
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Propagation of Constraints along
Model Transformations Based on

Triple Graph Grammars:
Long Version

Hanna Schölzel1, Hartmut Ehrig 1,
Frank Hermann 1, and Christoph Brandt 2

1 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin,

{hannas,ehrig,frank}@cs.tu-berlin.de

2 SECAN-Lab, Universite du Luxembourg,
christoph.brandt@uni.lu

Bericht-Nr. 2010 – 15
ISSN 1436-9915

Propagation of Constraints along Model
Transformations Based on Triple Graph Grammars:

Long Version

Hanna Schölzel 1, Hartmut Ehrig 1,
Frank Hermann 1, Christoph Brandt 2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
{hannas,ehrig,frank}@cs.tu-berlin.de

2SECAN-Lab, Université du Luxembourg,
christoph.brandt@uni.lu

Abstract

Model transformations based on triple graph grammars (TGGs)
have been applied in several practical case studies and they convince
by their intuitive and descriptive way of specifying bidirectional model
transformations. Moreover, fundamental properties have been exten-
sively studied including syntactical correctness, completeness, termi-
nation and functional behaviour. But up to now, it is an open problem
how domain specific properties that are valid for a source model can
be preserved along model transformations such that the transformed
properties are valid for the derived target model. In this paper, we
analyse in the framework of TGGs how to propagate constraints from
a source model to an integrated and target model such that, when-
ever the source model satisfies the source constraint also the integrated
and target model satisfy the corresponding integrated and target con-
straint. In our main new results we show under which conditions this
is possible. The case study shows how this result is successfully ap-
plied for the propagation of security constraints in enterprise modelling
between business and IT models.

1 Introduction

Model integration and transformation between models as well as the compli-
ance of such models with concrete security requirements have already been

1

studied in different application domains, especially in the context of enter-
prise modelling [2]. In detail, it was possible to present how triple graph
grammars (TGGs) in the sense of Schürr [14] can be used to realize the in-
tegration and transformation of those models. In addition to that, graph
constraints [4] were utilized to verify that business and IT models comply
with given security requirements.

:E/D
C

S
P

S

1:public

:E/D

Source Constraint publicIsEncrypted2 for IT-models

:Filter

1:public1:public

C
T

P
T

Target Constraint publicIsFiltered2 for business models

a
T

a
S 1:public

Filter

E/D

public

E/D

public

NW4:LAN

NW7:LAN

private

private

Private_Banking:Department

Investment_Banking:Department

private

public

private

private

private

public

p q

IT Model and IT Security Requirement Business Model and Business Security Requirement

p q

G
S G

T

Figure 1: IT and business models with security requirements
However, it remained an open question how graph constraints valid for

an IT model can be soundly propagated towards a corresponding business
model. For example, the IT constraint on the left of Fig. 1 (public commu-
nication has to be encrypted) should be transformed into a corresponding
business constraint (communication over public lines has to be filtered, right
of Fig. 1). This problem was identified as an operational need in the de-
centralized organizational environment of Credit Suisse [2], where security
requirements developed for IT models needed to be understood from the
point of view of the corresponding business models in order to ensure that
the different persons responsible for the business models, IT models and secu-
rity requirements will be able to integrate, transform and verify these models
successfully. While this paper presents the case study in concrete syntax the
presented techniques are based on the underlying typed attributed abstract
syntax graphs [4].

Furthermore, if an IT model satisfies the source constraint the corre-
sponding business model should satisfy the target constraint. In general,
given a requirement for a source model specified by a graph constraint we
would like to construct a corresponding requirement for the corresponding
target model with the following satisfaction property: Whenever a source
model satisfies the given source graph constraint then the target model, de-

2

fined by the model transformation, satisfies the corresponding target graph
constraint. In Fig. 1 the source model GS satisfies the source graph con-
straint PC(aS : P S −→ CS), because for each match p : P S → GS (occurrence
of the premise graph) there is morphism q : CS → GS (occurrence of the
conclusion graph) with q ◦ aS = p.

In this paper we show under which conditions we are able to define a
propagation from source graph to target graph constraints such that this
satisfaction property is valid. First of all it makes sense to require strong
functional behaviour of the model transformation, which implies that we
have for each source model a unique target model. Moreover this allows for
each source graph constraint PC(aS : P S −→ CS) with premise P S, conclusion
CS and embedding morphism aS to obtain a unique target graph constraint
PC(aT : P T −→ CT) by applying the model transformation to P S and CS

leading to P T and CT . For this construction we require that P S and CS

are source models, i.e. P S, CS ∈ VLS, where VLS is the source language of
the model transformation MT : VLS V VLT . In this case the source graph
constraint PC(aS : P S −→ CS) is called MT-consistent and leads to a MT-
consistent target graph constraint PC(aT : P T −→ CT). In Sec. 2 we review
model transformation based on triple graph grammars [5, 14, 15] and prepare
our case study based on a model transformation from business to IT-models.

Our first main result in Sec. 3 shows that the satisfaction property stated
above for the propagation of security constraints is valid for MT -consistent
source and target constraints. In Sec. 4 we discuss how to extend the theory
to the case of partially MT-consistent constraints where premise or conclusion
consist only of model fragments, s.t. model transformations are not directly
applicable. Our constructions and results are illustrated by a case study of
security constraints in enterprise modelling.Acknowledgement: This paper is
a long version of our GT-VMT paper [6], and has been supported by the
DFG-Project Behaviour GT.

2 Model Transformation between Business

and IT Models

Triple graph grammars (TGGs) [14] are a well known approach for bidi-
rectional model transformations and we apply TGGs to define the model
transformation of our case study between business and IT models. For this
purpose we review main constructions and results of model transformations
based on triple graph grammars [15, 5] in this section.

Integrated models are defined as pairs of source and target graphs,

3

which are connected via a correspondence graph together with relat-
ing morphisms between these graphs. More precisely, a triple graph
G =(GS ←sG−− GC −tG−→ GT) consists of three graphs GS, GC , and GT , called
source, correspondence, and target graphs, together with two graph mor-
phisms sG : GC → GS and tG : GC → GT .

(GS

mS ��
G GC

sGoo

mC ��

tG // GT)
mT ��

(HSH
m ��

HC
sH

oo
tH

// HT)

A triple graph morphism m : G → H
with m = (mS,mC ,mT) consists of three
graph morphisms mS : GS → HS, mC :
GC → HC and mT : GT → HT such that
mS ◦ sG = sH ◦mC and mT ◦ tG = tH ◦mC . A typed triple graph G is typed
over a triple graph TG by a triple graph morphism typeG : G → TG and
a typed triple graph morphism m : (G, typeG) → (H, typeH) preserves the
typing, i.e. typeH ◦ m = typeG. Triple graphs may also contain attributed
nodes and edges according to [5] and they form an M-adhesive as well as
weak adhesive HLR category for which several important formal results have
been shown in [4].

(LS

trS ��
L LC

sLoo

trC ��

tL // LT)
trT ��

(RSR
tr ��

RC
sR

oo
tR

// RT)

L
m

��

� � tr // R
n

��
(PO)

G
� �

t
// H

Triple rules synchronously
build up source and target
graphs as well as their corre-
spondence graphs, i.e. they are
non-deleting. A triple rule tr is an injective triple graph morphism tr =
(trS, trC , trT) : L→ R and w.l.o.g. we assume tr to be an inclusion. Given
an (almost) injective triple graph morphism m : L→ G, a triple graph trans-

formation (TGT) step G =
tr,m
==⇒ H from G to a triple graph H is given by a

pushout of triple graphs with comatch n : R→ H and transformation inclu-

sion t : G ↪→ H. Given a sequence of TGT-steps G0 =
tr1,m1
===⇒ G1... =

trk,mk===⇒ Gk

its trace is given by trace = tk ◦ . . . t2 ◦ t1. A grammar TGG = (TG , S,TR)
consists of a triple type graph TG , a triple start graph S and a set TR of
triple rules.

Example 1 (Triple Rules). The triple rules in Fig. 2 are part of the rules of
the grammar TGG in [2]. They are presented in short notation, i.e. left and
right hand sides of a rule are depicted in one triple graph. Elements, which
are created by the rule, are labeled with green ”++” and marked by green
line colouring. The rule LANToDepartment creates LAN element in the IT
model and a corresponding Department element in the Business model. The
rule PublicToPublic generates public edges with gluing nodes in both domains
simultaneously. The encryption/decryption nodes (E/D) are created in front
and at the end of a public Reo connector (depicted as black arrows) in the
rule EDToFilter, where in the Business model a Filter is attached to the
corresponding public Reo connector.

4

:Department:LAN
++ ++

++++
++

:A

++
++

++

++

++++ ++

++++

public
++

++

public

++:P

:P

:Filter:E/D

:E/D

++
++++

++++

++

:public

++

:public

++

++++

:A

:A

:P

:P

Triple Rule EDToFilter

Triple Rule LANToDepartment

Triple Rule PublicToPublic

Figure 2: Some triple rules of the model transformation

(LS

trS ��

∅oo

��

// ∅)

��
(RS ∅oo // ∅)

source rule trS

(∅
��

∅oo

��

// LT)
trT ��

(∅ ∅oo // RT)

target rule trT

(RS

id ��
LC

trS◦sLoo

trC ��

tL // LT)
trT��

(RS RC
sRoo tR // RT)

forward rule trF

The operational rules for model transformations based on TGGs are au-
tomatically derived from the set of triple rules TR [5]. From each triple rule
tr we derive a forward rule trF for forward transformation sequences and a
source rule trS for the construction resp. parsing of a model of the source
language. By TRS and TRF we denote the sets of all source and forward
rules derived from TR. The sets of backward rules TRB and target rules
TRT are derived analogously as presented in [2].

:Filter:E/D

:E/D

++ ++

++

++

:public

++

:public

++

++++

:A

:A

:P

:P

Forward Rule EDToFilter

Figure 3: A derived forward rule

Example 2 (Forward Rule).
The rule in Fig. 3 is the derived
forward rule of the triple rule
“EDToFilter” shown in Fig. 2.
No new elements are added in
the source graph by this rule.
The “E/D” elements that are
added by the triple rule have al-
ready to be present in a model
to make this rule applicable.
Whereas the corresponding and target graphs and the morphisms remain the
same as in the triple rule.

A set of triple rules TR and the start graph ∅ typed over a triple graph
TG generate a visual language VL of integrated models, i.e. models with
elements in the source, target and correspondence component. The source
language V LS and target language VLT are derived by projection to the

5

triple components, i.e. V LS = projS(V L) and V LT = projT (V L). For
the S-component TGS and T -component TGT we denote by VL(TGS) and
VL(TGT) the visual language of all source and target models typed over
TGS and TGT respectively. This means we have VLS ⊆ VL(TGS) and
V LT ⊆ V L(TGT).

As presented in [5] the derived operational rules provide the basis to define
model transformations based on source consistent forward transformations
G0 =⇒∗ Gn via (tr 1,F , . . . , trn,F), short G0 =

tr∗F==⇒ Gn. A forward sequence

G0 =
tr∗F==⇒ Gn is source consistent, if there is a source sequence ∅ =

tr∗S=⇒ G0

such that the sequence ∅ =
tr∗S=⇒ G0 =

tr∗F==⇒ Gn is match consistent, i.e. the
S-component of each match mi,F of tr i,F (i = 1 . . . n) is uniquely determined
by the comatch ni,S of tr i,S, where tr i,S and tr i,F are source and forward rules
of the same triple rules tr i. Thus, source consistency is a control condition
for the construction of the forward sequence.

Definition 1 (Model Transformation Based on Forward Rules). A

model transformation sequence is given by a tuple (GS, G0 =
tr∗F=⇒ Gn, GT)

consisting of a source graph GS, an integrated graph G = Gn, and a target

graph GT , and a source consistent forward sequence G0 =
tr∗F=⇒ Gn with GS =

GS
0 and GT = GT

n . A model transformation MT : VL(TGS) V VL(TGT)
based on forward rules is given by a set of model transformation sequences

(GS, G0 =
tr∗F=⇒ Gn, GT) with GS ∈ VL(TGS) and GT ∈ VL(TGT).

Model transformations based on forward rules using the control condi-
tion “source consistency” are syntactically correct and complete as shown in
[5, 11]. Correctness means that for each source model GS that is transformed
into a target model GT there is an integrated model G = (GS ← GC → GT)
in the language of integrated models VL generated by the TGG. Complete-
ness ensures that for each valid source model there is always a forward trans-
formation sequence that transforms it into a valid target model, and if the
source model is not in VLS then there is no source consistent forward trans-
formation sequence. Therefore, we can apply the on-the-fly construction
presented in [5] to any given source model and ensure that we derive a cor-
rect corresponding target model and if all source rules are creating then we
can always ensure termination.

Example 3 (Model Transformation). The model transformation from IT
to business models via the forward rules of the triple rules in Ex. 1 transforms
the source model GS in Fig. 1 into the target model GT in Fig. 1 as presented
in [2]. Using backward and target rules we obtain a model transformation
from business to IT models and all together we obtain a bidirectional model

6

transformation, where both directions are useful in different phases of enter-
prise modelling. Especially a propagation of constraints from IT to business
models will be considered in Sec. 3.

3 Propagation of MT-consistent Constraints

The propagation of constraints along a given model transformation aims at
translating requirements from the source domain to the corresponding target
domain in order to verify them at corresponding target models. In this section
we present a constructive approach for the propagation of constraints based
on a given model transformation and we show by Thm. 1 how each source
constraint can be propagated to an integrated and a target constraint for the
languages of integrated and target models, respectively. In our main result
Thm. 2 we show that under suitable conditions the propagation preserves the
validity of constraints. An (atomic) constraint PC(a : P → C) for a triple
graph is given by a premise P and a conclusion C connected by a morphism
a : P → C. A graph G satisfies PC(a : P → C), if for each injective
p : P → G there is an injective q : C → G with q ◦a = p. Atomic constraints
can be combined to general constraints as usual by boolean operators.

The first important property for ensuring the creation of propagated con-
straints for a given source constraint is MT -consistency meaning that the
constraint has to be compatible with the model transformation MT . We
take into account a domain specific source language LS which should be a
sublanguage of VLS, i.e. LS ⊆ VLS, usually restricted by additional con-
straints.

Definition 2 (MT -consistent Constraints). Given a model transforma-
tion MT : VLS V VLT , then a constraint is MT -consistent, if the corre-
sponding condition below is satisfied.

constraint kind typed over condition

source constraint PC(aS : P S → CS) TGS P S, CS ∈ LS ⊆ VLS

integrated constraint PC(a : P → C) TG P,C ∈ V L
target constraint PC(aT : P T → CT) TGT P T , CT ∈ V LT

Moreover, the sound propagation of constraints is based on the notion of
propagation consistency, which requires strong functional behaviour of the
model transformation and one further technical condition.

Definition 3 (Propagation Consistency and Strong Functional Be-
haviour of Model Transformations). A model transformation MT is
propagation consistent, if:

7

• The model transformation MT has strong functional behaviour with
respect to LS. This means that matches are injective and for each
source graph GS ∈ LS ⊆ VLS the execution of MT terminates re-

sulting in a model transformation sequence (GS, G0 =
tr∗F==⇒ Gn, GT), and

moreover, any two source consistent forward sequences G0 =
tr∗F==⇒ Gn

and G0 =
tr
∗
F==⇒ Gm constructed via MT that cannot be extended by any

further step via MT are switch-equivalent up to isomorphism, i.e. the
rules of tr ∗F are a permutation of those in tr

∗
F , n = m and Gn

∼= Gm.

• Furthermore, each triple graph G = (GS ←sG−− GC −tG−→ GT) ∈ VL has to
be left-linear, i.e. we have that sG is injective.

Remark 1 (Checking Propagation Consistency). Concerning the first
condition (strong functional behaviour), we have presented in [11] how model
transformations based on forward rules are checked for strong functional
behaviour using the tool AGG for critical pair analysis. For the second
condition (left linearity) it suffices to show that no rule is capable to transform
a triple graph G = (GS ←sG−− GC −tG−→ GT) into a triple graph H = (HS ←sH−−
HC −tH−→ HT) with non-injective sH . This condition is ensured if there is
no triple rule which simultaneously creates a correspondence element c and
relates it to an existing source element s ∈ LS, i.e. we require for all rules
that [c ∈ RC \ LC ∧ sR(c) = s] ⇒ [s /∈ LS]. Both conditions have been
verified for our case study.

In our first main result we show how each source constraint can be prop-
agated into an integrated and a target constraint as shown by the example in
Fig 4 which happens to be exactly the rule EDToFilter. Note that in general
those graphs are not necessarily the same. Intuitively, the transformation
steps of the premise graph P , which is contained in the conclusion graph C,
are transferred to the transformation steps for C and the transformation of
C is completed for the remaining parts in C.

Theorem 1 (Propagation and Restriction of Constraints). Given a
TGG model transformation MT with strong functional behaviour, then

1. an MT -consistent source constraint PC(aS) generates an MT -consistent
integrated constraint PC(a), called propagated integrated constraint,
where aS is the source component of a and diagrams (1) and (2) below

8

:E/D
C

S
P

S

1:public :E/D

Source constraint publicIsEncrypted for IT-models

:Filter

2:public2:public

C
TP

T

Target constraint publicIsFiltered for business models

Propagation

1:public

a
T

a
S

and

Integrated constraint publicIsSecured for integrated models

P

1:public 2:public

C

:Filter:E/D

:E/D

:A

:A

2:public

4:P

3:P1:public

4:P

3:P
a

Figure 4: Source constraint as well as propagated integrated and target con-
straints

commute using the trace morphisms of the transformation sequences.

(P S ← ∅ → ∅) = P0

tr∗F +3

(aS ,∅,∅)

��

traceP

44

(1)

Pl = P

al

��

a

""DDDDDDDDDDDD

(CS ← ∅ → ∅) = C0

tr∗F +3

traceC1

44 Cl

tr ′∗F +3

(2)

traceC2

66 Cn = C

2. an MT -consistent integrated constraint PC(a) can be restricted to and
an MT -consistent target constraint PC(aT : P T → CT).

Proof. 1. Given PC(aS : P S −→ CS) with P S, CS ∈ LS ⊆ V LS, then the

completeness result implies P0 =
tr∗F==⇒ Pl = P with P ∈ V L. Moreover

this MT-sequence can be extended along (aS, ∅, ∅) : P0 −→ C0 with in-
duced forward consistent matches leading to (1). This extension prop-
erty based on forward consistent matches can be deduced directly by the
equivalence of transformation steps via the on-the-fly construction and
transformation steps via the corresponding forward translation rules
in [11] and the fact that the gluing condition is always satisfied for
forward translation steps shown in [11]. Since MT is propagation con-
sistent, we have by condition 1 of Def. 3 (strong functional behaviour)
that any two transformation sequences starting at C0 that cannot be

9

extended any further are switch equivalent up to isomorphism. Hence,

C0 =
tr∗F==⇒ Cl can be extended to C0 =

tr∗F==⇒ Cl =
tr ′∗F==⇒ Cn with Cn ∈ VL.

Now we define a := traceC2 ◦ al : P → C s.t. (2) commutes. The
integrated constraint PC(a : P → C) is MT-consistent because P,C ∈
V L.

2. Given an integrated constraint PC(a : P −→ C) with P,C ∈ V L,
then PC(aT : P T → CT) has P T , CT ∈ VLT by definition of
VLT = projT (V L). Hence we have the required MT-consistency of
the target constraint PC(aT : P T −→ CT).

Integrated constraint publicIsSecured for integrated models

FilterE/D

public

E/D

NW4:LAN

NW7:LAN

private

private

Private_Banking:Department

Investment_Banking:Department

private

public

Machine centric IT Service Model Machine centric Business Service Model

p=(p
S
,p

C
,p

T
) q=(q

S
,q

C
,q

T
)

:A

:P

:P

:P

:P

:A

:A

:A

P

1:public 2:public

C

:Filter:E/D

:E/D

:A

:A

S1:public

:P

:PT1:public

:P

:P
a

G’

=

G’
S G’

C
G’

T

Figure 5: Propagated Integrated Constraint

Example 4 (Propagation). According to Rem. 1 the model transforma-
tion of our case study is propagation consistent. Furthermore, the source
constraint is MT -consistent, such that we can apply Thm. 1 and derive the
propagated integrated and target constraints in Fig. 5. For better visibility
we take a subgraph G′ ⊆ G of the integrated model G in Ex. 3, such that the
source model G′S is similarly transformed into the target model G′T . Now,
the integrated model G′ satisfies the propagated integrated constraint, i.e. for
any injective occurrence p : P → G′ of the integrated premise P in G′ there is
an injective occurrence q : C → G′ compatible with the constraint morphism
a, i.e. p = q ◦ a.

10

In order to generally ensure the validity of propagated constraints we
provide a suitable static condition on constraints by Def. 4 below that can
be checked automatically (see Remark 2). Essentially, the condition requires
that whenever the premise graph P of a constraint is found in an integrated
model, then its occurrence is already fully determined by the source and
correspondence component. This condition is not very restrictive, because it
must only hold for premise graphs of constraints and not for all integrated
graphs in VL.

Definition 4 (Admissable Premise). Given a TGG with triple language
VL. The premise P of an integrated constraint PC(a : P → C) is called
admissable, if for any injective morphisms p, p′ : P → G with G ∈ VL we
have pS = p′S and pC = p′C implies pT = p′T .

Remark 2 (Checking Admissability). It suffices to show that the internal
morphism tP : PC −→ P T of the premise graph P is surjective on nodes, and
furthermore, for each edge type occurring in the target component P T of P
we have that there are no parallel edges in any triple graph G ∈ VL of this
type. The latter can be verified - especially in our case study - by checking
that the triple rules do not create edges of those types separately, but always
together with an adjacent node.

The premise graph of a propagated target constraint may occur with a
target model at places that do not correspond to occurrences of the premise
graph of the source constraint in the source model, because differently typed
source elements may be transformed into target elements of the same type.
From the application point of view, it is clear that the preservation of prop-
erties of the source model can be ensured only at corresponding occurrences
in the target model. Theorem 2 below shows that the validity of source con-
straints is preserved at those places using the notion of weak satisfaction.
More precisely, given an integrated constraint PC(a : P → C), then a target
model GT weakly satisfies a target constraint – written (GT |=w PC(aT))
– if for all injective pT : P T → GT which can be extended to an injective
integrated morphism p : P → G there exists an injective qT : CT → GT

with qT ◦aT = pT . Furthermore, the theorem shows that the validity is com-
pletely preserved for the propagated integrated constraint. It is formulated
for (atomic) constraints PC(aS : P S −→ CS) but can be extended to general
constraints. For the proof of Thm. 2 we will first introduce the following
lemma.

Lemma 1 (Source Uniqueness). Given a left linear triple graph G ∈ VL
and an admissible premise P of a triple graph constraint PC(a). Then, ∀
injective p, p′ : P � G : (pS = p′S)⇒ (p = p′).

11

Proof. Given injective triple graph morphisms p, p′ : P � G, with p′S = pS

(precondition (P1) of Lem.1). Since p and p′ are triple graph morphisms, we
have that (7S) and (7T) below commute.

P S

pS

��
p′S

��

PC
sPoo tP //

pC

��
p′C

��
(7S) (7T)

P T

pT

��
p′T

��
GS GC

sG
oo

tG
// GT

Thus, we have that sG◦p′C = p′S◦sP = pS◦sP = sG◦pC using precondition
(P1) : p′S = pS. Therefore, we have conclusion 1 (C1) : sG◦p′C = sG◦pC .
Furthermore, we have that MT is propagation consistent, thus we have by
condition 2 of Def. 3 that sG is injective and therefore a monomorphism.
This implies conclusion 2 (C2) : p′C = pC .

Accordingly, we have that tG◦pC = pT ◦tP ∧ tG◦p′C
(C1)
= tG◦pC = p′T ◦tP .

Thus, we have conclusion 3 (C3) : pT ◦ tP = p′T ◦ tP . The precondition
that P is admissible (Def. 4) implies conclusion 4 (C4) : pT = p′T . Thus,
we can combine (P1), (C2) and (C4) leading to p = p′.

Theorem 2 (Validity of Propagation for MT-Consistent Con-
straints). Given a propagation consistent model transformation MT acc. to
Def. 3, and given an MT-consistent source graph constraint PC(aS : P S →
CS) with an MT-consistent propagated integrated constraint PC(a : P → C)
and a propagated target constraint PC(aT : P T → CT) according to Thm. 1,
such that P is admissable, then we have for all GS ∈ LS with model trans-

formation sequence (GS, G0 =
tr∗F=⇒ G,GT):(

GS |= PC(aS)
)
⇒
(
G |= PC(a) ∧ GT |=w PC(aT)

)
.

This means that given the source graph satisfies the source constraint,
then the integrated graph satisfies the propagated integrated constraint and
the target graph weakly satisfies the propagated target constraint.

Proof. First we show GS |= PC(aS) implies G |= PC(a). Given injective
p : P → G we have to find an injective morpism q : C → G with q◦a = p. By
assumption there is an injective morphism qS : CS → GS with qS ◦ aS = pS.
MT -consistency of PC(aS) implies that PC(a) is MT -consistent and (1) as
well as (2) commute by Thm. 1.

12

(P S ← ∅ → ∅) = P0

traceP

55
tr∗F +3

(aS ,∅,∅)

��

(pS ,∅,∅)

��

(1)(3)

Pl = P

al

��

a

��=
==

==
==

==
==

==
==

(2)

(CS ← ∅ → ∅) = C0

traceC1

55
tr∗F +3

(qS ,∅,∅)

��

(4)

Cl

traceC2

66
tr
′∗
F +3

ql

��

(5)

Cn

qn

��

(6)

(7)

(GS ← ∅ → ∅) = G0

traceG1

55
tr∗F +3 Gl

traceG2

66
tr
′∗
F +3 Gn

traceG3

66
tr
′′∗
F +3 Gm= G

q

��9
99

99
99

99
99

99
9

p

��

Moreover, qS ◦ aS = pS implies commutativity of (3). Now, C0 =
tr∗F==⇒

Cl =
tr ′∗F==⇒ Cn = C and (qS, ∅, ∅) : C0 → G0 leads step by step to

G0 =
tr∗F==⇒ Gl =

tr ′∗F==⇒ Gn with commutative (4), (5). Since MT is propa-
gation consistent we have by condition 1 of Def. 3 that all transforma-
tion sequences starting at G0 that cannot be extended any further are

switch equivalent up to isomorphism. Hence, G0 =
tr∗F==⇒ Gl =

tr ′∗F==⇒ Gn can

be extended to source consistent G0 =
tr∗F==⇒ Gl =

tr ′∗F==⇒ Gn =
tr ′′∗F==⇒ Gm with

Gm ∈ VL. Now G ∈ VL implies a source consistent transformation sequence

s1 = (G0 =
tr ′′′∗F===⇒ G) which by strong functional behaviour can be switched

to s2 = G0 =
tr∗F==⇒ Gl =

tr ′∗F==⇒ Gn =
tr ′′∗F==⇒ G and we derive Gm

∼= G and w.l.o.g.
Gm = G. We define q = traceG3 ◦ qn. Note that q is injective, because
(qS, ∅, ∅) is injective and (4) + (5) preserve injectivity using the fact that
pushouts of triple graph morphisms preserve injectivity. Note that commu-
tativity of (1) and (2) implies that aS is the source component of a and
commutativity of (4) and (5) implies that qS is the source component of q.
By (3) we have qS ◦ aS = pS. By Lem. 1 (Source Uniqueness) we can de-
duce that q ◦ a = p as required (7). Finally, to show GT |=w PC(aT) we
assume that there is an injective pT : P T → GT which can be extended to
p : P → G. By G |= PC(a) we have that there is an injective morphism
q : C → G with q◦a = p. Thus we have an injective morphism qT : CT → GT

with qT ◦ aT = pT .

Example 5 (Validity of Propagated Constraints). The premise graph
of the integrated constraint in Fig. 5 is admissable, which we verified via Re-
mark 2. According to Ex. 4 the model transformation is propagation consis-
tent and the source as well as the propagated constraints are MT -consistent.
Therefore, we can apply Thm. 2 for showing that the integrated model G′

13

satisfies the propagated integrated constraint and the target model G′T weakly
satisfies the propagated target constraint PC(aT : P T → CT) in Fig. 4, i.e.
the constraint holds at all structures that correspond to occurrences of the
source constraint in the source model.

4 Propagation of Partially MT-consistent

Constraints

In this section we discuss how to generalize constructions and results of Sec. 3
to the case of partially MT-consistent constraints, i.e. for the source con-
straint PC(aS : P S −→ CS) we may have P S /∈ LS ⊆ V LS or CS /∈ LS as
shown in Fig. 6a. Note that in Fig. 6a black bullets are missing s.t. P S is a
model fragment in contrast to P S in Fig. 4. Moreover, P S in concrete syn-
tax in Fig. 6a corresponds to a single node in abstract syntax in Fig. 6b. If
P S /∈ LS or CS /∈ LS they can be considered as model fragments and we show
now how to handle this important more general case. The main idea is to
use an extended model transformation approach for model fragments intro-
duced in [13] based on the general framework of graph transformation with
borrowed context (BC) [8]. Intuitively, BC-transformations allow for partial
matching of the forward rules in the S-component. The missing context that
is required by the left hand side LF of the forward rule is borrowed and the
instance graph is extended by this context. More precisely each BC-forward
transformation step consists of two POs (1) and (2), where in PO (1) the
partial match is completed and in PO (2) we have a forward transformation
step with total match. Verteilung

:E/D
CSPS

1:public
1:public :E/D

Source Constraint publicIsEncrypted2for IT-models

aS

name = "public"
1 : Reo

PS

(a) (b)

Figure 6: Partially MT-consistent source constraint (a) and abstract syntax
of P S (b)

Definition 5 (BC-Forward and BC-Model Transformation). Given
triple rules TR with corresponding forward rules TRF then

1. A BC-forward transformation Ĝ0 =
tr∗F=⇒BC Ĝn via TRF is given by

BC-forward transformation steps Ĝi−1 =
tri,F ,m̂i,F ,di
=======⇒ Ĝi for i = 1, ..., n

consisting of POs (1) and (2) where in PO (1) the partial match

m′ : Li,F ⇀ Ĝi−1 – given by injective morphisms m̂i,F and di – is

extended to a total injective match m+
i,F : Li,F −→ Ĝ+

i−1 and in PO(2)

14

we have a forward transformation step with total injective match as in
Sec. 2. Moreover we require that the C- and T -components dCi and dTi
of di are identities. Note that the S-component trSi,F is the identity of
RS

i by construction of TRF , i.e. trSi,F = idRS
i
.

Di
di //

m̂i,F ��

Li,F

m′yssssss

Ĝi−1

Di

m̂i,F ��

di //

(1)

Li,F

m+
i,F��

tri,F //

(2)

Ri,F

ni,F��

Ĝi−1 hi

// Ĝ+
i−1 h+

i

// Ĝi

2. A BC-model transformation sequence (GS, Ĝ0 =
tr∗F=⇒BC Ĝn, GT) con-

sists of a source consistent BC-forward transformation Ĝ0 =
tr∗F=⇒BC Ĝn

via TRF with source model GS = ĜS
n and target model GT = ĜT

n .
A BC-model transformation MTBC : V L(TGS) VBC V L(TGT) con-

sists of BC-model transformation sequences (GS, Ĝ0 =
tr∗F=⇒BC Ĝn, GT)

with GS ∈ V L(TGS) and GT ∈ V L(TGT).

Remark 3 (Source Consistency). Source consistency of BC-forward
transformations is based on partial BC-match consistency [13], where both
notions are defined in analogy to source and match consistency in the stan-
dard case without BC [5].

BC-forward and BC-model transformations can be extended by Fact 1 to
forward and model transformations in the sense of Sec. 2.

Fact 1 (Extension of BC-Forward and BC-Model Transformations).

1. Given a BC-forward transformation sequence Ĝ0 =
tr∗F=⇒BC Ĝn with

Ĝ0 = (ĜS
0 ← ∅ → ∅) there is an extension to a forward transfor-

mation sequence G0 =
tr∗F=⇒ Gn with G0 = (ĜS

n ← ∅ → ∅) and Gn = Ĝn.

2. Moreover, each BC-model transformation sequence (GS, Ĝ0 =
tr∗F=⇒BC

Ĝn, GT) with GS = ĜS
n, GT = ĜT

n can be extended to a model transfor-

mation sequence (GS, G0 =
tr∗F=⇒ Gn, GT) with the same GS, GT satisfying

GS = GS
0 , GT = GT

n and Gn = Ĝn.

Construction. Given the BC-forward transformation Ĝ0 =
tr∗F=⇒ Ĝn with

ĜC
0 = ĜT

0 = ∅ by POs (1)-(6) and G0 = (Ĝn,S ← ∅ −→ ∅) we construct
diagrams (7)-(12) in the S-, C-, and T-component as follows, where all mor-
phisms are injective:

15

D1

��

d1 //

(1)

L1,F

��

tr1,F //

(2)

R1,F

!!CC
CC

CC
C

D2

��

d2 //

(3)

L2,F

��

tr2,F //

(4)

R2,F

��

Dn

��

d2 //

(5)

Ln,F

��

trn,F //

(6)

Rn,F

��

Ĝ0

g0 //

f0
��

(7)

Ĝ+
0

g+0 //

f+
0}}{{

{{
{{

{
(8)

Ĝ1

f1
��

g1 //

(9)

Ĝ+
1

f+
1}}{{

{{
{{

{

g+1 //

(10)

Ĝ2

��

Ĝn−1

fn−1

��

gn−1 //

(11)

Ĝ+
n−1

f+
n−1{{www

ww
ww

g+n−1 //

(12)

Ĝn

fn
��

G0 h0

// G1 h1

// G2 Gn−1 hn−1

// Gn

Figure 7: Extension of a BC-forward Transformation Sequence

S-Component The S-components g+0,S, g
+
1,S, ..., g

+
n−1,S are identical because

of POs (2)-(6) and identical tr1F,S, tr
2
F,S, ..., tr

n
F,S. Then h0,S, h1,S, ..., hn,S

are constructed as identities in view of POs (8), (10) and (12):

f1,S = gn−1,S ◦ ... ◦ g1,S : Ĝ1,S −→ Ĝn,S = G0,S = G1,S

...

fn,S = id : Ĝn,S −→ Ĝn,S = G0,S = G1,S

f+
0,S = f1,S : Ĝ+

0,S = Ĝ1,S −→ G1,S = G0,S

f+
1,S = f2,S : Ĝ+

1,S = Ĝ2,S −→ G2,S = G1,S

...

f+
n−1,S = fn,S : Ĝ+

n−1,S = Ĝn,S −→ Gn,S = Gn−1,S

C-Component The C-components g0,C , g1,C , ..., gn−1,C are identical because
of POs (1), (3), (5) and identical d1,C , d2,C , ..., dn,C . Then

f+
0,C = f0,C = ∅ with Ĝ0,C = Ĝ+

0,C = G0,C = ∅
f1,C , h0,C by PO (8) and f+

1,C = f1,C using g1,C = id

f2,C , h1,C by PO (10) and f+
1,C = f1,C using g2,C = id

...

fn,C , hn−1,C by PO (12)

T-Component Replace C by T in C-Component.

Proof of Fact 1, Part 1. First we show that diagrams (7)-(12) commute
componentwise and (8), (10) and (12) are POs componentwise.

16

S-Component

(7) f+
0,S ◦ g0,S = f1,S ◦ g0,S = f0,S

(9) f+
1,S ◦ g1,S = f2,S ◦ g1,S = f1,S

(11) f+
n−1,S ◦ gn−1,S = fn,S ◦ gn−1,S = id ◦ gn−1,S = fn−1,S

(8), (10), and (12) are POs in the S-component because the horizontal
morphisms are identities.

C-Component (7), (9), and (11) commute by construction, e.g. f+
0,C◦g0,C =

f+
0,C ◦ id = f0,C .

(8), (10), and (12) are POs in the C-component by construction.

T-Component Similar to C-component.

Assume now that all new morphisms in (7)-(12) are TGG-morphisms
such that (8), (10), and (12) become TGG-POs. In this case the forward

transformation G0 =
tr∗F=⇒ Gn is given by POs (2)+(8), (4)+(10), and (6)+(12)

with G0 = (Ĝn,S ← ∅ −→ ∅) and Gn = Ĝn, because we have fn = id, with
fn,S = id by construction and f+

0,C = id implies by POs (8), (10), and (12)
also fn,C = id and similar fn,T = id.

It remains to show step by step that all morphisms in (7) − (12) are
TGG-morphisms and G1, ..., Gn are well-defined such that (8), (10), and (12)
become TGG-POs.

First of all G0 = (Ĝn,S ← ∅ −→ ∅) and f0 = (f0,S, ∅, ∅), f+
0 = (f+

0,S, ∅, ∅) are
well-defined TGG-morphisms. Since (8) is already PO in each component
there are unique graph morphisms Gi,C −→ Gi,S and Gi,C −→ Gi,T s.t. G1 =
(G1,S ← G1,C −→ G1,T) is a TGG-graph, f1 and h0 are TGG-morphisms, and
(8) is a TGG-PO.

In order to show that f+
1 is TGG-morphism we have to show that (15),

(16) commute, while (13), (14) and the composite diagrams commute because
g1 and f1 are TGG-morphisms respectively.

Ĝ1,S

g1,S

��f1,S

��

(13)

Ĝ1,C
oo //

g1,C

��f1,C

��

(14)

Ĝ1,T

g1,F

��f1,T

��

Ĝ+
1,S

f+
1,S

��

(15)

Ĝ+
1,C

oo //

f+
1,C

��

(16)

Ĝ+
1,T

f+
1,T

��
G1,S G1,C

oo // G1,T

17

Since Ĝ+
1,C is PO in the C-component of (3) we have that g1,C and m̂+

2,F,C

are jointly epi and it is sufficient to show that (15) and (16) commute if they
are composed with these both morphisms. Concerning composition with g1,C
this follows from commutativity of (13), (14), the vertical composed diagrams
and the triangles in each component.

For the composition of (15) and (16) with m̂+
2,F,C = m̂+

2,F,C ◦ idC we con-
sider the following diagrams corresponding to diagram (3) and (9) in the
construction, where idC and idT are identities by definition of BC-forward
transformations.

D2,S

��

��

D2,C
oo //

idC
��

��

D2,T

idT
��

��

L2,F,S

��

L2,F,C
oo //

m̂+
2,F,C

��

L2,F,T

��

Ĝ1,S

��

��

Ĝ1,C

��

g1,C

��

oo // Ĝ1,T

��

��

Ĝ+
1,S

��
(15)

Ĝ+
1,C

oo //

��
(16)

Ĝ+
1,T

��
G1,S G1,C

oo // G1,T

We know by construction that all subdiagrams except for (15) and (16)
commute. This implies that (15) and (16) composed with m̂+

2,F,C commute

and hence also (15) and (16) commute using (g1,C , m̂
+
2,F,C) are jointly epi.

This implies that f+
1 is TGG morphism.

Similar to f1 and h0 above using TGG-morphism f+
0 we can conclude now

a unique TGG-graph G2 s.t. (10) becomes TGG-PO with TGG-morphisms
f2 and h1. Similar to f+

1 also f+
2 is TGG-morphism. This can be iterated for

all i = 0, ..., n s.t. the diagrams (7)−(12) are TGG-diagrams with TGG-POs
(8), (10), and (12).

Proof of Fact 1, Part 2. By definition of the BC-model transformation
sequence in Thm. 4 in [13] we have for the BC-model transformation se-

quence given in our theorem a partial BC-match consistent pair (G00 =
tr∗S=⇒

Gn0, Ĝ0 =
tr∗F=⇒BC Ĝn) with inclusion Gn,0 ↪→ Ĝn, GS = ĜS

n, GT = ĜT
n and

ĜS
n = Gn,0. By Thm. 6 in [13] we have a partially match consistent sequence

G00 =
tr∗S=⇒ Gn0 ↪→ G0 =

tr∗F=⇒ Gn. By the first part of Fact 1 we have Gn = Ĝn

and GS
0 = ĜS

n. Hence we have Gn0 = ĜS
n = GS

0 , which means that accord-

ing to Thm. 1 in [5] a model transformation sequence (G′S, G0 =
tr∗F=⇒ Gn, G

′
T)

18

with G′S = GS
0 and G′T = GT

n . Finally we have G′S = GS
0 = ĜS

n = GS and

G′T = GT
n = ĜT

n = GT by Thm. 4 in [13]. Hence we have model transforma-

tion (GS, G0 =
tr∗F=⇒ Gn, GT) with GS = GS

0 and GT = GT
n .

Now correctness of model transformation shown in [5, 11] can be extended
by Fact 2 to BC-model transformation.

Fact 2 (Correctness of BC-Model Transformations). Each BC-model
transformation is correct, i.e. for all BC-model transformation sequences

(GS, Ĝ0 =
tr∗F=⇒BC Ĝn, GT) we have Ĝn ∈ V L with ĜS

0 ⊆ ĜS
n = GS ∈ V LS and

ĜT
n = GT ∈ V LT .

Proof. From Fact 1 it follows, that each BC-model transformation sequence

(GS, Ĝ0 =
tr∗F=⇒BC Ĝn, GT) with ĜS

0 ⊆ ĜS
n can be extended to a model trans-

formation sequence (Gs, G0 =
tr∗F=⇒ Gn, GT) with Gn = Ĝn. The complete-

ness of model transformations implies for the second sequence GS ∈ VLS,
GT ∈ VLT and Gn ∈ VL. Now Gn = Ĝn ∈ VL, ĜS

0 ⊆ ĜS
n = GS

n = GS ∈ VLS

and ĜT
n = GT

n = GT ∈ VLT which implies correctness of the BC-model
transformation.

Finally we show how to propagate a partially MT-consistent source con-
straint (see Fig. 6) to MT-consistent target constraint as shown already in
Fig. 4 using the BC-model transformations in Def. 5. Intuitively a partially
MT-consistent source constraint PC(aS : P S −→ CS) is a source constraint
such that we have a BC-model transformation sequence from (P S ← ∅ → ∅)
to P̂ and from (CS ← ∅ → ∅) to Ĉ leading to a propagated integrated

constraint PC(â : P̂ −→ Ĉ) together with a corresponding propagated source

constraint PC(âS : P̂ S −→ ĈS) and target constraint PC(âT : P̂ T −→ ĈT)

Definition 6 (Partially MT-Consistent Source Constraint). A source
constraint PC(aS) with aS : P S −→ CS is called partially MT-consistent if

there exist BC-model transformation sequences P̂0 =
tr∗F==⇒BC P̂l, Ĉ0 =

tr∗F==⇒BC

Ĉl =
tr∗F==⇒BC Ĉn as shown below leading to a morphism â = trace(tr ′∗F) ◦ âl,

such that the diagram below commutes and we have P̂ S, ĈS ∈ LS:

(P S ← ∅ → ∅) = P̂0

tr∗F

BC
+3

(aS ,∅,∅)

��

Pl = P̂

âl

��

â

!!CCCCCCCCCCCC

(CS ← ∅ → ∅) = Ĉ0

tr∗F

BC
+3 Ĉl

tr ′∗F

BC
+3 Ĉn = Ĉ

Moreover, PC(â : P̂ → Ĉ) is called propagated integrated constraint, PC(âS :

19

P̂ S → ĈS) propagated source constraint, and PC(âT : P̂ T → ĈT) propagated
target constraint, where âS and âT are the source and target components of
â.

This allows us to present our second main result – the validity of propa-
gation of partially MT-consistent source constraints – as a generalisation of
Thm. 2.

Theorem 3 (Propagation of Partially MT -consistent Source Con-
straints). Given a propagation consistent model transformation MT and a
partially MT-consistent source constraint PC(aS : P S −→ CS), then we have

MT -consistent propagated constraints PC(â : P̂ −→ Ĉ) with PC(âS) and

PC(âT). If P̂ is admissable, then we have for all GS ∈ LS with model trans-

formation sequence (GS, G0 =
tr∗F=⇒ G,GT):(

GS |= PC(âS)
)
⇒
(
G |= PC(â) ∧ GT |=w PC(âT)

)
.

Proof. First we show that for each partial MT-consistent source graph con-
straint PC(aS : P S −→ CS) the propagated constraints PC(â : P̂ −→ Ĉ),

PC(âS : P̂ S −→ ĈS), and PC(âT : P̂ T −→ ĈT) are MT-consistent:

By Def. 6 we have BC-model transformation sequences P̂0 =
tr∗F=⇒BC P̂l = P̂

and Ĉ0 =
tr∗F=⇒BC Ĉl =

tr′∗F==⇒BC Ĉn = Ĉ which implies P̂ , Ĉ ∈ VL by correctness

of BC-model transformation in Fact 2. This implies P̂ T , ĈT ∈ VLT and
by assumption P̂ S, ĈS ∈ LS ⊆ VLS. Hence we have MT − consistency of
PC(â : P̂ → Ĉ), PC(âS : P̂ S → ĈS), and PC(âT : P̂ T → ĈT). This allows
to apply Thm 2.

Constraint publicIsEncrypted2

P

C

:E/D

:E/D

1:public

a

1:public

Extended Constraint publicIsEncrypted2+

P

C

:E/D

:E/D

1:public

a

D

1:public

Forward Rule PublicToPublic
L

1:public

R

1:public 2:public

4:P

3:P

m

+

+

+

m+

d

hP

hC

Partially translated Constraint publicIsEncrypted2'

C'

:E/D

:E/D

1:public

a'

1:public

tr

hP
+

hC
+

n

P'

1:public 2:public

4:P

3:P

2:public

4:P

3:P

m -

Figure 8: Source constraint and propagated constraint

20

Example 6 (Propagation of a Partially MT -consistent Source Con-
straint). The constraint publicIsEncrypted2 in Fig. 8 is a partial model, as
shown in Fig. 6. Therefore there is no total match from the left-hand-side of
the rule L to P , but only a partial match m−. This leads to the injective span

(L
d← D −m−→ G) with D being the domain of m−. With a pushout over D the

black bullet nodes are “borrowed” from L and a standard triple graph trans-
formation over the rule can be performed. After this step the premise graph
is already completely translated and the conclusion graph can be translated as
seen in Fig. 4.

5 Related Work and Conclusion

Model transformation is an important concept in order to establish a con-
sistent relationship between source and target models, like business and IT
models in enterprise modelling [2]. Security constraints can be defined sepa-
rately for source and/or target models, but up to now, it is an open problem
how to establish a consistent relationship between source and target con-
straints.

Triple graph grammars have been successfully applied in several case
studies for bidirectional model transformations, integrations and synchro-
nizations [15, 12, 16, 10], and there are a variety of formal results concerning
correctness, completeness and termination [5], functional behaviour and op-
timization with respect to the efficiency of their execution [11].

Previous studies on the relationship between model transformations and
constraints focussed on general properties, e.g. in order to provide techniques
for the verification and validation of model transformations [9, 1, 3] in or-
der to detect underspecified parts or mismatches to the requirements of the
domain. They perform semi-automated reasoning using e.g. the theorem
prover Isabelle/HOL [9], Prolog [1] or they use OCL validation tools [3]. In
contrast to them, this paper has its main focus on a constructive approach for
the translation of domain and model specific source into target constraints,
i.e. those properties of a source model which are usually not valid for all
models of the source language.

Given a model transformation MT based on triple graph grammars, we
have defined in this paper MT -consistent constraints and shown how to prop-
agate source constraints to integrated and target constraints. In our first
main result, we prove that under suitable conditions this propagation is con-
sistent in the sense that validity of the source constraint for the source model
implies validity of the integrated and target constraint for the integrated
resp. target model. Since constraints are often incomplete models we study

21

in Sec. 4 also the propagation of partial MT -consistent source constraints
leading to our second main result. For this purpose we provide a new con-
cept of model transformations with borrowed context, which allows to trans-
form also model fragments. Transformations of model fragments along total
matches are considered for the case of plain graph transformations already
in [7] for the refactoring of rules. Based on the new theory of model trans-
formations with borrowed context [13] we will also propagate other kinds of
model fragments in future work, e.g. rules of the operational semantics from
source to target models in order to prove semantical correctness of model
transformations.

References

[1] Asztalos, M., Lengyel, L., Levendovszky, T.: Towards automated, for-
mal verification of model transformations. In: Proc. ICST ’10. pp. 15–24.
IEEE (2010)

[2] Brandt, C., Hermann, F.: How Far Can Enterprise Modeling for Bank-
ing Be Supported by Graph Transformation? In: Proc. ICGT’10. LNCS,
vol. 6372, pp. 3–26. Springer (2010)

[3] Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and valida-
tion of declarative model-to-model transformations through invariants.
J. Syst. Softw. 83, 283–302 (2010)

[4] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Al-
gebraic Graph Transformation. EATCS Monographs in Theor. Comp.
Science, Springer (2006)

[5] Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construc-
tion, Correctness and Completeness of Model Transformationsbased on
Triple Graph Grammars. In: Proc. MODELS’09. LNCS, vol. 5795, pp.
241–255. Springer (2009)

[6] Ehrig, H., Hermann, F., Schölzel, H., Brandt, C.: Propagation of con-
straints along model transformations based on triple graph grammars.
In: GT-VMT (2011)

[7] Ehrig, H., Ermel, C., Ehrig, K.: Refactoring of Model Transformations.
ECEASST 18 (2009)

22

[8] Ehrig, H., König, B.: Deriving Bisimulation Congruences in the DPO
Approach to Graph Rewriting with Borrowed Contexts. Mathematical
Structures in Computer Science 16(6), 1133–1163 (2006)

[9] Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards
verified model transformations. In: Proc. Workshop on Model Develop-
ment, Validation and Verification (MoDeVa 2006). pp. 78–93 (2006)

[10] Giese, H., Wagner, R.: From model transformation to incremental bidi-
rectional model synchronization. Software and Systems Modeling 8(1),
21–43 (2009)

[11] Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and
Execution of Correct and Complete Model Transformations Based on
Triple Graph Grammars. In: Proc. MDI’10 (2010)

[12] Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions,
implementations, and application scenarios. Tech. Rep. TR-ri-07-284,
Department of Computer Science, University of Paderborn, Germany
(2007)

[13] Schölzel, H.: Model Transformation of Model Fragments Using
Borrowed Context: Extended Version. Tech. rep., TU Berlin,
Fak. IV (2010), to appear, online available at http://tfs.cs.tu-
berlin.de/publikationen/Papers10/Sch10.pdf

[14] Schürr, A.: Specification of Graph Translators with Triple Graph Gram-
mars. In: Proc. WG’94. LNCS, vol. 903, pp. 151–163. Springer Verlag,
Heidelberg (1994)

[15] Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Proc.
ICGT’08. LNCS, vol. 5214, pp. 411–425 (2008)

[16] Varró, D., Balogh, A.: The model transformation language of the VI-
ATRA2 framework. Science of Computer Programming 68(3), 214–234
(2007)

23

	Introduction
	Model Transformation between Business and IT Models
	Propagation of MT-consistent Constraints
	Propagation of Partially MT-consistent Constraints
	Related Work and Conclusion

