ∈ IH
in

0 otherwise.

Affine subspace of compensation signals

In the TR method, a subset Ic ⊂ Iin of the subcarriers is not used for data transmission.
These subcarriers transmit dummy symbols that have the sole purpose of decreasing peaks
in the time domain [TC98]. Formally, the corresponding frequency-domain constraint set
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restricts all but the compensation subcarriers Ic to their original values, by defining

C2 :=
{︂

x ∈ H
⃓⃓⃓

(∀k ∈ IH
in \ IH

c ), xk = ĉk
}︂
.

The projection of a point x ∈ H onto C2 can be expressed entry-wise as

(∀k ∈ {1, . . . , 2NL}) PC2(x)|k =

⎧⎨⎩ĉk if k ∈ IH
in \ IH

c

xk otherwise.

EVM constraint set

Besides exclusively reserving bandwidth, a degree of freedom for peak cancellation can
also be obtained by distorting the data subcarriers. For simplicity, we define Id = Iin\Ic.
The set of signals with distortion on the data subcarriers bounded by the maximal EVM
ε is given by [AM03]

C3 :=

⎧⎪⎨⎪⎩x ∈ H

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
k∈IH

d

(xk − ĉk)2 ≤ NdP0ε
2

⎫⎪⎬⎪⎭ .
The projection of a point x /∈ H onto C3 is given entry-wise by [SY98, Theorem 3.4-1]
(∀k ∈ {1, . . . , 2NL})

PC3(x)|k =

⎧⎪⎪⎨⎪⎪⎩
ĉk + ε

√
NdP0√︂∑︁

k∈IH
d

(xk−ĉk)2
(xk − ĉk) if k ∈ IH

d and x /∈ C3,

xk otherwise.

More compactly, we can express the projection of a point x ∈ H onto C3 as

PC3(x)|k =

⎧⎨⎩ĉk + ρ(x)(xk − ĉk) if k ∈ IH
d ,

xk otherwise,
(6.6)

where the function ρ : H → [0, 1] is given by

ρ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝max

⎛⎝√︂∑︁k∈IH
d

(xk−ĉk)2

ε
√
NdP0

, 1

⎞⎠⎞⎠−1

if ε > 0

0 otherwise.

116
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ACE constraint set

The idea of active constellation extension is to compensate peaks by allowing boundary
points of a square QAM constellation to be moved further outside, thereby increasing the
margin to any other constellation point. While this increases the EVM, the BER can be
reduced by this technique [KJ03]. The set of allowable modifications is denoted by

C4 :=
⋂︂

k∈IH
d

Ck4 ,

where

(∀k ∈ IH
d ) Ck4 =

⎧⎨⎩{x ∈ H | ⟨ek,x⟩ = ĉk } , if |ĉk| ̸= γ,

{x ∈ H | ⟨sgn(ĉk)ek,x⟩ ≥ |ĉk|} , otherwise.

Here, ek ∈ H denotes the kth unit vector, and γ is a constant equal to the largest positive
real part of all points of the respective QAM constellation. Consequently, for all k ∈ IH

d
the set Ck4 is either a hyperplane or a half space,

Proposition 6.1. For all k ∈ IH
d , the projection of a point x ∈ H onto Ck4 is given

by

PCk
4
(x) =

⎧⎨⎩x + (ĉk − xk)ek if x /∈ Ck4
x otherwise.

(6.7)

Proof. For inner constellation points, i.e., if |ĉk| ̸= γ, Ck4 is a hyperplane, the
projection onto which is given by [SY98, Eq. (3.2-6)] (∀x ∈ H)

PCk
4
(x) = x + ĉk − ⟨ek,x⟩

∥ek∥2
ek

= x + (ĉk − xk)ek.

For outer constellation points, i.e., if |ĉk| ̸= γ, Ck4 is a half space, the projection onto
which is given by [SY98, Eq. (3.3-17)] (∀x ∈ H)

PCk
4
(x) =

⎧⎨⎩x + |ĉk|−⟨sgn(ĉk)ek,x⟩
∥sgn(ĉk)ek∥2 sgn(ĉk)ek if x /∈ Ck4

x otherwise.

=

⎧⎨⎩x + (ĉk − xk)ek if x /∈ Ck4
x otherwise,

which completes the proof.
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In light of Proposition 6.1, it is easy to see that (∀x ∈ H) ⟨PCk
4
(x) − x, PCl

4
(x) − x⟩ =

0, whenever k ̸= l. Consequently, according to Proposition 1.1, we can compute the
projection of a point x ∈ H onto C4 as

PC4(x) = x +
∑︂
k∈IH

d

(︂
PC4

k
(x)− x

)︂
. (6.8)

Closed form expressions for the projections onto F and T

As mentioned in Section 6.3.1, the solution to (6.5) can be found with projection methods
if simple expressions for the projections onto F and T exist. Some potential definitions of
the frequency domain constraint set F in (6.5), which have been used in previous studies,
include the following:

• F = C1 (iterative clipping and filtering) [Arm02]

• F = C1 ∩ C2 (tone reservation) [TC98]

• F = C1∩C4 (active constellation extension) [KJ03], (if Ic ̸= ∅ ACE + TR) [PWK09]

Further examples of constraint sets are given in [CY09]. For all combinations mentioned
above, a closed form expression for the projection onto F exists. In Proposition 6.2,
we derive a closed form expression for the projection onto the set F = C1 ∩ C3 ∩ C4,
which simultaneously enforces in-band-, EVM-, and ACE-constraints while allowing for
compensation signals on subcarriers reserved for TR. To characterize the projection onto
the intersection of EVM- and ACE constraints, which affect the same frequency bins, we
will make use of the following lemma. Note that, in contrast to Proposition 1.1, the order
in which the projections are performed is important.

Lemma 6.1. Let A ⊂ H and B ⊂ H be two closed convex subsets of a real Hilbert
space (H, ⟨·, ·⟩) such that A ∩ B ̸= ∅. If (∀x ∈ H) PAPB(x) ∈ A ∩ B and ⟨PAPB(x)−
PB(x), PB(x)− x⟩ = 0, then PA∩B = PAPB.

Proof. Fix x ∈ H and define

MB := {y ∈ H | ⟨y− PB(x),x− PB(x)⟩ ≤ 0}

MA := {y ∈ H | ⟨y− PAPB(x), PB(x)− PAPB(x)⟩ ≤ 0} .

The projection theorem in Fact 1.1 implies that A ⊂ MA and B ⊂ MB, so A ∩ B ⊂
MA ∩MB. By the premise of this lemma, the normal vectors of MA and MB are
orthogonal, so (∀y ∈ H) ⟨PMA(y) − y, PMB(y) − y)⟩ = 0. Thus by Proposition 1.1,
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6.3. PAPR Reduction by Set Theoretic Estimation

PMA∩MB = PMAPMB . Moreover, it holds by construction that PMAPMB(x) =
PAPB(x). Consequently, given that (∀x ∈ H) PAPB(x) ∈ A ∩ B, we have that

d(x, PAPB(x)) ≥ d(x,A ∩ B) ≥ d(x,MA ∩MB) = d(x, PAPB(x)),

which shows that PAPB(x) is the point in A ∩ B with minimal distance to x, i.e.,
PA∩B(x) = PAPB(x).

Proposition 6.2. The projection onto F = C1 ∩ C3 ∩ C4 is given by the composition

PF = PC1PC3PC4 .

Proof. Let p := PC4(x) and let y := p− x. According to (6.7) and (6.8), p and y are
given entry-wise by (∀k ∈ {1, . . . , 2NL})

pk =

⎧⎨⎩ĉk if x /∈ Ck4
xk otherwise

and yk =

⎧⎨⎩ĉk − xk if x /∈ Ck4
0 otherwise.

Now, let z := PC3(p)− p. From (6.6) we obtain

zk =

⎧⎨⎩ĉk + ρ(p)(pk − ĉk)− pk if k ∈ IH
d ,

0 otherwise.

=

⎧⎨⎩ĉk + ρ(x)(xk − ĉk)− xk if k ∈ IH
d and x ∈ Ck4 ,

0 otherwise.

Further, we have that

zk + pk =

⎧⎨⎩ĉk + ρ(x)(xk − ĉk) if k ∈ IH
d and x ∈ Ck4 ,

ĉk otherwise,

so the convexity of C4 and (∀x ∈ H) ρ(x) ∈ [0, 1] imply that z + p = PC3PC4(x) ∈
C3 ∩ C4. As the entries of y and z are nonzero on disjoint subsets of frequency bins,
it is clear that ⟨z,y⟩ = 0. Hence Lemma 6.1 implies that PC3∩C4(x) = x + y + z =
PC3PC4(x). Note that the order of the projections onto C3 and C4 cannot be changed.

Since the constraint sets C1 and C3 ∩ C4 affect disjoint subsets of frequency bins, it
holds that (∀x ∈ H) ⟨PC1(x)−x, PC3∩C4(x)−x⟩ = 0. Thus according to Proposition 1.1,
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6. PAPR Reduction

PF = PC3∩C4PC1 = PC1PC3∩C4, which concludes the proof.

The projection of a frequency-domain vector x ∈ H onto the set of signals bounded by
magnitude θ in the time domain is given by

PT (x) = FPD
(︂
FTx

)︂
,

where D := lev≤θ∥ · ∥H,∞ is the set of (complex) time domain signals with magnitude
bounded by θ. This is an immediate consequence of Fact 1.2, because F is an orthogonal
matrix and the projection onto a closed convex set is the proximal mapping associated
with its indicator function. According to (6.3), we can express the set D as the intersection
D =

⋂︁NL
k=1Dk, where

(∀k ∈ {1, . . . , NL}) Dk =
{︂

x ∈ H | x2
k + x2

k+NL ≤ θ2
}︂
,

the projection onto which is given entry-wise by [SY98, Theorem 3.4—1] (∀k ∈ {1, . . . , NL})
(∀x ∈ H) (∀i ∈ {1, . . . , 2NL})

PDk
(x)|i =

⎧⎪⎨⎪⎩
θ√︁

x2
k

+x2
k+NL

xi if i ∈ {k, k +NL} and x2
k + x2

k+NL > θ2

xi otherwise.

Again, it is clear that ⟨PDk
(x) − x, PDl

(x) − x⟩ = whenever k ̸= l, so by Proposition 1.1
we can write

PD(x) = x +
NL∑︂
k=1

(PDk
(x)− x) .

In the following section, we use closed form expressions for the projections onto T and F ,
which were derived above, to devise fixed point algorithms for the feasibility Problem (6.5).

6.4. Algorithmic Solutions

In this section, we propose PAPR techniques based on algorithms investigated in Chap-
ter 2. In Subsection 6.4.1, we show that existing PAPR reduction techniques can be derived
as special cases of the POCS algorithm in (2.3) for certain choices frequency constraint
sets. In Subsection 6.4.2, we propose a PAPR reduction algorithm for affine frequency do-
main constraints based on the EAPM in (2.29). Subsection 6.4.3 generalizes this method
to arbitrary closed convex frequency constraint sets based on the extrapolated projection
method in (2.27). In Subsection 6.4.4 we introduce an additional nonconvex constraint set
that allows us to reuse phaseless pilot subcarriers for PAPR reduction. This additional
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constraint set is incorporated into the algorithm by exploiting its bounded perturbation re-
silience, which was established in Chapter 2. Practical aspects of the proposed algorithms
are discussed in Subsection 6.4.5.

6.4.1. Previous Methods

Many existing PAPR reduction techniques approximate a solution to the feasibility prob-
lem in (6.5) by applying the recursion

(∀n ∈ N) xn+1 = PFPT (xn), x0 ∈ H, (6.9)

where typically x0 = ĉ. This algorithm iteratively clips the time-domain representation
of xn and enforces the frequency-domain constraints specified by F . Depending on the
choice of F (see 6.3.2), (6.9) yields the ICF algorithm [Arm02], the Fourier projection
algorithm (FPA) [GP97], or the ACE-POCS algorithm [KJ03]. It is easy to see that the
algorithm in (6.9) is a particular case of the POCS algorithm in (2.3) with unit relaxation
factors λ1 = λ2 = 1.

In the simplified clipping and filtering (SCF) method [WT05], the clipping noise PT (x)−
x is multiplied by a constant λ in order to achieve strong PAPR reduction within one iter-
ation. For λ ∈ (0, 2), SCF corresponds to the first iteration of a relaxed POCS algorithm

(∀n ∈ N) xn+1 = PF (xn + λ (PT (xn)− xn)) , x0 ∈ H, (6.10)

with F = C1. Clearly, this is also a particular case of the POCS algorithm in (2.3), where
λ1 = λ and λ2 = 1. For the remainder of this chapter, we refer to the algorithm in (6.10)
(with arbitrary F) as rPOCS. Theorem 2.1 guarantees that the sequences defined by the
recursions in (6.9) and (6.10) converge to a point x⋆ ∈ F ∩ T given that F ∩ T ̸= ∅.
However, the convergence of POCS can be slow in practice [CCC+12]. Therefore, we
investigate the applicability of extrapolated projection methods for PAPR reduction in
the following subsections.

6.4.2. Extrapolated Projection Method for Tone Reservation

In the TR setting, the constraint set F is an affine subspace. Therefore, we can apply
the EAPM in (2.29) to solve (6.5). It has been shown in [CCC+12], that the EAPM
converges considerably faster than the POCS algorithms in (6.9) and (6.10) for affine-
convex feasibility problems. Given a point x0 ∈ F in an affine subspace F ⊂ H of a real
Hilbert space, and a closed convex set T ⊂ H, the EAPM generates a sequence (xn)n∈N
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by
(∀n ∈ N) xn+1 = xn + λnKn (PFPT (xn)− xn) , (6.11)

with λn ∈ (0, 2) and an extrapolation factor

(∀n ∈ N) Kn = ∥PT (xn)− xn∥2

∥PFPT (xn)− xn∥2
.

Since H is finite dimensional, convergence to a point x⋆ ∈ F ∩ T is guaranteed by Theo-
rem 2.5 (a), given that F ∩ T ̸= ∅.

6.4.3. PAPR Reduction with Arbitrary Constraints

Imposing EVM or ACE constraints results in a non-affine set F . In this case, the EAPM
cannot be used because extrapolation might cause the iterate xn to violate the frequency-
domain constraints. To avoid this issue, we propose a PAPR reduction technique for non-
affine frequency-domain constraints based on the GPR approach in Theorem 2.4. Given
two arbitrary closed convex sets F , T ⊂ H, the GPR algorithm produces a sequence
(xn)n∈N by

(∀n ∈ N) xn+1 = PF
(︂
xn + λnσ

GPR
n (PFPT (xn)− xn)

)︂
, x0 ∈ F , (6.12)

where
(∀n ∈ N) σGPR

n = ∥PT (xn)− xn∥2

⟨PFPT (xn)− xn, PT (xn)− xn⟩
.

According to Theorem 2.4(b), the sequence (xn)n∈N produced by this algorithm is guaran-
teed to converge to a point x⋆ ∈ F∩T given hat F∩T ̸= ∅, becauseH is finite dimensional.
As shown in Theorem 2.5, the EAPM in (2.29) is a particular case of the GPR algorithm
in (2.26). Therefore, the algorithm in (6.12) can be seen as a generalization of the the
algorithm in (6.11) for arbitrary closed convex sets F . This allows us to use the algorithm
in 6.12 for PAPR reduction with arbitrary combinations of the constraint sets defined in
Section 6.3.2. The constraints can be altered without the necessity to change the struc-
ture of the algorithm. If the set F is affine, the performance is equivalent to that of the
EAPM, whereas for non-affine constraints, the method is still applicable and yields rapid
PAPR reduction. A further property of this approach is that the iterate xn satisfies the
frequency-domain constraints at each iteration, owing to the final unrelaxed projection
onto F . Note also that the computational complexity of one iteration is roughly equal for
all algorithms considered in Section 6.4, since each iteration involves one projection onto
T , and consequently one IDFT/DFT-pair.
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6.4.4. Phaseless Pilot Reuse by Superiorization

A recent branch of research in channel estimation for OFDM systems is directed towards
the deployment of phaseless pilots [WBJ15a, WBJ15b], which allow the receiver to recon-
struct the phase shift introduced by the wireless channel without requiring knowledge of
the pilot phases. This channel estimation scheme enables the transmitter to use the phase
of the pilot subcarriers for peak compensation. In this scheme, the set of pilot subcarriers
is identical with the set Ic of compensation subcarriers. While in the various definitions
of F in Section 6.3.2 there was no constraint on the compensation subcarriers, simultane-
ously using them as phaseless pilots imposes an equality constraint on their magnitude.
This is taken into account by defining the nonconvex set

P :=
{︂

x ∈ R2NL
⃓⃓⃓

(∀k ∈ Ic), x2
k + x2

k+NL = pk
}︂
, (6.13)

where pk denotes the power of the kth subcarrier. The problem in (6.5) is then extended
to the nonconvex feasibility problem

find
x∈H

x ∈ F ∩ T ∩ P .

Note that, although P is a nonconvex set, a projection of x ∈ H onto P always exists, and
it is unique if (∀k ∈ Ic) x2

k + x2
k+NL ̸= 0. In [1], we proposed heuristics that terminate

each iteration of the algorithms in (6.10) and (6.12) by a projection onto the nonconvex
set P. However, as P is nonconvex, we cannot guarantee the convergence of these meth-
ods. Therefore, we follow a different approach below, which encorporates the nonconvex
constraint set P by defining superiorized versions of the algorithms in (6.10) and (6.12).
To simplify a comparison with the heuristics in [1], we begin by reformulating the algo-
rithms in (6.10) and (6.12). By defining T = I + λ(PT − I), we can equivalently write the
sequence (xn)n∈N in (6.10) as

(∀n ∈ N) yn+1 = TPF (yn), y0 ∈ H

xn = PF (yn).

Since T is a relaxed projection onto a closed convex set, the convergence of the superiorized
version

(∀n ∈ N) yn+1 = TPF (yn + βnvn), y0 ∈ H (6.14)

xn = PF (yn)
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of this algorithm is guaranteed by Theorem 2.1, given that (βnvn)n∈N are bounded per-
turbations. Similarly, we can define a superiorized version of the GPR algorithm in (6.12).
Using the mapping TGPR

λn
: F → H in (2.26), we can write (6.12) as x0 ∈ F

(∀n ∈ N) xn+1 = PFT
GPR
λn

(xn).

Note that this algorithm is equivalent to

(∀n ∈ N) yn+1 = TGPR
λn

PF (yn), y0 ∈ H

xn = PF (yn),

so we can use Theorem 2.4 to define a superiorized version by

(∀n ∈ N) yn+1 = TGPR
λn

PF (yn + βnvn), y0 ∈ H (6.15)

xn = PF (yn).

In slight deviation from the superiorization methodology in [Cen15], we choose a non-
convex superiorization objective f : H → R+ given by f(x) = d(x,P). To reduce the value
of this objective function, we use perturbations of the form (∀n ∈ N) vn := PP(yn)− yn.
We omit the proof that the perturbations are bounded. However, we note that bound-
edness can always be ensured by projecting the perturbations onto a ball Br(0) = {x ∈
H | ∥x∥ ≤ r} for some r > 0.

Remark 6.1. If we choose β0 = 0 and (∀n ∈ N \ {0}) βn = 1, the algorithms in (6.14)
and (6.15) yield the heuristicsa proposed in [1], which terminate each iteration in
(6.10) and (6.12), respectively, with a projection onto P.

To see this fix x ∈ H, let PP(x) ∈ ΠP(x) be a projection of x onto the nonconvex
set P, and define a hyperplane V := {y ∈ H | ⟨y − PP(x),x − PP(x)⟩ = 0}, the
projection onto which satisfies PV(x) = PP(x) and

(∀y ∈ H) PV(y)− y = ⟨y− PP(x),x− PP(x)⟩
∥x− PP(x)∥2 (x− PP(x)). (6.16)

Note that the constraints F and P affect disjoint subsets of subcarriers, so ⟨PP(x)−
x, PF (x)−x⟩ = 0, whereby according to (6.16) (∀y ∈ H) ⟨PV(y)−y, PF (y)−y⟩ = 0.
Thus by Proposition 1.1, PPPF (x) = PVPF (x) = PV∩F (x) = PFPV(x) = PFPP(x).
Consequently, substituting vn = PP(yn) − yn in (6.14) and (6.15) yields the desired
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result.
aNote that in this case (βn)n∈N /∈ ℓ1

+(N).

Remark 6.1 shows the relation between the superiorized algorithms in (6.14) and (6.15)
and the heuristic proposed in [1]. For rPOCS, this heuristic is very similar to the algorithm
proposed in [MH09] for PAPR reduction in pulse amplitude modulated transform domain
communication systems.

6.4.5. Practical Aspects: Feasibility, Computational Efficiency

As mentioned above, convergence of the extrapolated methods in (6.11) and (6.12) is only
guaranteed if θ is chosen such that F∩T ̸= ∅. One way of achieving this is to use bisection
search as proposed in [CCC+12]. However, the resulting increase in computation time
required to find an appropriate value for θ can be prohibitive in practice, where typically
only a small number of iterations can be computed before transmitting the symbol. It
is therefore desirable to have a good choice for θ from the first iteration. This can be
achieved by running several instances of the algorithm with different clipping thresholds
θ in parallel, and returning the result with lowest PAPR after the last iteration. If the
available computational resources do not permit such a parallel approach, it is also possible
to use only one instance of the algorithm in (6.12) with a clipping threshold chosen such
that the probability of the problem in (6.5) being infeasible is sufficiently small.

While the projection methods mentioned above produce sequences (xn)n∈N that con-
verge to a feasible point x⋆ ∈ F ∩ T , as n → ∞, the computational resources of the
transmitter often only allow for computing a single iteration. This fact is taken into
account by the SCF algorithm [WT05], which computes a single overrelaxed POCS it-
eration instead of multiple unrelaxed POCS iterations (as in the ICF algorithm). The
SCF approach relies on a fixed overrelaxation/extrapolation parameter λ that may be
larger than two, in which case the POCS algorithm would no longer be guaranteed to
converge. A disadvantage of SCF is that it lacks a means of controlling the in-band distor-
tion introduced by the peak compensation. The BER of the system will therefore greatly
depend on the choice of clipping threshold θ and relaxation/extrapolation parameter λ.
In contrast, the algorithm in (6.12) produces a sequence of symbols each of them satis-
fying all constraints in the frequency domain. For example, individual EVM constraints
can be specified for subcarriers conveying constellations of different size. In this way, the
distortion is restricted independently of the choice of clipping threshold and relaxation
parameter. Furthermore, the extrapolation factor σGPR

n is chosen adaptively, so comput-
ing one iteration according to (6.12) can reduce the PAPR by an amount similar to that
achieved by the SCF method, while guaranteeing convergence if multiple iterations can be
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Figure 6.1.: CCDF of the PAPR for the first four iterations of rPOCS (λPOCS = 2) and
GPR (λGPR = 1.4) with ACE constaints, N = 2048, L = 4, CR = 7 dB, 5%
compensation subcarriers, data subcarriers modulated with QPSK and 16-
QAM, respectively, where EVMmax

QPSK = 15% and EVMmax
QAM = 5%.

computed to refine the estimate.

6.5. Numerical Results

In this section, we compare the performance of the algorithms in (6.10) and (6.12), in
the following denoted as rPOCS and GPR, respectively. The simulation is performed for
randomly generated OFDM symbols with N = 2048 subcarriers. Negative frequency sub-
carriers convey QPSK constellation points, whereas positive frequency subcarriers convey
16-QAM constellation points. For each symbol, 5% of the subcarriers are randomly se-
lected as compensation subcarriers. Data subcarriers are required to satisfy both EVM
and ACE constraints, where EVMmax

QPSK = 15% and EVMmax
QAM = 5%, respectively. Peaks

in the analog signal were approximated by upsampling with a factor L = 4, and clipped
at a clipping ratio (target PAPR) of CR = 7 dB. The relaxation parameter for GPR was
set to (∀n ∈ N) λn = λGPR = 1.4, although rapid decrease in PAPR was observed for any
λGPR ∈ [1, 2]. As large overrelaxation yielded the fastest PAPR decrease for rPOCS, the
relaxation parameter was set to (∀n ∈ N) λn = λPOCS = 2. Note that, by definition, all
of the frequency-domain constraints are satisfied in every iteration.

Fig. 6.1 shows the CCDF of the PAPR throughout the first four iterations of both
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Figure 6.2.: CCDF for the same simulation setup as in Fig. 6.1, where each iteration of
rPOCS and GPR is terminated by an additional projection onto the nonconvex
set P in (6.13).

algorithms. It can be seen that, for rPOCS, the rate of convergence decreases at every
iteration. The GPR algorithm achieves almost 2 dB lower PAPR than rPOCS in the first
iteration, while almost reaching the target PAPR after four iterations. Next, we add the
nonconvex constraint in (6.13), where (∀k ∈ Ic) pk = 1. Fig. 6.2 shows the CCDF for the
same scenario for the superiorized algorithms in (6.14) and (6.15), where we heuristically
chose β0 = 0 and (∀n ∈ N\{0}) βn = 1 such that (βn)n∈N /∈ ℓ1+(N). In this way, we ensure
that the nonconvex magnitude constraint on pilot/compensation subcarriers introduced in
Section 6.4.4 is satisfied in each iteration. It can be seen that both algorithms still reduce
the PAPR by a similar amount when this additional nonconvex constraint is added. The
performance of rPOCS even improves slightly, which may result from the fact that the
projection onto P scales up the compensation signal in the compensation subcarriers,
acting similarly to an overrelaxation in the initial iteration. Nevertheless, the extrapolated
GPR algorithm outperforms rPOCS for n > 1.

6.6. Conclusion

In this chapter, we proposed a PAPR reduction algorithm for tone reservation based on the
EAPM in (2.29), as well as its generalization for non-affine frequency-domain constraints,
which is based on the GPR approach in (2.27). In addition, we proposed a heuristic

127



6. PAPR Reduction

extension for nonconvex constraints motivated by superiorization, which allows reusing the
phase of pilot subcarriers for phaseless channel estimation to reduce the PAPR. Simulations
showed that the proposed methods were able to decrease considerably the PAPR within
very few iterations.

128



7. Discussion and Outlook

In this thesis, we applied fixed point algorithms to tackle optimization tasks in several
parts of modern wireless communication systems. Owing to their simple structure, the
proposed algorithms can be implemented with low effort in practical systems. Fixed point
methods give rise to online algorithms that can easily be integrated with algorithmic sub-
routines, as shown in Chapter 5, where combined online channel estimation algorithms
with a phase and delay compensation mechanism and a heuristic receive beamforming
policy. In a similar way, future research could integrate more of the building blocks de-
scribed in this thesis into a universal signal processing framework that jointly performs
channel estimation, transmit beamforming, PAPR reduction, receive beamforming and
signal detection, while potentially taking into account the interplay between the individ-
ual building blocks. As we showed in Chapter 4, deep unfolding of iterative algorithms
naturally leads to neural network architectures that can achieve similar performance with
much fewer iterations. Applying deep unfolding to signal processing chains comprising
multiple algorithmic building blocks could guide the design process of deep neural net-
works that jointly perform several tasks in future wireless systems.

In the superiorization methodology, perturbations are typically computed based on sub-
gradient steps for a convex superiorization objective. By contrast, we considered both con-
vex and nonconvex superiorization objectives, and we defined the perturbations in closed
form (e.g., using proximal mappings). From a theoretical point of view, superiorization
cannot be used in online settings, as the bounded perturbations decay to zero by defini-
tion, whereas the algorithm runs indefinitely. The heuristic proposed in Chapter 5 avoids
this problem by using a nondecaying sequence of perturbations, whereby its convergence
can no longer be guaranteed, even if the solution set remains constant over time. Alter-
natively, one could use a summable sequence to scale the perturbations, and restart this
sequence occasionally. In this way, quasi-Fejér monotonicity would be guaranteed until
the sequence is restarted.

Yet another use of perturbation resilience was presented in [2]. In that publication,
which was not presented in this thesis, we used perturbation resilience to interleave the
iterations of different localization algorithms in order to combine their advantages. A more
numerically stable algorithm based on a direct convex relaxation of the localization prob-
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7. Discussion and Outlook

lem was used as a basic algorithm, and a more error prone algorithm based on a tighter
semidefinite relaxation was used to produce perturbations. Similarly, future research could
use heuristics or neural networks to accelerate the convergence and to enhance the perfor-
mance of perturbation resilient basic algorithms, without losing convergence guarantees.

Most of the results on perturbation resilience and superiorization in the literature are
restricted to finite dimensional Hilbert spaces. Although all problems considered in this
theses are posed in finite dimensional spaces, the results in Chapter 2 remain valid in
infinite dimensional spaces. Therefore, these results open up new possibilities for develop-
ing superiorized versions of the algorithmic frameworks covered in Chapter 2, which are
applicable even in infinite dimensional spaces.
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A. Multicast Beamforming

A.1. Proof of Remark 3.1

Given a real vector space V, a real inner product is a function ⟨·, ·⟩ : V ×V → R satisfying
[JAA04]

(a) (∀x ∈ V) ⟨x,x⟩ ≥ 0 and ⟨x,x⟩ = 0 ⇐⇒ x = 0

(b) (∀x,y ∈ V) ⟨x,y⟩ = ⟨y,x⟩

(c) (∀x,y ∈ V)(∀α ∈ R) ⟨αx,y⟩ = α⟨x,y⟩

(d) (∀x,y, z ∈ V) ⟨x + y, z⟩ = ⟨x,y⟩+ ⟨y, z⟩.

Note that (∀X ∈ V) Re{tr(XHX)} = tr(XHX) = ∥X∥2F . Consequently, (a) follows
from the nonnegativity and positive-definiteness of a norm. The symmetry in (b) follows
from the fact that tr(AB) = tr(BA) for matrices A,B with compatible dimensions, and
Re{tr(X)} = Re{tr(XH)} for X ∈ V . Moreover, (c) and (d) follow from the linearity of
Re{·} and tr(·).

A.2. Proof of Proposition 3.1

Denote the perturbed point for a given choice of τ by Z⋆τ := X + Y⋆
τ . By substituting

Y = Z−X in (3.19), we can identify this point as Z⋆τ = proxτf1(X), where the proximal
mapping is given by

(∀X ∈ HM ) proxτf1(X) ∈ arg min
Z∈HM

(︃
τf1(Z) + 1

2 |||X− Z|||2
)︃
. (A.1)

Note that the function

τf1(Z) + 1
2 |||X− Z|||2 = τ

M∑︂
m=1
∥Zm∥∗ + 1

2

M∑︂
m=1
∥Xm − Zm∥2
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A. Multicast Beamforming

is separable over m. Consequently, we can compute the proximal mapping in (A.1) by
solving

(∀m ∈M) Z⋆τ |m ∈ arg min
Z∈HM

τ∥Z∥∗ + 1
2∥Xm − Z∥2. (A.2)

According to [CCS10, Theorem 2.1], the unique solution to (A.2) is given by Z⋆τ |m =
χτ (Xm).1 Substituting Y⋆

τ = Z⋆τ −X yields (3.20), which is the desired result.

A.3. Technical Lemmas Required to Prove Proposition 3.2(a)

The proof of Proposition 3.2(a) relies on the following lemmas:

Lemma A.1. Let C+ ⊂ HM be the set defined in (3.8) and let TαP Then (∀X =
(Xm)m∈M ∈ HM )

d2(X, C+) =
∑︂
m∈M

∑︂
i∈N

(−λi(Xm))2
+ ,

where (∀m ∈M) λ1(Xm), . . . , λN (Xm) are the (real) eigenvalues of Xm.
Proof. Denote by (∀m ∈ M) Xm = VmΛmVH

m the eigendecomposition of Xm.
Using the definition of PC+ in (3) and (3.16), we obtain

d2(X, C+) =
⃓⃓⃓⃓ ⃓⃓

X− PC+(X)
⃓⃓⃓⃓ ⃓⃓2 =

∑︂
m∈M

∥Vm(Λm −Λ+
m)VH

M∥2,

where (∀m ∈M) Λ+
m =

(︂
(λ1(Xm))+ , . . . , (λN (Xm))+

)︂
. Moreover, because the Frobe-

nius norm is invariant under unitary transformation, we can write

d2(X, C+) =
∑︂
m∈M

∥Λm −Λ+
m∥2 =

∑︂
m∈M

∑︂
i∈N

(λi(Xm)− (λi(Xm))+)2

=
∑︂
m∈M

∑︂
i∈N

(−λi(Xm))2
+ ,

which is the desired result.

Lemma A.2. Let A ∈ H = {A ∈ CN×N | AH = A} with SVD A = UΣVH . Then
an eigendecomposition is given by A = VΛVH .

Proof. Let A = QΛQH be an eigendecomposition of A. Then we have AHA =
VΣUHUΣVH = VΣ2VH and AHA = QΛQHQΛQH = QΛ2QH . Moreover, since

1The proof in [CCS10] is for real matrices. However, the generalization to complex matrices is straight-
forward.
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A.3. Technical Lemmas Required to Prove Proposition 3.2(a)

A is Hermitian, the eigenvalues can be ordered such that Σ2 = Λ2, so there exists an
eigendecomposition A = QΛQH with Q = V.

Lemma A.3. Let A ∈ H = {A ∈ CN×N | AH = A} be a Hermitian matrix with
rank(A) = 1 and SVD A = σ1(A)u1vH1 . Then an eigendecomposition is given by
A = λ1(A)vvH , where λ1(A) = vH1 u1σ1(A).

Proof. According to Lemma A.2, an eigendecomposition is given by A = λ1(A)v1vH1 .
Moreover, since A is Hermitian, it holds that σ1(A) = |λ1(A)|, so we can write

λ1(A)v1vH1 = σ1(A)u1vH1
σ1(A)sgn(λ1(A))v1vH1 = σ1(A)u1vH1 .

Since rank(A) = 1 implies that σ1(A) > 0, we can divide both sides by σ1(A) to
obtain

sgn(λ1(A))v1vH1 = u1vH1
sgn(λ1(A))vH1 v1vH1 v1 = vH1 u1vH1 v1

sgn(λ1(A)) = vH1 u1,

where we used the fact that vH1 v1 = 1. Thus we have that λ1(A) = sgn(λ1(A))|λ1(A)| =
vH1 u1σ1(A), which concludes the proof.
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B. MIMO Detection

To prove Proposition 4.1, we exploit the fact that the objective function is separable, and
we make use of the following lemma:

Lemma B.1. Let A := {a0 + k∆ | k ∈ {1, . . . ,K}}, where K ∈ N, a0 ∈ R and
∆ > 0. Then (∀x ∈ R)

arg miny∈R

(︃
τ |y − PA(y)|+ 1

2(x− y)2
)︃

= arg miny∈R

(︃
τ |y − PA(x)|+ 1

2(x− y)2
)︃
.

Proof. Fix x ∈ R and define

y⋆ ∈ arg miny∈R

(︃
f(y) + 1

2(x− y)2
)︃
, (B.1)

where the function f : R→ R is given by (∀y ∈ R) f(y) = τ |y−PA(y)|. Now, suppose
that for some y ∈ R, it holds that PA(y) ̸= PA(x). Then by definition of the function
f , which is illustrated in Figure B.1, there exists k ∈ Z such that:

(a) PA(y + k∆) = PA(x)

(b) |y + k∆− PA(y + k∆)| ≤ |y − PA(y)|

(c) (x− (y + k∆))2 < (x− y)2

Note that PA(y) ̸= PA(x) and (a) imply that k ̸= 0. Thus there exists y′ := y+k∆ ̸= y

such that f(y′) + 1
2(x − y′)2 < f(y) + 1

2(x − y)2, which shows that y is not optimal
for (B.1). Therefore, any solution y⋆ to (B.1) must satisfy PA(y⋆) = PA(x), which
concludes the proof.

Proof of Proposition 4.1

According to Definition 1.1, the proximal mapping associated with τfℓ1 satisfies

(∀x ∈ H) proxτfℓ1
(x) ∈ arg miny∈H

(︃
τfℓ1(y) + 1

2∥x− y∥2
)︃
. (B.2)

137



B. MIMO Detection

f(y)

yx

P
(y

)=
P

(x
)

ai

Figure B.1.: Illustration of the function f in Lemma B.1 for a set A with cardinality K = 4.

Note that

τfℓ1(y) + 1
2∥x− y∥2 = τ∥y− PS(y)∥1 + 1

2∥x− y∥2

=
2NT∑︂
i=1

(︃
τ |yi − PA(yi)|+

1
2(xi − yi)2

)︃
,

so the objective in (B.2) is separable over i, and we can write

(∀x ∈ H)(∀i ∈ {1, . . . , 2NT}) proxτfℓ1
(x)|i ∈ arg miny∈R

(︃
τ |y − PA(y)|+ 1

2(xi − y)2
)︃
.

According to Lemma B.1, we can write (B.2) as

(∀x ∈ H)(∀i ∈ {1, . . . , 2NT}) proxτfℓ1
(x)|i ∈ arg miny∈R

(︃
τ |y − PA(x)|+ 1

2(xi − y)2
)︃
.

Note that the objective function is now convex in y. Thus, according to [Bec17, Exam-
ple 6.8] and the translation property of the proximal mapping [Bec17, Theorem 6.11],
[CP11, Table 10.1.i], a proximal mapping associated with τfℓ1 is given by

proxτfℓ1
(x) = ϕτ (x− PS(x)) + PS(x),

138



where (∀τ ≥ 0) ϕτ : H → H is the soft-thresholding operator

(∀x ∈ H)(∀i ∈ IT) ϕτ (x)|i := sgn(xi)(|xi| − τ)+.
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C. Online Channel Estimation

C.1. Proof of Proposition 5.4

Let ξ be the bijection between H = CN and R2N defined in in (5.7), and define a function
f : R2N → R+ by

f(x̄) :=
N∑︂
i=1

ωi
√︂
x̄2
i + x̄2

i+N .

Note that this function satisfies (∀x ∈ H) f(ξ(x)) = ∥x∥ω1 . Thus we can write

ξ
(︂
proxλ∥·∥ω

1
(x)
)︂
∈ arg min

ȳ∈R2N

f(y) + 1
2λ∥x̄− ȳ∥2

= arg min
ȳ∈R2N

N∑︂
i=1

(︃
ωi
√︂
ȳ2
i + ȳ2

i+N + 1
2λ
(︂
(x̄i − ȳi)2 + (x̄i+N − ȳi+N )2

)︂)︃
,

where x̄ := ξ(x). This problem can be decomposed into N independent problems (∀i ∈
{1, . . . , N})

p̄i ∈ arg min
y∈R2

Θi(y); Θi(y) := ωi∥y∥2 + 1
2λ∥y− x̄i∥22,

where x̄i := [x̄i, x̄i+N ]T . In case y ̸= 0, the gradient of Θi is given by

∆Θi(y) = ωi
∥y∥2

y + 1
λ

(y− x̄i).

Consequently, if p̄ ̸= 0, we have

ωi
∥p̄i∥2

p̄i + 1
λ

(p̄i − x̄i)
!= 0

p̄i
(︃

ωi
∥p̄i∥2

+ 1
λ

)︃
= 1
λ

x̄i

p̄i =
(︃
λωi
∥p̄i∥2

+ 1
)︃−1

x̄i, (C.1)

141



C. Online Channel Estimation

where

∥p̄i∥2 =
⃦⃦⃦⃦
⃦
(︃
λωi
∥p̄i∥2

+ 1
)︃−1

x̄i

⃦⃦⃦⃦
⃦

2
=
(︃
λωi
∥p̄i∥2

+ 1
)︃−1
∥x̄i∥2 ,= ∥x̄i∥2 − λωi.

Substituting into (C.1) yields

p̄i =
(︃

λωi
∥x̄i∥2 − λωi

+ 1
)︃−1

x̄i =
(︃

1− λωi
∥x̄i∥2

)︃
x̄i,

where the condition y ̸= 0 is equivalent to ∥p̄i∥2 > 0, which gives ∥p̄i∥2 + λωi = ∥x̄i∥2 >
λωi.

For p̄i = 0, the gradient of fi(y) := ω∥y∥2 does not exist. However, we can consider a
subgradient gi ∈ ∂fi(0), where

∂fi(y0) :=
{︂

z ∈ R2| (∀y ∈ R2) zT (y− y0) + fi(y0) ≤ fi(y)
}︂

is the subdifferential of fi at y0 ∈ R2. Consequently, we have

gi ∈ ∂fi(0) =
{︂

z ∈ R2| (∀y ∈ R2) zTy ≤ fi(y)− fi(0)
}︂

=
{︂

z ∈ R2| (∀y ∈ R2) zTy ≤ ωi∥y∥
}︂
,

which implies ∥gi∥ ≤ ωi. Setting the subdgradient of Θi to zero yields

∂Θi(0) ∋ gi −
1
λ

x̄i
!= 0 ⇒ gi = 1

λ
x̄i,

whereby ∥x̄i∥2 = λ∥gi∥2 ≤ λωi. Putting both cases together, we have

p̄i =

⎧⎨⎩
(︂
1− λωi

∥x̄i∥2

)︂
x̄i, if ∥x̄i∥2 > λωi

0, otherwise,

or equivalently,1

p̄i = x̄i
(︃

1− λωi
∥x̄i∥2

)︃
+
.

Now we can define a vector p̄ ∈ R2N by (∀n ∈ N) p̄i = p̄i|1 and p̄N+i = p̄i|2, and apply
the inverse mapping p = ξ−1(p̄) = p̄1:N + jp̄N+1:2N , resulting in (∀i ∈ {1, . . . , N})

pi = xi

(︃
1− λωi
|xi|

)︃
+
.

1For notational convenience, we use the convention that 1
0 = ∞ and 0

0 = 1.
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Finally, we obtain the proximal mapping proxλ∥·∥ω
1

: H → H : x ↦→ p by rearranging N

complex coefficients pi into a vector

p =
N∑︂
i=1

xi

(︃
1− λωi
|xi|

)︃
+

ei,

which completes the proof.

C.2. Proof of Proposition 5.7

In the following, we derive the CRLBs in Proposition 5.7. A very similar derivation can
be found in [RB74], where the goal is to estimate the frequency, phase, and magnitude of
a single tone based on discrete time observations. The derivation below follows along the
lines of [RB74].

We consider the general case in which pilot signals are transmitted on a subset P ⊂ Isc

of subcarriers. To simplify the subsequent analysis, we write the entries of ŷk in polar
form as (∀k ∈ P)(∀l ∈ {1, . . . , LR}) ŷl,k = rl,ke

jψl,k and perform a change of variables by
a unitary transform Uk := diag

(︂
e−jψ1,k , . . . , e−jψLR,k

)︂
, whereby

(∀k ∈ P) zk = ak + jbk := Ukỹk = ejφe−j2π(k−1)τUkŷk + Uknk
= ejφe−j2π(k−1)τrk + ñk.

Here, (∀k ∈ P) rk ∈ RLR is the vector comprised of the magnitudes of ŷk, and ñk ∼
CN (0, σ2I), since Uk is a unitary matrix, i.e., UH

k Uk = I. Denoting the entries of ak,bk, rk
and ñk by al,k, bl,k, rl,k and ñl,k, respectively, we can express the joint probability density
function (pdf) of all entries of Z := [zk1 , . . . , zk|P| ] ∈ CLR×|P| for the unknown parameter
vector α = (φ, θ)T as

f(Z,α) =
LR∏︂
l=1

∏︂
k∈P

(︃ 1
σ2π

)︃
exp

(︄
(al,k − µl,k(φ, τ))2 + (bl,k − νl,k(φ, τ))2

σ2

)︄
(C.2)

=
(︃ 1
σ2π

)︃LR|P|
exp

(︄∑︁LR
l=1
∑︁
k∈P

(︁
(al,k − µl,k(φ, τ))2 + (bl,k − νl,k(φ, τ))2)︁

σ2

)︄
,

where (∀l ∈ {1, . . . , LR})(∀k ∈ P)

µl,k(φ, τ) = rl,k cos(φ− 2π(k − 1)τ),

νl,k(φ, τ) = rl,k sin(φ− 2π(k − 1)τ).
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The Cramér-Rao bounds for the estimation of φ and τ correspond to the diagonal entries
of the inverse of the Fisher information matrix J ∈ R2×2. For the parameter vector
α = (φ, θ)T , the entries of J can be written as (see also [RB74])

(∀i, j ∈ {1, 2}) Jij = EZ[HαiHαj ],

where the expectation is w.r.t. the sample matrix Z and

Hαi = ∂

∂αi
ln f(Z,α)

is the derivative of the log-likelihood function w.r.t. αi. According to (C.2) we can write

Hαi = 2
σ2

LR∑︂
l=1

∑︂
k∈P

(︃
(µl,k(α)− al,k)

∂µl,k(α)
∂αi

+ (νl,k(α)− bl,k)
∂νl,k(α)
∂αi

)︃
.

Applying the law of total expectation, i.e., EZ = ER[EÑ[Z|R]], where R = [rk1 , . . . , rk|P| ]
and Ñ = [ñk1 , . . . , ñk|P|], we can write the the entries of the Fisher information matrix as

Jij = 2
σ4

LR∑︂
l=1

∑︂
k∈P

EZ

[︄
(µl,k(α)− al,k)2∂µl,k(α)

∂αi

∂µl,k(α)
∂αj

+ (νl,k(α)− bl,k)2∂νl,k(α)
∂αi

∂νl,k(α)
∂αj

+ (µl,k(α)− al,k)(νl,k(α)− bl,k)
(︄
∂µl,k(α)
∂αi

∂νl,k(α)
∂αj

+ ∂µl,k(α)
∂αj

∂νl,k(α)
∂αi

)︄]︄

= 4
σ4

LR∑︂
l=1

∑︂
k∈P

ER

[︄
EÑ

[︄
(Re2{ñl,k}

∂µl,k(α)
∂αi

∂µl,k(α)
∂αj

+ Im2{ñl,k}
∂νl,k(α)
∂αi

∂νl,k(α)
∂αj

+ Re{ñl,k}Im{ñl,k}
(︄
∂µl,k(α)
∂αi

∂νl,k(α)
∂αj

+ ∂µl,k(α)
∂αj

∂νl,k(α)
∂αi

)︄]︄⃓⃓⃓⃓
⃓R
]︄

= 2
σ2

LR∑︂
l=1

∑︂
k∈P

ER

[︄
∂µl,k(α)
∂αi

∂µl,k(α)
∂αj

+ ∂νl,k(α)
∂αi

∂νl,k(α)
∂αj

]︄
. (C.3)

The derivatives of µl,k and νl,k with respect to the parameters φ and τ are given by
(∀k ∈ P)(∀l ∈ {1, . . . , LR}

∂µl,k(α)
∂α1

= ∂µl,k(α)
∂φ

= rl,k sin(φ− 2π(k − 1)τ)

∂νl,k(α)
∂α1

= ∂νl,k(α)
∂φ

= −rl,k cos(φ− 2π(k − 1)τ)
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and

∂µl,k(α)
∂α2

= ∂µl,k(α)
∂τ

= −2π(k − 1)rl,k sin(φ− 2π(k − 1)τ)

∂νl,k(α)
∂α2

= ∂νl,k(α)
∂τ

= 2π(k − 1)rl,k cos(φ− 2π(k − 1)τ).

Substituting into (C.3) and assuming i.i.d. Gaussian distributed entries ŷl,k with variance
γ/σ2 yields

J11 = 2
σ2

LR∑︂
l=1

∑︂
k∈P

E
[︂
r2
l,k

]︂
= 2γLR|P|

J12 = J21 = − 2
σ2

LR∑︂
l=1

∑︂
k∈P

2π(k − 1)E
[︂
r2
l,k

]︂
= −4γπLRC1

J22 = 2
σ2

LR∑︂
l=1

∑︂
k∈P

4π2(k − 1)2E
[︂
r2
l,k

]︂
= 8π2γLRC2,

where C1 :=
∑︁
k∈P(k − 1) and C2 :=

∑︁
k∈P(k − 1)2. By inverting the Fisher information

matrix J, we obtain the CRLBs

var{φ} ≥ J22
J11J22 − J12J21

= 1
2γLR

(︂
|P| − C2

1
C2

)︂ (C.4)

and
var{τ} ≥ J11

J11J22 − J12J21
= 1

8π2γLR
(︂
C2 −

C2
1

|P|

)︂ . (C.5)

For the special case P = Isc, C1 is a triangular number and C2 is a square pyramidial
number, i.e., we have C1 = 1

2NF(NF − 1) and C2 = 1
6NF(NF − 1)(2NF − 1). Substituting

C1 and C2 in (C.4) and (C.5) yields

var{φ} ≥ 2NF − 1
γLRNF(NF + 1) and var{τ} ≥ 3

2π2γLRNF(N2
F − 1)

,

which is the desired result.
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