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1 Introduction 

1.1 Background and motivation 
The brake is one of the most important safety and performance components of vehicles. On the one 
hand, the development of brakes has focused on the increase of braking power and reliability. On the 
other hand, the refinement of vehicle acoustics and comfort of vehicle design have increased the rela-
tive contribution of brake noise, vibration and harshness (NVH). A consumer may believe that the 
NVH problem is symptomatic of a defective brake and file a warranty claim, even though the brake is 
functioning as designed in all other parts [1], [2]. The entire automotive industry can attest to NVH 
repairs often dominating warranty claims at aftermarket service center and dealerships. Abendroth and 
Wernitz denote that many makers of materials for brake pads spend up to 50% of their engineering 
budgets on NVH issues [3]. Concentrating on NVH performance can be drawn back to the early 1990s, 
engineers focused much of their attention on eliminating high-frequency squeals. There is a wealth of 
literature on automotive disk brake squeal. Reviews conducted in the last 30 years provide a compre-
hensive source of information [4]. In contrast, creep groan received much less attention. However, this 
type of vibration receives a growing interest from the automotive industry because it primarily affects 
the comfort. Like other brake noise problems such as brake squeal, creep groan may bring complaints 
of customers, which eventually causes warranty claims and results in refinement costs to the industry.  

1.1.1 NVH problems in vehicle brakes 
In general, brake vibration and/or noise can be classified into many categories based on the occurring 
frequencies, such as judder, creep groan, moan, and squeal [5], [6]. As shown in Table 1.1, in the low-
frequency range (0-1000 Hz) there are in general three different types of structural vibrations, named 
judder, creep groan, and moan, while squeal occurs in the high-frequency range (>1000 Hz).  

• Brake squeal is a high frequency vibration noise, which is in general higher than 1000 Hz. It is 
caused by the flutter instability [7]-[17]. Squeal is a friction-induced self-excited oscillation. 
When an unstable equilibrium solution exists in the system, the system oscillates with increasing 
amplitude from the equilibrium solution and reaches a limit cycle (LC). The limit cycle oscilla-
tion can generate sound, and the brake disk emits the sound.  

• Moan shows the same excitation mechanisms as low frequency squeal. It is a self excited vibra-
tion, where the equilibrium solution of the system becomes unstable due to the friction coupling 
of vibration modes. During moan, the harmonic vibration of brake carrier and axle can normally 
be observed [18], [19]. 

• Judder is caused by periodic features on the rotor surface that result in cyclic brake torques. The 
typical feature of this type of noise is that its frequency is a multiple of the rotor speed of rotation 
[20]-[26].  

• Creep groan is a low frequency vibration noise caused by the stick-slip-effect, which describes 
the brake pad’s total or partial, alternating adhesion and sliding on the disk. The phenomenon 
may take place whenever the brake is slowly released while the car starts moving from a statio-
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nary state, which is a frequent problem of vehicles with automatic transmissions due to the conti-
nuous driving torque on the drive shaft [27]-[33]. 

Brake noise Frequency 
region 

Occurrence 

brake pressure 

Occurrence 

speed 

Triggering source 

Judder [20]-[26] Around 10 
Hz 

Low brake pressure 

 

Proportional to 
speed 

Forced vibration 

Moan [18], [19] 100-1000 
Hz 

Low brake pressure High speed Self-excited 

(flutter instability) 

Creep groan 
[27]-[33] 

0-500 Hz High brake pressure 

 

Low speed Self-excited 

(stick-slip) 

Squeal [7]-[17] >1000 Hz Low brake pressure 

 

High speed Self-excited 

(flutter instability) 

Table 1.1: NVH problems in vehicle brake 

 

1.1.2 Friction law and stick-slip motion 
Tribology is the study of adhesion, friction, lubrication and wear of surfaces in relative motion. It 
remains important today as it was in ancient times, arising in the fields of physics, chemistry, geology, 
biology and engineering [34]. Friction is a classical field that tracks back to Leonardo da Vinci, Guil-
laume Amontons, and Charles Augustin de Coulomb [35]. Amontons pointed out that the friction 
force is proportional to normal load but does not depend on the area of the apparent contact surface. 
Coulomb proposed a model where the friction force is opposite to the direction of velocity with a 
magnitude proportional to the normal force. Besides, it describes a static force at zero sliding velocity 
to be larger than a kinetic force at finite sliding velocities [36]. Measurements of the contact surface of 
rocks show that the friction force is proportional to true contact area, which is typically much less than 
the apparent contact surface [37], [38]. By measuring the velocity dependence of friction, Stribeck 
found that friction decreases with increasing velocity in certain velocity regimes. This phenomenon is 
called the Stribeck effect [39].  

Stick-slip vibration is characterized by a sawtooth displacement-time evolution [40] which has clearly 
defined stick and slip regions. It appears in everyday life as well as in engineering systems, such as the 
sound of bowed instruments, creaking doors, rattling joints of a robot, creep groan of brake systems, 
and chattering machine tools [41]. 

The stick-slip motion can in the simplest usual way modeled as a 1-degree-of-freedom (DOF) system 
coupled with Coulomb’s friction law. When dry friction is modeled as Coulomb’s friction law, self-
sustained stick-slip motion may occur [42]-[46]. Coulomb’s friction model is normally described by 
piecewise differentiable equations, with switching between the stick and slip region. The way to solve 
these piecewise differentiable equations is studied in literature [47]-[53]. Popp et at. employed a point-
mapping approach to calculate the stick-slip limit cycle [47], while Leine et al. studied the shooting 
method to find the limit cycle by solving a two-point boundary-value problem [48]. Another method to 
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solve the piecewise differentiable equations is so called “switch method”. During the “switch method” 
the numerical calculation starts from an initial state with a differential equation. After each time step it 
is inspected if possible switch conditions within this time step are satisfied. If the switch conditions are 
satisfied, a new integration process is started with a modified set of differential equations and its initial 
conditions are the state at the switching point [49]. Based on the studies of flows for non-smooth dy-
namic systems, the switching conditions of a non-smooth system can be calculated by finding the 
separation boundaries of flows [50]-[53]. Due to the non-smooth characteristics of the stick-slip mo-
tion, chaotic motion can occur as well as multi-periodic solutions. Bilinear and nonlinear dynamic 
models have been considered to explain such friction phenomena as stick-slip, chatter and chaos by 
Ibrahim [54], [55]. Galvanetto and Knudsen described an event map of a two DOFs mechanical sys-
tem under self-sustained oscillations induced by dry friction, and the parameter dependent bifurcation 
behavior is analyzed by the defined mappings [56]. Popp et al. proposed that the limit cycles of stick-
slip vibrations can be broken up by a harmonic disturbance, and the bifurcation behavior and the chaos 
of a stick-slip system under external excitation are studied for different system parameters [41]. Storck 
et al. proposed that the friction will be reduced in presence of ultrasonic vibration [57]. Some scholars 
stated that the static friction coefficient can be strongly reduced under a normal or lateral mechanical 
oscillation [58]-[61]. 

With further investigations of friction law, it is well known that the phenomena such as pre-sliding, 
rate dependence, and hysteresis have been observed experimentally and are reproduced only by dy-
namic models [62]-[64]. As a result, the simple classical static models of Coulomb, Stribeck, etc. have 
given way gradually to more sophisticated, dynamical models with due attention to presiding hystere-
sis and time-lag effects. Dahl developed a simple dynamic friction model with one state in the late 
1960s, which is widely used to simulate aerospace systems [65], [66]. However, this model does not 
capture the Stribeck effect and thus cannot predict stick-slip motion. Later, the LuGre model is an 
extension of the Dahl model that can describe the Stribeck effect, stick-slip effect, and hysteresis [67]-
[71]. Canudas de Wit et al. [71] analyzed the stick-slip experiment using the LuGre friction model, 
whose gross features of the behavior are similar to those obtained with Coulomb’s model, but the 
transitions are captured by dynamics for the LuGre friction model. Li et al. studied the bifurcation and 
chaos in friction-induced vibration through the LuGre friction model [72].  

Thanks to the availability of measurement techniques and equipments such as scanning probe micro-
scopy, laser interferometry, and the surface force apparatus, it is possible to measure friction at the 
nanoscale [73]. Mate et al. first introduced the friction force microscope (FFM) in 1987. It becomes 
possible to observe the atomic friction processes for a tip sliding over graphite [74], [75]. Later, To-
manek et al. proposed an accurate description of the microscopic mechanism of energy dissipation in 
the friction force microscope [76]. On the atomic scale, several experiments confirm that the friction 
force on the nanometer scale exhibits a sawtooth behavior, commonly known as atomic stick-slip [77]. 
As a result, the Prandtl-Tomlinson model is proposed to explain the frictional stick-slip motion on the 
atomic scale [78], [79]. Socoliuc el at. confirmed that the atomic stick-slip motion can be eliminated 
under a normal mechanical oscillation [80], [81]. A comparison of different friction laws is shown in 
Table 1.2. 
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Name Equations Described friction 
characteristics 

Coulomb friction law [36] 

[ ]
sgn( ),  slip

, ,  stick
d

s s

F F v
F F F
=

∈ −
 

Stick-slip 

 

Dahl model [65] 0

0

c

dz v v z
dt F
F z

σ

σ

= −

=
 

Hysteresis 

LuGre model [67] 

( ) ( )
0

0 1

( )

( ) exp /

( )
d s d s

vdz v z
dt g v

g v F F F v v

F z z f v

α

σ

σ σ

= −

= + − −

= + +
 

Stribeck effect 

Hysteresis 

Stick-slip 

 

Prandtl-Tomlinson model  [78] 
1 0sin( )dmz F z F zσ λ= − −   Atom stick-slip 

Table 1.2: Different friction laws  

1.1.3 Creep groan 
It is well accepted that creep groan is caused by the stick-slip-effect [27]-[30], [82]-[89]. Some works 
focus on the experimental study of creep groan. Jang et al. investigated creep groan propensity of 
different friction materials, and proposed that the creep groan can be eliminated by employing the 
friction material with less difference between the static and dynamic friction coefficient [82]. Fuadi et 
al. studied a fundamental mechanism for creep groan generation by adopting a caliper-slider experi-
mental model, where a map that shows the necessary condition for avoiding creep groan was 
introduced [83], [84].  

Other literature works on the fundamental mechanism of creep groan noise generation as well as the 
corresponding suppression methods. Brecht et al. [29], [30] measured the vibration characteristics of 
creep groan and studied the stick-slip limit cycle of creep groan. Jung et al. measured the interior noise 
in the event of creep groan noise by using a chassis dynamometer, and the way to reduce creep groan 
noise was studied experimentally [85]. Vadari et al. stated the stiffness as one of the most important 
parameters in brake creep groan generation [86], and Donley et al. through experimental observations 
demonstrated that the structure of the McPherson’s suspension system is the key to damp creep groan 
[87]. Zhang at el. studied the conditions leading to creep groan noise through road tests, as well as 
objective characteristics of creep groan noise [88]. Neis et al. combined in-vehicle tests and laborato-
ry-scaled tribometer tests to seek the conditions of creep groan noise occurrences [89]. Bettella et al. 
focused on the transmission of the vibration from the brake component regions to the cockpit during 
creep groan, and showed that the airborne transmission can be neglected compared to structure-borne 
path [90]. Gauterin et al. studied creep groan of disk brakes of cars and explained how creep groan 
originates and permitted the assessment of corrective measures [91].  

With respect to modeling, the stick-slip-effect has in general been modeled by corresponding dynamic 
systems coupled with Coulomb’s friction law. Crowther et al. investigated the brake creep groan prob-
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lem by formulating the issues in terms of two dynamic sub-systems coupled with Coulomb’s friction 
law [92], [93]. Hegde et al. focused on the nonlinear dynamic transient analysis of brake vibration 
with a multi-body dynamic simulation [94]. Brecht et al. [29], [30] studied the stick-slip limit cycle of 
creep groan with 3 DOFs minimal model coupling with Coulomb’s friction law as well as with finite 
element model. However, the model using Coulomb’s friction law cannot explain several effects dur-
ing creep groan. Hetzler et al. [95]-[99] presented an analytical investigation on stability and 
bifurcation behavior of a friction oscillator, where a friction model is described by Coulomb’s friction 
law coupled with the Stribeck effect. 

Some works of the author referring to creep groan have been published in [31]-[33]. A comparison 
study of the creep groan models with Coulomb’s friction law and the bristle friction law is proposed in 
[31]. Furthermore, a 1 DOF model in [32] and a 2 DOFs model in [33] with the bristle friction law are 
investigated to describe the fundamental mechanism of creep groan. The simulation results are com-
pared with the experimental results measured in the test rig with an idealized brake in [31]-[33], and in 
[33] the experimental results in a test rig with a real brake is also analyzed. 

1.2 Objective of the work 
Motivated by the aforementioned observations, the main objective of this thesis is to study the funda-
mental mechanism of creep groan on brake systems, as well as the suppression methods of creep groan. 
To be specific, the tasks of this thesis are stated as follows: 

• Design and set up test rigs with an idealized brake and a real brake. Creep groan should be gener-
ated in both test rigs. The fundamental mechanism of creep groan should be investigated based on 
the experimental results.  

• Investigation of minimal models of creep groan, so that the friction induced stick-slip motion will 
be carefully studied for a deeper understanding of creep groan. 

• Investigation of the multiple degrees of freedom model to describe creep groan of a real brake. A 
reduced-order model will be studied to improve calculation efficiency.  

• Search for methods against creep groan. The feasibility and effectiveness of the methods should 
be confirmed through experiments. 

1.3 Outline of the work 
The organization of this thesis is described as follows. According to the general introduction on creep 
groan and NVH issues of brake system given in Chapter 1, Chapter 2 first presents the construction of 
test rigs with an idealized brake and with a real brake. Then, the experimental results during creep 
groan from both test rigs are shown to give a first impression of creep groan. 

In Chapter 3, based on the experimental results, minimal models of creep groan for an idealized brake 
are investigated. Both Coulomb’s friction law and the bristle friction law are employed to describe the 
friction force. By coupling the minimal model with different friction laws, the stability of the equili-
brium solution as well as the stick-slip limit cycle of the nonlinear system is studied. According to that, 
the system has different parameter regions with different types of motion. 
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Chapter 4 focuses on the study of the parameter identification for different friction models. After pa-
rameter identification, the theoretical and experimental results are compared with each other 
quantitatively. Experimental results confirm the existence of three different parameter regions. In addi-
tion, a friction force observer is designed and the observed friction force is compared with the 
simulated friction force. 

The study of creep groan on the test rig with a real brake is presented in Chapter 5. A large number of 
degrees of freedom model and a corresponding reduced-order model are set up to describe the brake 
system. Numerical simulation shows that the reduced-order model can describe creep groan with high 
calculation efficiency and limited error. 

Countermeasures against creep groan are finally discussed in Chapter 6. A pad, which contains piezo-
ceramic staple actuators, is successfully used to suppress creep groan by exciting a high frequency 
oscillation of the system. Besides, the risk of the generation of creep groan can also be reduced by 
increasing the damping of the shaft. Another method to shorten the time of creep groan is an optimal 
brake technique, through that the system can leave the regions with creep groan rapidly. By integrating 
this optimal brake technique into an anti-lock braking system (ABS), the ABS can perform the optimal 
braking process through a simple control loop to avoid creep groan.   

Chapter 7 concludes the thesis and discusses the future scope. 

This work was performed at the Chair of Mechatronics and Machine Dynamics (MMD) TU Berlin and 
funded by the China Scholarship Council (CSC). The author is deeply thankful to Dr.-Ing. Torsten 
Treyde (ZF TRW) for helpful comments.  
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2 Experimental Investigations of Creep Groan 

In this chapter, the test rigs and the experimental results are presented to give a first impression of 
creep groan. In order to understand creep groan step by step, a test rig with an idealized brake was 
designed and assembled at MMD TU Berlin. Subsequently, a test rig with a real brake was set up as a 
comparison study with that of an idealized brake. The stick-slip limit cycle can be measured in both 
test rigs. According to the measurements, the mechanism of creep groan will be explained in this chap-
ter. 

2.1 Test rig with an idealized brake  
Creep groan of brake systems is a well-known low frequency vibration noise caused by the stick-slip-
effect, which describes the brake pad’s total or partial, alternating adhesion and sliding on the disk 
[27]-[30], [83]-[94]. The phenomenon may take place whenever light pressure is exerted by the driver 
on the brake pedal and some forces are acting on the vehicle, such as an idling engine through an au-
tomatic transmission, or gravity due to the vehicle on a slope. 

The structure a front-wheel drive vehicle is shown in Fig. 2.1, where a suspension is hung in a chassis, 
and a brake system is attached to the suspension. A drive shaft driven by motor is connected to the 
disk, while a wheel is connected to the other side of the disk with wheel bolts. If a car is an automatic 
car, the motor-disk-pad sub-system is the prime part relevant to creep groan. 

 

 

Fig. 2.1: Structure of a front-wheel drive vehicle in front view 

In order to concentrate on the investigation of the frictional contact, a test rig with an idealized brake 
has been designed and assembled. The intention of designing this set-up is to concentrate on the pad-
disk contact. Therefore, the brake disk, the drive shaft, the brake pads, the brake caliper, and the brake 
carrier are taken out from a real vehicle to constitute the test rig; but the difficult-to-model parts, such 
as the complicated structure of the carrier and the rubber coated pins on the carrier, are replaced by an 
idealized carrier, which consists of two L-shaped steel plates. This idealized carrier has high stiffness 
in the in-plane direction and low stiffness in the out-of-plane direction. To make sure that the stiffness 

Suspension 

Wheel 

Brake disk 

Brake pads  
with caliper 

Drive 

Chassis 

Prime part of creep groan 
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of the carrier has comparable order of stiffness similar to the real brake carrier, a finite element (FE) 
analysis is performed to calculate the stiffness of a real carrier in the in-plane direction. In the FE 
analysis, the screw hole of the caliper is set as fixed position, while a lateral force is acting on the both 
pads. Fig. 2.2 shows the FE analysis results, where the stiffness in the in-plane direction is 

78.21 10 N/m⋅  in the piston side and 72.33 10 N/m⋅  in the other side. Those two steel plates are designed 
according to the calculated stiffness.  

 

  

Fig. 2.2: FE analysis of the brake carrier 

An AC motor coupled with a reduction gear box is used as drive, which can provide a low revolution 
speed with high moment. A shaft is assembled between the reduction gear box and a brake disk. Brake 
pads are fixed on the long edges of the steel plate, and the short edges are fixed on the frame. The 
brake caliper is hung on the long edges of the steel plates, and provides the brake pressure with a hy-
draulic system. The CAD model of the test rig is sketched in Fig. 2.3. The test rig has some 
advantages for the experimental investigation of creep groan, such as:  

1. The test rig is similar with the brake system of a real car, since the pads, the disk, the shaft and 
the caliper of the test rig come from a real car; 

2. The test rig has simple structure of the components and therefore the parameters are easy to iden-
tify and there is less uncertainty in dynamics;  

3. The test rig is easy to equip with different types of sensors.  

In order to observe creep groan in the test rig, sensors have been fitted in suitable positions, shown in 
Fig 2.4. An accelerometer is attached to the carrier, which measures the acceleration of the pad. A 
turning angle transmitter is connected to the disk by which the absolute angle and angular velocity of 
the disk can be measured. The pressure of the brake can be read from a pressure meter. Strain sensors 
are placed in the middle of the drive shaft. Once the shaft has a torsional deformation, the change of 
the electrical resistance of the strain sensor can be measured by a Wheatstone bridge, which is related 
to the strain. The calibration of the strain sensor is performed by a static measurement and its relation-
ship to the torsional angle θ∆   is identified [100]. Information on sensors is given in Table 2.1. 

 

Fixed position 

Fixed position 

Friction force 

Fixed position 

Fixed position 

Friction force 
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Fig. 2.3: CAD drawing of the test rig with an idealized brake 

   

Fig. 2.4: Test rig with an idealized brake and the corresponding sensors 

Before applying an experimental investigation, modal analysis is performed [101]. The eigenfrequen-
cies and corresponding eigenmodes are presented in Table 2.2 [100]. The disk has eigenfrequencies at 
1400 Hz, 1871 Hz and 3148 Hz (with free-free boundary condition), while the L-shaped steel plate has 
eigenfrequencies at 16 Hz, 174 Hz and 300 Hz (with fix-free boundary condition). The torsional eigen-
frequency of the shaft is at 36.5 Hz (with fix-free boundary condition). Since creep groan is lower than 
500 Hz, it will be more related to the components with lower eingenfrequencies, such as the L-shaped 
steel plate and the shaft. 
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Pad 

Brake carrier 

Frame 
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Accelerometer 

Turning angle  
transmitter 
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Sensor Parameters 

Accelerometer PCB 4507 ICP accelerometers, frequency range 0.3 Hz–6 kHz, sensitivity 101.2 mV/g 

Turning angle trans-
mitter 

Power supply 5 V DC, maximum sample rate 40 kHz, resolution 14 bit 

Data acquisition 
module 

Featuring four 24-bit simultaneously sampled A/D channels, maximum sample rate 80 
kHz, and analogue anti-aliasing filter 

Table 2.1: Information of sensors 

 

 1400 Hz 1871 Hz 3148 Hz 

Disk 

   

 16 Hz 174 Hz 300 Hz 

L-shaped steel plate 

   

Shaft  36.5 Hz 

 

 

Table 2.2. Eigenfrequencies and eigenmodes of the components [100] 

 

The experiment is performed at the speed 0.2 rad/s with brake pressure 9 bar. The measured torsional 
angle and acceleration are displayed in Fig. 2.5 without creep groan, where only small vibration can be 
observed in the torsional angle and acceleration signals. Fig. 2.6 (a) and (b) show the torsional angle of 
the shaft θ∆  measured from the strain sensors on the drive shaft and its time derivative θ∆   (torsional 
velocity) during creep groan. In the experimental results, the typical stick-slip motion can be observed: 
in the stick region, θ∆   is approximately constant and θ∆  increases linearly; in the slip region, θ∆   
changes with time. The acceleration of the brake pad is given in Fig. 2.6 (c) measured from the accele-
rometer on the brake carrier. There is a large impulse when the system is shifting from stick to slip, 
which is caused by sudden change of the friction.  
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Fig. 2.5:  Torsional angle of the shaft (a) and acceleration of the pad (b) without creep groan 

 

The frequency spectra of the torsional velocity and the acceleration during creep groan are exhibited in 
Fig. 2.7 by pursuing Discrete Fast Fourier Transformation (DFFT). The spectrum of the torsional an-
gle shows a single peak at 36.25 Hz, which is the frequency of the stick-slip motion. It is noticed that 
this frequency is close to the eigenfrequency of the shaft, which implies that the shaft may be the pri-
mary part related to creep groan. The spectrum of the pad oscillation shows a lot of peaks, which are 
much higher than the frequency of the stick-slip motion, such as 146 Hz, 256 Hz and 292 Hz. These 
frequencies are approached to the eigenfrequencies of the L-shaped steel plate, which are heard felt by 
the human during creep groan. The measured frequencies are lower than the first eigenfrequency of 
the disk, so that it is possible to consider the disk as a rigid body during the study of creep groan.  
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Fig. 2.6:  Torsional angle (a) and torsional velocity (b) of the shaft and acceleration (c) of brake pad 
during creep groan 
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Fig. 2.7:  Frequency spectra of torsional velocity of the shaft (a) and acceleration of the pad (b) 

Fig. 2.8 shows the measured stick-slip limit cycles with the pressure at 5, 7, 9 and 11 bar, where its 
horizontal axis is θ∆  and the vertical axis is θ∆  . It is clear that the amplitude of the limit cycle in-
creases with the pressure. Experimental results confirm that the stick-slip happens during creep groan. 
As a result, the friction force is switched between the static and dynamic friction forces, and the vibra-
tions in the brake pad and the brake carrier are excited by the varied friction force. Creep groan is the 
resulting vibrations that can be heard or felt by humans. 

 

Fig. 2.8:  Stick-slip limit cycles under different brake pressure 

 

2.2 Test rig with a real brake  
As a comparison study, a test rig with a real brake was assembled, which constitutes the brake disk, 
the brake pads, the shaft, the caliper, the carrier and the suspension system. The brake carrier is as-
sembled on the suspension, with two brake pads fixed in it. The structure of the test rig with a real 
brake is shown in Fig. 2.9.  

Sensors are assembled in the test rig. A 3D motion and deformation sensor is used to measure the 
dynamic motion of the pad, the caliper and the carrier. The 3D motion and deformation sensor is a 
non-contact and material-independent measuring system based on digital image correlation. It offers a 
stable solution for point-based analyses of test objects of just a few millimeters in size [102]. The tor-
sional angle of the drive shaft is measured by the strain sensors, and the accelerations of the pad can be 
measured by accelerometers. Fig. 2.10 shows the positions of the sensors.  
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Fig. 2.11: In-plane displacements of the pad, the caliper and the carrier during creep groan, the arrows 
shows the relative displacement vector reference to the static position. 

Fig. 2.12 (a) and (b) shows the torsional angle θ∆  of the shaft measured from the strain sensors and 
the torsional angle velocity θ∆  , which is the time derivative of θ∆ . Compared to the measurements 
from the test rig with an idealized brake, the similar stick-slip motion can be observed at the real brake. 
The acceleration of the brake pad is given in Fig. 2.12 (c) measured from the accelerometer on the 
brake pad. Differing from the measured acceleration at the idealized brake shown in Fig. 2.6 (c), there 
are double impulse signals in one stick-slip period, which are the impulse signals from stick to slip 
transition and from slip to stick transition.  

The frequency spectra of the signals during creep groan are exhibited in Fig. 2.13 by pursuing Discrete 
Fast Fourier Transformation (DFFT). The spectrum of the torsional angular velocity shows double 
peaks, where the dominant frequency is at 30 Hz and the second frequency appears at 60 Hz. The 
double peaks indicate the nonlinear characteristic of the stick-slip motion. The spectrum of the accele-
ration of the pad is shown in Fig. 2.13 (b). Its first three peak frequencies (30 Hz, 60 Hz and 90 Hz) 
are the frequency of the stick-slip motion and its double and triple frequencies. The higher frequencies 
such as 152 Hz, 243 Hz, 366 Hz and 518 Hz are the excited vibration of the carrier by the varied fric-
tion. It is obvious that the real brake system has more high frequencies of peak than the idealized brake. 
Fig. 2.14 shows the experimental limit cycles with pressure at 4, 6, 8 and 10 bar. Comparing Fig. 2.8 
with Fig. 2.14, similar stick-slip limit cycles can be observed in both set-ups. Besides, both results 
show that the size of the limit cycle increases with the brake pressure. On the other hand, the exited 
vibrations of pads have different frequencies in different test rigs as shown in Fig. 2.7 (b) and Fig. 2.13 
(b). If a real vehicle is considered, the vibration of a chassis can also be excited by the suddenly 
changed friction during creep groan. 
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Fig. 2.12:  Torsional angle (a) and torsional velocity (b) of the shaft and acceleration of brake pad dur-
ing creep groan 
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Fig. 2.13:  Frequency spectra of torsional velocity (a) and acceleration of the pad (b) 

 

 

Fig. 2.14:  Stick-slip limit cycles under different brake pressure 

 

2.3 Summary 
In this chapter, the design of a test rig with an idealized brake and a test rig with a real brake has been 
presented. In both test rigs, creep groan was measured under low velocity with high brake pressure (>4 
bar). Compared the measured signals to the eigenfrequencies of each component, it implies that creep 
groan may relate to the shaft and brake carrier. During creep groan, stick-slip limit cycles (around 30 
Hz) as well as the vibration of the carrier (between 0~500 Hz) are measured through the strain sensor 
and accelerometer. The stick-slip limit cycles from both test rigs are qualitatively similar with each 
other, but the exited vibrations of pads have different frequencies in different test rigs. Based on the 
measurements, models considering the motion of the shaft and the carrier, as well as friction laws 
including the stick-slip effect will be studied in the following chapters. 
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3 Theoretical Investigations of Creep Groan on the Test Rig 

with an Idealized Brake 

In this chapter, different minimal models will be proposed to study creep groan. Compared to finite 
element methods with large numbers of degrees of freedom, nonlinear models with a low number of 
degrees of freedom are more convenient to study the basic excitation mechanism of creep groan. At 
first, models with Coulomb’s friction law are investigated and the stick-slip limit cycle can be simu-
lated. Subsequently, models with the bristle friction law are proposed to improve the modeling. 
Different models will be compared with each other. Parts of the results in this section have already 
been described in [31]-[33]. 

3.1 Minimal model with Coulomb’s friction law  

3.1.1 One DOF model with Coulomb’s friction law 
 

  

Fig. 3.1: Model of the test rig with an idealized brake with 1 DOF [31] 

The model of the test rig with an idealized test rig is shown in Fig. 3.1. In this test rig, the disk is con-
sidered as a rigid body and connected to the motor by the drive shaft. The pads are fixed on the frame 
through the carrier. As the disk can perform only rotation but no wobbling motion, the number of pads 
in the subsequent model is reduced from two to one without any influence on the qualitative behavior 
of the system. The drive shaft is considered as a rotational spring with stiffness kθ  and damping dθ . 
In this test rig, the stiffness of the drive shaft is much lower than the stiffness of the brake carrier. 
Therefore, only the vibration of the disk is considered for the simulation of creep groan firstly. The 
equation of motion for this one degree of freedom system is described by 

( ) ( )0 0 ,RI d k t F rθ θθ θ θ+ −Ω + −Ω = −   (3.1)  

Replace 0t θΩ −  by θ∆  

,RI d k F rθ θθ θ θ∆ + ∆ + ∆ =   (3.2)  

0tΩ   
RF

  

0tθ θ∆ = Ω −
  

,k dθ θ   

N 

θ   
θ∆   

θ   

0tΩ   
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where I is the moment of inertia of the disk; r is the radius of the point where the pad acts; kθ  and dθ  
are the stiffness and damping of the drive shaft; θ∆  is the torsional angle of the drive shaft super-
posed to the disk rotation with angle θ , θ∆  is equal to 0t θΩ − , 0Ω  is the rotating speed of motor 
which assumed as a constant, and RF  is the friction force in the contact between the disk and pad. 

In Coulomb’s friction law, if the contact surfaces are at rest relative to each other, the friction force 
works as the static friction force, which prevent any relative motion up until a threshold force. This 
threshold force is characterized by the normal force times the static friction coefficient sµ  [103]. If the 
contact surfaces are in relative motion, the friction coefficient is the dynamic friction coefficient dµ .  

sµ  is normally larger than dµ . dµ  can be described as a constant or a velocity dependent term [43], 
[58], [95], [97], [104]. For the sake of simplification, dµ  is at first assumed to be constant. The con-
tact force in the stick and slip regions is therefore given as 

( )
[ ]

0 0

0

sgn , if  (slip)
,

, , if  (stick)

R d s

R s s s

F N r r N d k

F N N N d k

θ θ

θ θ

µ θ θ µ θ θ

µ µ θ µ θ θ

 = Ω − ∆ Ω ≠ ∆ ∪ ≤ ∆ + ∆


∈ − Ω = ∆ ∩ > ∆ + ∆

  

 

 
(3.3)  

where sgn means sign function, N is normal force. Note that the force law from Eq. (3.3) is multiva-
lued, a fact that seems to contradict a unique determination of the forces between the stick and slip 
regions. However, if the force law is combined with some equations of motion of a dynamical system, 
uniqueness can be guaranteed in many cases [51], [103]. By combining the friction law with the dy-
namics of the brake system, the dynamic equation in the slip region ( 0 0r rθΩ − ∆ > ) is 

0, for  d sI d k N r N d kθ θ θ θθ θ θ µ θ µ θ θ∆ + ∆ + ∆ = Ω ≠ ∆ ∪ ≤ ∆ + ∆     (3.4)  

while the dynamic equation in the stick region is 

0 0 0,  for  st N d kθ θθ θ θ µ θ θ∆ = ∆ +Ω Ω = ∆ ∩ > ∆ + ∆   (3.5)  

The system is then a piecewise linear system. It can be analytically solved in each region. On the one 
hand, the solution in the slip region is 

( ) ( )

( ) ( )

0 1 0 2 0

2 1 0 1 2 0 0

exp ( - ) cos ( ) sin ( ) ,
2

cos ( ) sin ( ) exp ( ) ,
2 2 2

l l l e

l l l

d t t C t t C t t
I

d d dC C t t C C t t t t
I I I

θ
θ θ

θ θ θ
θ θ θ θ

θ ω ω θ

θ ω ω ω ω

 ∆ = −  − + −  + ∆    
      ∆ = − − − − − − −      
      



 

where 

2

0 2 101
1/ , = + .

2 2
, ,e d l e l

d dkk Nr
I I

C
I

C Cθ θ θ
θ θ

θ

ω µθ θ θ θ
ω

   ∆ ∆ ∆ ∆   


= − =
 

−


=   

(3.6)  

where t is current time, 0lt  is the time when the system just enters the slip region, eθ∆  is the equili-

brium position, and 0lθ∆  and 0lθ∆   are the initial torsional angle and angle velocity at time 0lt .  

On the other hand, the solution in the stick region is 
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0 0 0

0

( ) ,

,
tt tθ θ

θ

∆ = Ω − + ∆

∆ = Ω

 
(3.7)  

where 0lt  is the time when the system just enters the stick region, and 0lθ∆  is the initial torsional an-
gle at time 0lt . Eqs. (3.6) and (3.7) shows that a unique solution exists when initial conditions are 
given.  

If the brake system falls into the attractor of the stick region, its motion is described by Eq. (3.7). In 
contrast, its motion is described by Eq. (3.6) in the slip region. If the system is always switched be-
tween those two solutions, a stick-slip limit cycle can be observed as shown in Fig. 3.2, with the 
friction law shown in Fig. 3.3. In the stick region, the disk adheres to the pads, leading to the increased 
torsional angle of the drive shaft, and energy is stored in the drive shaft. In the slip region, the disk is 
separated with the pads and moves under a dynamic friction. In this region, the kinematic energy con-
verts into heat. There is a non-smooth behavior from slip to stick or from stick to slip. 

 

Fig. 3.2: Stick-slip motion 

It should be noted that the period of the stick-slip motion Tp is larger than Tn, where Tn is the harmonic 
period of the system without stick-slip (dashed line in Fig. 3.2). The period of stick-slip motion is 
equal to the stick time plus the slip time 

,p st slT T T= +  (3.8)  

Assuming that the damping of the system is ignored, the amplitude of the stick-slip limit cycle maxθ∆   
are approximately calculated as 

2
2 2 2 2 2 2 2 20

max 0 0 max 2
0

( ) , ( )s d s dN r N rθ ω µ µ θ µ µ
ω
Ω

∆ = Ω + − ∆ = + −

  , 
(3.9)  

where maxθ∆   is the amplitude of the stick-slip vibration, max max eqθ θ θ∆ = ∆ − ∆ . Then, the slip time slT  

can be calculated as 

0

0 0max

2 arcsin ,slT π
ω ωθ

 Ω
= + ∆ 

 
(3.10)  

and the stick time stT  can be expressed as 

Ω0 
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0

2 ( ) .s d
st

N rT
kθ

µ µ−
=

Ω
 

(3.11)  

As a result, the period of stick-slip motion is given as 

0

0 0 0max

2 ( ) 2 arcsin .s d
p

N rT
kθ

µ µ π
ω ωθ

 − Ω
= + + Ω ∆ 

 
(3.12)  

Therefore, some conclusions based on the simple model can be drawn as:  

• A stick-slip limit cycle can be observed during the stick-slip motion; 

• The period of the stick-slip motion is larger than the harmonic periods of the system without 
stick-slip;  

• The period of the stick-slip motion increases with increasing normal force or decreasing motor 
speed;  

• The amplitude of the stick-slip vibration increases with the normal force or the motor speed.   

The aim of the remaining part of this section is to find out the existence conditions of stick-slip mo-
tions. In nonlinear dynamics, a limit cycle is an isolated periodic solution in a self-excited system 
[104]. Therefore, the existence of a stick-slip limit cycle can be judged by: if a system leaves the stick 
region and can return to the attractor of the stick region again under isolated environment, the system 
has a stable stick-slip motion. Since Eqs. (3.6) and (3.7) are the analytical solution of the piecewise 
differentiable Eqs. (3.4) and (3.5), substituting an initial condition in the stick region into Eq. (3.6) and 
(3.7), its solution, whether a stick-slip limit cycle or equilibrium solution, can be directly obtained. 

 

 

Fig. 3.3: Friction coefficient of Coulomb’s fric-
tion law, where sµ  is assumed larger than dµ , 
and dµ  is constant, v is the relative velocity 

Fig. 3.4: Existence condition of the stick-slip 
motion, region I: without stick-slip limit cycle but 
with a stable equilibrium solution, region II: with 
stable stick-slip limit cycle and stable equilibrium 
solution 

When the damping dθ  is larger than 0, the system has always a stable equilibrium solution in the slip 
region according to Lyapunov stability theory [104]. In contrast, the conditions for the existence of the 
stick-slip limit cycle depends on the parameters such as N and 0Ω . With varied parameters, the system 
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has two regions as sketched in the Fig. 3.4, i.e. a region with stable stick-slip limit cycle and equili-
brium solution, named as region II; a region without the stick-slip limit cycle but with a stable 
equilibrium solution, named as region I. It should be noticed that in region II the system has two stable 
solutions so that the occurrence and absence of the stick-slip motion depends on its initial condition. 

It is interesting to know under which initial conditions creep groan will occur in region II. There is a 
boundary between the attractors of the equilibrium solution and that of the limit cycle. In order to find 
this boundary, a critical point is defined as ,0 ,0 0,  b e bθ θ θ∆ = ∆ ∆ = Ω  as shown in Fig. 3.5 marked with 

the red point. If a trajectory is lower than this critical point, this trajectory cannot reach the stick region 
anymore and goes to the equilibrium solution. Therefore, it is possible to find a trajectory which can 
just pass through the critical point, and this trajectory is nothing else but the boundary between two 
attractors. When the initial condition is outside the critical trajectory, the solution is the limit cycle 
solution. Otherwise, the resulting solution is the equilibrium solution. 

  

Fig. 3.5: The boundary between the attractors of the equilibrium solution and stick-slip limit cycle. 
The red point is the critical point defined as ,0 ,0 0,  b e bθ θ θ∆ = ∆ ∆ = Ω . If a given trajectory is lower 

than this point, the system cannot reach the stick region (shown with green curve). The red dash line 
shows the boundary between the attractors. 

In should be noticed that the system in the slip region has a linear behavior, and only a unique trajecto-
ry can pass through this critical point. As a result, it is possible to use negative time integration to 
calculate this trajectory based on the critical point (substituting negt t= − t into Eq. (3.6)). The critical 

trajectory is calculated as 

( )neg 1 neg 2 neg

neg 2 1 neg 1 2 neg

exp cos( ) sin( ) ,
2

exp  cos( ) sin( ) ,
2 2 2

b d d e
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( )0
neg 2 neg 01 1 1, C = , [00 , ], ,, i b i

d

t t t t tC θ
ω + +

Ω
= − ∈= ∆ = Ω  

where the calculated the critical trajectory is shown in Fig. 3.5 with the red dash line. This trajectory is 
the boundary between the attractors of the equilibrium solution and stick-slip limit cycle. 

 

3.1.2 Two DOFs model with Coulomb’s friction law 
If both the vibrations of the disk and the pad are considered in the model, the test rig with an idealized 
brake can be treated as two sub-system coupled by the friction force. There are rotating parts i.e. disk-
shaft sub-system, and non-rotating parts i.e. pad-carrier sub-system. Two pads are considered as one 
rigid body connecting to the base frame with a spring, since the two pads move simultaneously during 
creep groan. The disk is treated as a rigid body connecting to the motor with a torsional spring. If the 
system is in the slip region, the dynamics of the two sub-systems can be described as 

( )
( )

0

0

sgn ,

sgn ,

d

x x d

I d k Nr r r x

mx d x k x N r r x

θ θθ θ θ µ θ

µ θ

∆ ∆ ∆ Ω − ∆ −

+ + = Ω − ∆ −

+ + =  





  

 
(3.14)  

where m is the mass of the pad; xk  and xd  are the stiffness and damping of the carrier; x is the dis-
placement in vertical direction of the pad, the model is given in Fig. 3.6. 

  

Fig. 3.6: Model of the test rig with an idealized brake with 2 DOFs 

 

In contrast, the pad and disk are adhered with each other in the stick region, the dynamic equation is 
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(3.15)  

The system is in the stick region when the following conditions are fulfilled: The disk and pad have no 
relative motion; meanwhile the maximal static friction force is large enough to make the pad and disk 
to adhere,  

stick condition: 0 .s x xr x N mx d x k xθ µ− = ∩ ≥ + +

    (3.16)  

Otherwise, the system is in the slip region. 
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The system is a piecewise linear system. It can be separately solved in each region. In the slip region, 
the motion of the shaft and the pad are 

( ) ( )

( ) ( )

0 1 0 2 0

2 1 0 1 2 0 0
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2 2 2

l l l e
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(3.17)  
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(3.18)  

where 0lt  is the time when the system just enters in the slip region, t is the current time, and 0lθ∆ , 

0lθ∆   are the initial torsional angle and torsional velocity of the shaft at 0lt , 0lx  and 0lx  are the initial 
displacement and velocity of the pad at 0lt .  

On the other hand, the solution in the stick region can be calculated by numerical integration 

( )

0 0

0

2

0 0

0

0

1( ) ,
/

( ) ( ) , ( ) ( ) ,

/ ,

( ) ( ) ,

l l

l

x x

t t

l l
t t

t

l
t

x t d x k x k d
m I r

x t x d x x t x d x

x r

t d

θ θθ θ

τ τ τ τ

θ

θ θ τ τ θ

= − − − + ∆ + ∆
+

= + = +

∆ = Ω −

∆ = ∆ + ∆

∫ ∫

∫



 

   







 

(3.19)  

where 0lt  is the time when the system just enters in the stick region, t is the current time, and 0lθ∆ , 

0lx , 0lx  are the initial state variables at time 0lt . 
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Fig. 3.7: Stick-slip limit cycle of the shaft (a) and the pad (b) 

  

Fig. 3.8: Simulation torsional angle θ∆ (a) and torsional velocity θ∆   (b) of the disk  

  

Fig. 3.9: Acceleration of the pad (a) and friction force (b) 

Numerical simulation is carried out to study the stick-slip limit cycle of the system. The parameters of 
the system are arbitrarily chosen by the author and given in Table 3.1. A stick-slip limit cycle can be 
observed in the phase diagram θ∆   as a function of θ∆ , shown in Fig. 3.7. In order to differ the stick 
region from the slip region, the red line denotes the stick region and blue line denotes the slip region. 
One can see that there are non-smooth regions between the stick motion and slip motion in the simula-
tion results [103], [104]. The simulated torsional angle θ∆  and torsional velocity θ∆   are exhibited in 
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Fig. 3.8. The simulated acceleration of the pad x and friction force RF  are shown in Fig. 3.9. The 
advantages of the model with Coulomb’s friction law are that the stick and slip regions can be sepa-
rated clearly, and the stick and slip motion can be analyzed separately. The disadvantage is that the 
non-smooth problem appears between the stick and slip regions. The non-smooth nature of Coulomb’s 
model makes the difficulty of the numerical integration. Therefore, instead of Coulomb’s friction law, 
the bristle friction law will be studied in the later section to improve the simulation results. 

 

Parameters  Values Parameters Values 

I 1kgm2 m 0.1kg 

kθ 100 Nm kx 1000 N/m 

dθ 1 Nms dx 10 Ns/m 

sµ  0.3 r 1 m 

dµ  0.35 N 5 N 

0Ω  0.01 rad/s   

Table 3.1: Parameters of the system 

 

If the damping of the drive shaft is increased to 0.4 Nms and the damping of the carrier is decreased to 
0.01 Ns/m, different things will happen as shown in Fig. 3.10. Fig. 3.10 (a) shows the friction force 
and (b) shows the stick-slip limit cycle of the pad. It is noticed that the stick-slip limit cycle is related 
to the damping of the system. If the damping of the shaft is low, a stick-slip limit cycle is observed in 
the disk-shaft sub-system. In contrast, if the damping of the carrier is low, the stick-slip limit cycle is 
obtained in the pad-carrier sub-system.  

  

Fig. 3.10: Friction force (a), stick-slip limit cycle of the pad (b) with 0.4 Nmsdθ = , 0.01 Ns/mxd =  
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3.2 Minimal model with the bristle friction law  
Even though the model with Coulomb’s friction law can help us to understand the mechanism of the 
stick-slip motion, it is too simple to explain several effects of creep groan in a brake system. In order 
to make our simulation close to the experimental results, the bristle friction law is chosen for modeling 
creep groan in this section [67]-[70]. 

 

Fig. 3.11: Model of the brake test rig with an idealized brake with the bristle friction law 

3.2.1 One DOF model with the bristle friction law 
The model of the test rig is given in Fig. 3.11. The disk is considered as a rigid body and connected 
with the motor by the drive shaft, while the drive shaft is considered as a rotational spring. This model 
and corresponding simulation results compared with the experimental results have been published in 
[32]. At first, only the vibration of the disk is considered in the model. The equation of motion of the 
one degree of freedom system is described by 

,RI d k F rθ θθ θ θ∆ + ∆ + ∆ = 

 
(3.20)  

where I is the moment of inertia of the disk; r is the radius of the point where the pad acts; kθ  and dθ 
are the stiffness and damping of the drive shaft; ∆θ is the torsional angle of the drive shaft superposed 
to the disk rotation with angle θ , θ∆  is equal to 0t θΩ − , 0Ω  is the rotating speed of motor, and RF  
is the friction force in the contact between the disk and pad. 

The bristle friction law, which is proposed by Canudas de Wit et al. [67]-[70], is used to calculate RF . 
This theory is based on the imagination that two rigid bodies are in contact through visco-elastic bris-
tle surfaces. When a tangential force is applied, the bristles will deflect like springs which give rise to 
the friction force. If the force is sufficiently large to make some of the bristles deflect then slip occurs. 
The dynamic friction force can be expressed as 

0 1 ,RF z zσ σ= +   (3.21)  

where z is the average deflection of the bristles, 0σ  is their stiffness, 1σ  is their damping, and z is a 

nonlinear function of θ∆   and z 
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Here 0g  is given as 
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(3.23)  

where vs is the Stribeck velocity, N is the brake normal force, sµ  is the static friction coefficient, dµ  is 
the dynamic friction coefficient, α is an empirical parameter which can be measured in experiments. 
The value α = 1 is suggested for the dry contact while α = 2 is preferred for the lubrication contact 
[105]. The friction coefficients for α = 1 and α = 2 are given in Fig. 3.12. 

  

Fig. 3.12: Friction coefficient of α =1 and α =2, v is the relative velocity 

This bristle friction law can describe pre-sliding and hysteresis characteristics of friction. The com-
plete dynamic equations can be written as a set of first order differential equations 
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(3.24)  

where Y  is the vector of state variables of the system. The equilibrium solution of Eq. (3.24) is ex-
pressed as 
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Linearizing Eq. (3.24) about its equilibrium position 
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In the case of α = 1 
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and in the case of α = 2 
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where A is the corresponding system matrix. The stability of the equilibrium solution can be obtained 
by analyzing the eigenvalues of A. If the real parts of all eigenvalues are negative, the equilibrium 
solution is asymptotically stable. If any of the real parts of eigenvalues is positive, the equilibrium 
solution is unstable, and the solution will show increasing amplitudes. On the other hand, the limit 
cycle of Eq. (3.24) can be determined by transient analysis using numerical integration. 

    

Fig. 3.13: Three regions and the possible phase plots with variation of driving speed (a) α =1, (b) α = 
2, the red line is the maximum real part of eigenvalues of the equilibrium solution, and the blue line 
gives the amplitude of the stick-slip limit cycle. 

In the following, possible parameter regions of solutions of the system are discussed qualitatively. 
According to the existence conditions of the stick-slip limit cycle and the stability of the equilibrium 
solution, the system shows three different regions with different types of solutions. When the system 
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has no stick-slip limit cycle and has a stable equilibrium solution, creep groan cannot occur in this 
parameter region which is labeled as region I. When the system has a stable stick-slip limit cycle and 
stable equilibrium solution (and an unstable limit cycle solution in between), the system may have 
creep groan or not, which depends on its initial conditions. This region is labeled as region II. When 
the system has a stable stick-slip limit cycle and an unstable equilibrium solution, creep groan will 
always occur and this region is labeled as region III. Fig. 3.13 exhibits the three regions qualitatively 
and the possible phase plots with the variation of the motor speed, where the red line is the maximum 
real part of eigenvalues of the equilibrium solution, and the blue line gives the amplitude of the stick-
slip limit cycle. With the increase of driving speed, the system for α = 1 goes through region III, II and 
I, respectively, while the system for α = 2 goes through region II, III, II and I, respectively.  

If the driving speed and brake pressure are both varied, the three parameter regions I-III are qualita-
tively sketched in Fig. 3.14. The distribution of parameter regions are named as map of creep groan, 
since it can show the condition of generating creep groan. The boundary between regions II and III is 
defined as a curve, where the largest real part of the eigenvalues of the system matrix A is equal to 0. 
The way to determine the boundary between regions I and II is given as follows: For varying brake 
pressure and speed, the solution of the nonlinear system can be calculated by a numerical time integra-
tion of Eq. (3.24) with initial conditions in the stick region. If the solution is still the stick-slip limit 
cycle after a while, the stick-slip limit cycle is considered to exist and be stable. In addition, its equili-
brium solution is asymptotically stable and the system is in region II. If the solution converges to the 
equilibrium solution, a stable stick-slip limit cycle is considered not to exist, i.e. the system is in re-
gion I. By varying the brake pressure and driving speed, the regions I and II, as well as the boundary 
between them can be determined.  

  

 

Fig. 3.14: Map of creep groan, (a) α = 1, (b) α = 2, region I: the system has no stick-slip limit cycle 
and has a stable equilibrium solution; region II: the system has a stable stick-slip limit cycle and stable 
equilibrium solution; region III: the system has a stable stick-slip limit cycle and an unstable equili-
brium solution 

There are some differences between the cases α = 1 and α = 2. For the case α = 2, the system is under 
region II with very low velocity, which is not the case when α = 1. This difference is shown in Fig. 
3.14. The stable equilibrium solution and the stick-slip limit cycle solution in regions I to III are 
sketched in Fig. 3.15 for α = 1 and in Fig. 3.16 for α = 2. Simulation results prove that the stable equi-
librium solution and the stick-slip limit cycle solution exist simultaneously in region II. In region I, 
even though the initial condition is in the stick region, the system returns the equilibrium solution after 
finite time. In region III, even though the initial condition is in the equilibrium solution, the amplitude 
of the system increases until it reaches the stick-slip limit cycle. The limit cycles are similar with each 
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other in the cases of α = 1 and α = 2. According to the experimental results shown in the chapter 5, α = 
1 is a more reasonable choice for our test rig. For the later modeling, only α = 1 is considered. 

The map of creep groan indicates the necessary conditions for generating creep groan, which can be 
used to evaluate the brake system with respect to creep groan. If the area of regions II and III is large, 
the brake system has a high probability to show creep groan, and vice versa.  

Compared to the system with Coulomb’s friction law, the system using the bristle friction law has an 
additional region, i.e. region III. Besides, since the pre-sliding effect includes in the bristle friction law, 
there is no sudden change between the stick region and slip region anymore.  

 

 

 

 

 

 

Fig. 3.15: Equilibrium solution and the stick-slip limit cycle solution α = 1 

 

 

 

 

 

 

Fig. 3.16: Equilibrium solution and the stick-slip limit cycle solution α = 2 

In the following part of this section, the bifurcation behavior of the system will be studied. Fig. 3.14 
already shows the bifurcation behavior, and its property will be further studied by analytical method in 
this part. In order to simplify the analysis, it is assumed that 0σ  is approximate to infinite and z  is 
approximate to 0, Eqs. (3.20)-(3.23) can be written as in slip region and stick region separately. In the 
slip region, the dynamic equation is given as 
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(3.26)  

In the stick region, the disk will stick with the pad and the friction force between [ ],s sN Nµ µ− +  will 

balance the force of the torsional spring. 

θ∆  [rad] 
 

θ∆  [rad] 
 

θ∆  [rad] 
 

0 =0.05 rad sΩ  0 =0.03 rad sΩ  0 =0.015 rad sΩ  

θ∆  [rad] 
 

[ ]rad s
θ∆   

θ∆  [rad] θ∆  [rad] 

0 =0.05 rad sΩ  0 =0.03 rad sΩ  0 =0.01 rad sΩ  

[ ]rad s
θ∆   

[ ]rad s
θ∆   

[ ]rad s
θ∆   [ ]rad s

θ∆   
[ ]rad s

θ∆   



 
 

34 

At first, the analytical study is given in the slip region. A similar case has been studied by Hetzler et al. 
in [95] with the same method. By introducing the coordinate transformation 

( )( )0
1 exp /d srN r v
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0 0( )exp exp .
s s

d k r rrN rN
I I I v I v
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(3.27)  

Rewriting Eq. (3.27) into 
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Then, with the assumptions 2
0 1Dω   and 1γ  , the state variables can be described by sine or cosine 

functions approximately 
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(3.29)  

where S denotes sine function and C denotes cosine function. Eq. (3.29) can be interpreted as the 
transformation to polar coordinate from state space. Substituting Eq. (3.29) into Eq. (3.28) 

( )2 2
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   (3.30)  

The right-hand side of the equation can be written as 

( )2
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According to the slowly changed amplitude and phase method [104], the amplitude is obtained by 
averaging f over one period  
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(3.32)  

where .  denotes the average of a function over one period. In order to calculate A′ , Eq. (3.32) is 

rewritten as a series representation of the exponential functions, yielding 
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As a result, a constant A can be calculated with A’=0 
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(3.34)  

It is obvious that A = 0 is one of the solutions in the system, which is the equilibrium solution. Another 
approximate solution, which is the limit cycle solution, has been calculated by Hetzler et al. in [95] by 
chosen k as 1 and 2 (3rd order approximation). Here, it is possible to get a better approximate result 
with high orders approximation 
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(3.35)  

In order to distinguish the stick-slip limit cycle, the no zero solution of Eq. (3.35) is called slip limit 
cycle, since it occurs in slip region. Hetzler et al. [95] provided that this solution is an unstable limit 
cycle.  

If stick-slip occurs in the system, by assuming the system with low damping, the amplitude to the 
stick-slip limit cycle can be calculated as 

( )
2 20

max 0( ) .s d
I N r d
k θ
θ

θ µ µ
Ω

∆ = + − − Ω  
(3.36)  

Fig. 3.17 shows the equilibrium solution, stick-slip limit cycle and slip limit cycle with different order 
approximation. In this figure, regions I, II and III are calculated by numerical integration. The boun-
dary between regions II and III is coincided with the Hopf-bifurcation. With increasing of the speed, 
the amplitude of stick-slip limit cycle will go across that of the slip limit cycle. By increasing the order 
of approximation, the cross point will be approximate to the boundary between regions II and I. There-
fore, it is possible to use this cross point to determine the boundary between regions II and I. 

In region II, the slip limit cycle is nothing else than the boundary between the attractors of the stick-
slip limit cycle and the equilibrium solution, shown in Fig. 3.18 (a). When the initial condition lies 
inside of the slip limit cycle, the system goes to an equilibrium solution. When the initial condition lies 
outside the slip limit cycle, the amplitude of the system will increase until it reaches the stick region 
[95]. 
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Fig. 3.17: Amplitude of stick-slip limit cycle and slip limit cycle with 3rd, 5th, 7th, 9th and 11th order 
approximation, the red points are the boundaries between regions I, II and III calculated by the numer-
ical integration 

 

  

 

  

Fig. 3.18: (a) Equilibrium solution, slip limit cycle solution and stick-slip limit cycle solution in re-
gion II. (b) The system has no stick-slip limit cycle when the amplitude of slip limit cycle is larger 
than that of the stick-slip limit cycle. 

At a critical speed, the amplitude of stick-slip limit cycle and that of the slip limit cycle go across with 
each other. It is interesting to know the physical meaning of this cross point. When the stick-slip limit 
cycle is larger than the slip limit cycle, the system will always have stick-slip motion if the initial con-
dition is given in the stick region. Therefore, the stick-slip limit cycle larger than the slip limit cycle is 
a condition that a system has a stick-slip limit cycle. Fig. 3.18 (b) shows that the stick-slip will not 
happen when the amplitude of the slip limit cycle is larger than that of the stick-slip limit cycle. There-
fore, it is possible to use this cross point to approximate the boundary between regions I and II. 

If the order of approximation is chosen as 5, the amplitude of the slip limit cycle can be calculated 
through Eq. (3.35) 
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Making the amplitude of the slip limit cycle to be equal to that of the stick-slip limit cycle, i.e. substi-
tuting Eq. (3.36) into Eq. (3.37), it is obtained that 
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(3.38)  

By solving this equation, the boundary between regions I and II can be approximately solved. The map 
of creep groan obtained with analytical method is given in Fig. 3.19 (a). On the other hand, the map 
can also be solved by numerical integration as shown in Fig. 3.19 (b). The error between the analytical 
and the numerical maps increases with the brake force. In the following parts of this thesis, all maps 
are obtained through numerical analysis to guarantee the accuracy. 

  

 

Fig. 3.19: Map of creep groan calculated by the analytical method (a), and the numerical method (b) 

3.2.2 Two DOFs model with the bristle friction law 
In order to study the noise generation of creep groan, the vibration of the pad should also be consi-
dered. The brake system consists of rotating parts i.e. disk-shaft sub-system and non-rotating parts i.e. 
pad-carrier sub-system. This model and corresponding simulation results compared with the experi-
mental results are also described in [33]. The dynamics of the two sub-systems can be described by 
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(3.39)  

where m is the mass of the pad; kx and dx are the stiffness and damping of the carrier; x is the dis-
placement in vertical direction of the pad. 

Suppose that two rigid bodies are in contact with the elastic bristle surfaces [67] and the friction force 
FR is generated by the deformation of the bristle. The dynamic friction force RF   can in general be 
expressed as 

0 1 ,RF z zσ σ= +   (3.40)  

and z is a nonlinear function of θ∆  , x and z 
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where  g0 is a scale which includes the Stribeck effect. Here g0 is given as 
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The complete dynamic equations can be written as a set of first order differential equations 
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(3.43)  

where Y is the vector of state variables of the system.  

Numerical simulation is carried out to study the stick-slip limit cycle of the system. The system para-
meters are arbitrarily chosen by the author and given in Table 3.2. A stick-slip limit cycle can be 
observed in the torsional angle in Fig. 3.20. This limit cycle is qualitatively similar to the limit cycle 
shown in Fig. 3.10 but without non-smooth part, so that it can describe the experimental results better. 
The pre-sliding effect between the stick region and slip region can be observed in the simulated result. 
The simulated torsional angle and torsional velocity are exhibited in Fig. 3.21. Besides, the accelera-
tion of the pad and the friction force are shown in Fig. 3.22. In the stick region, the friction force 
increases linearly, while in the slip region the friction force is almost constant. 

 

Parameters Values Parameters Values 

I 1kgm2 m 0.1kg 

kθ 100 Nm kx 1000 N/m 

dθ 1 Nms dx 10 Ns/m 

sµ  0.3 vs 0.005 m/s 

dµ  0.35 σ0 50000 N/m 

r 1 m σ1 100 Ns/m 

N 5 N 0Ω  0.01 rad/s 

Table 3.2: Parameters of the system 



 
 

39 

 

  

Fig. 3.20: Limit cycle of the drive shaft (a), and the pad (b) 

  

Fig. 3.21: Torsional angle θ∆  (a) and torsional velocity of the shaft θ∆   (b)  

  

 

Fig. 3.22: Acceleration of the pad (a) and friction force (b) during the stick-slip motion  

In the following, the stability of the system is analyzed. The equilibrium position of Eq. (3.43) is ex-
pressed as 
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Linearizing Eq. (3.43) under its equilibrium position 
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where A is the corresponding system matrix. The stability of the equilibrium solution can be analyzed 
by the eigenvalues of A. If the real parts of all eigenvalues are negative, the equilibrium solution is 
asymptotically stable. If any of the real parts of eigenvalues is positive, the equilibrium solution is 
unstable, and the solution will show increasing amplitudes. The stick-slip limit cycle of Eq. (3.43) can 
be determined by transient analysis using numerical integration.  

Three different regions with different types of solutions are shown in Fig. 3.23. The white region is 
region I, where the system has no stick-slip limit cycle and has a stable equilibrium solution. The 
green region represents region II, where the system has a stable stick-slip limit cycle and a stable equi-
librium solution. The yellow region denotes region III, where the system has a stable stick-slip limit 
cycle and an unstable equilibrium solution.  
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Fig. 3.23:  Map of creep groan 

Two simulations are given to explain the map of creep groan. At first, the normal force is increased 
from 0 N to 10 N under a constant driving speed. Simulation results are shown in Fig. 3.24 (a), where 

the blue line presents the vibration of the torsional angle ( eqθ θ θ∆ = ∆ − ∆ ) and the red line denotes the 

normal force. It can be seen that the stick-slip motion occurs when the normal brake force is larger 
than a critical force Nc23. The reason is that the stick-slip limit cycle is the only stable solution when 
the system is in region III. The amplitude of the stick-slip vibration increases with the brake force. 
After that, the normal brake force is decreased from 10 N to 0 N. The stick-slip vibration will always 
exist until the normal brake force is lower than another critical force Nc12. The stick-slip vibration will 
vanish since the stick-slip solution does not exist in region I.  Nc23 is larger than Nc12, this can confirm 
the existence of region II. The critical forces obtained by the simulation with the continuously changed 
normal force are the same with the critical forces read from the map in Fig. 3.23. By applying short 
time Fourier transformation (using Hamming window with window size 6.2s) to the simulated torsion-
al angle, the frequency of the stick-slip motion decreases with the brake force, shown in Fig. 3.24 (b). 

Then, the driving speed is increased slowly under a constant brake normal force. The simulation re-
sults show in Fig. 3.25. At the beginning, the system is under low speed and in region III, the stick-slip 
limit cycle is the only stable solution of the system. The stick-slip motion exists until the speed is larg-
er than a critical speed Ωc12. When the speed is larger than Ωc12, the stick-slip motion does not exist 
and the system will return to the equilibrium solution (in region I). After that, the speed is decreased 
slowly. The stick-slip motion appears once again when the speed is lower than a critical speed Ωc23, 
which is smaller than Ωc12. By applying short time Fourier transformation to the simulated torsional 
angle, it is clear that the frequency of the stick-slip motion increases with the speed, and approaches to 
the eigenfrequency of the system before the critical speed Ωc12 is reached. 
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Fig. 3.24: The stick-slip vibration with increasing and decreasing normal brake force (a) and their short 
time Fourier transformation using Hamming window with window size 6.3s, where bright color means 
the frequency with large amplitude (b) 

              

 

Fig. 3.25: The stick-slip vibration with increasing and decreasing motor speed (a) and their short time 
Fourier transformation using Hamming window with window size 6.3s (b) 

Time [s] 
(b) 

 

Fr
eq

ue
nc

y 
[H

z]
 

Time [s] 
(b) 

Fr
eq

ue
nc

y 
[H

z]
 

Time [s] 
(a) 

θ∆   
[rad] 

Time [s] 
(a) 

θ∆   
[rad] 

Ω0 

[rad/s] 

N 
[N] 



 
 

43 

3.3 Summary 
In this chapter, different friction laws i.e. Coulomb’s friction law and the bristle friction law are used 
to simulate creep groan of the test rig with an idealized brake. The disk is considered as a rigid body 
connected to the motor with a rotational spring. The two pads are treated as one rigid body connected 
to the based frame through a linear spring. The stick-slip limit cycle is firstly obtained by coupling the 
system model with Coulomb’s friction law, in which the static friction coefficient is larger than the 
dynamic friction coefficient. However, the non-smooth characteristic appears between the stick and 
slip regions due to the switch function in Coulomb’s friction law. As an improvement of the modeling, 
the bristle friction law, including the Stribeck velocity, pre-sliding effect and hysteresis, is used to 
describe the friction between the contact surfaces.  

According to the stability of the equilibrium solution and existence of the stick-slip limit cycle, the 
system with Coulomb’s friction has two parameters regions. A region with a stable equilibrium solu-
tion and no stick-slip limit cycle named as region I and a region with a stable equilibrium solution and 
a stick-slip limit cycle named as region II. In contrast, the model with the bristle friction law has three 
parameter regions. Except for regions I and II, there is an additional region with unstable equilibrium 
solution and a stable stick-slip limit cycle, which is named as region III. Table 3.3 exhibits the limit 
cycles and parameter regions of the system with different friction laws. Since different friction laws 
lead to different dynamic characteristics, one should be careful to choose the suitable friction law to 
describe creep groan of brake system. 
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4 Comparison study of experimental and theoretical results on 

the idealized brake  

In this chapter, the parameters of the models with different friction laws will be identified. Then, the 
simulation will be quantitatively compared with the experimental results, which are measured from the 
test rig with an idealized brake. A friction observer will be designed at the end, to show an alternative 
way to obtain the friction force. 

4.1 Parameter identification for the system with Coulomb’s friction law 
Considering the two DOFs model with Coulomb’s friction law, the dynamic equations are given in 
Eqs. (3.14) and (3.15). Due to the simple structure of the test rig with an idealized brake, its parame-
ters are easy to identify compared to the test rig with a real brake. The unknown parameters of the test 
rig with an idealized brake include the mass of the disk and pads, the stiffness, the damping of the 
shaft and the carrier, as well as the static and dynamic friction coefficients. The mass of the disk and 
the brake pads is measured by a weighing device. The stiffness and damping of the drive shaft and the 
carrier can be measured through modal analysis. The measured parameters are given in Table 4.1.  

Parameters Values Parameters Values 

I 0.2025 kgm2 kx 69.87 10 N/m⋅   

kθ 41.036 10 Nm⋅  dx 33 10 Ns/m⋅  

dθ 2 Nms r 0.15 m 

Table 4.1: Parameters of the system 

 

However, the static and dynamic friction coefficients cannot be directly measured. There is a simple 
way to identify those parameters from the measured stick-slip limit cycle. Assume that the system has 
low damping ratio, the shape of the limit cycle will be approximately symmetrical. As a result, the 
displacement during the stick region is approximate to 2 ( ) /s dNr kθµ µ− , and the symmetrical axis of 
the limit cycle lies in /dNr kθµ , shown in Fig. 4.1. Therefore, it is possible to measure the displace-
ment of the stick region in the limit cycle and calculate the corresponding static and dynamic friction 
coefficients 

2 1

2 1
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s d
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µ µ θ θ
µ θ θ

− = ∆ − ∆
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(4.1)  

where 1θ∆  is the torsional angle when the system just enters the stick region, 2θ∆  is the torsional 
angle when the system leaves the stick region.  
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Fig. 4.1: Identification of the friction characteristic according to the limit cycle, 1θ∆  is the torsional 
angle when the system just enters the stick region, 2θ∆  is the torsional angle when the system leaves 
the stick region 

According to Eq. (4.1), dµ is equal to 0.325, s dµ µ−  is equal to 0.0125. With the parameters to hand, 
the torsional angle, torsional velocity as well as the friction force can be calculated through Eqs. (3.14) 
and (3.15). Fig. 4.2 shows the measured and simulated torsional angle and torsional velocity of the 
drive shaft, where the simulated results are presented with the red line and the experimental results are 
plotted with the blue line. The simulated acceleration of the brake pad is presented in Fig. 4.3 (a). A 
large impulse appears when the system converts to the slip region from the stick region due to the 
sudden change of the friction force as shown in Fig. 4.3 (b).  

  

Fig. 4.2:  Experimental and simulation torsional angle (a) and torsional velocity (b) of the shaft 
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Fig. 4.3:  Simulated acceleration of the pad (a) and friction force (b)  

4.2 Parameter identification for the system with the bristle friction law 
Parts of the experimental results in this section have already been described in [32], [33]. In order to 
describe the dynamic behaviors of the friction force, the bristle friction law is used to describe the 
friction contact between the pads and disk. Five parameters are employed to describe the friction force, 
in term of the static friction coefficient, the dynamic friction coefficient, the Stribeck velocity, the 
contact stiffness and the contact damping. Since they are difficult to measure, it is possible to estimate 
them through some parameter identification techniques. An objective function is identified by compar-
ing the experimental results with the simulation results, which is defined as 

2 2 2 2
exp, sim, 0 exp, sim,

1 1
( ) ( ) +( ) ,

n n

i i i i i
i i

W X e θ θ ω θ θ
= =

= = ∆ − ∆ ∆ − ∆∑ ∑     
(4.2)  

where i is the subscript of the sample points from 1 to n, n is maximal sample number, exp,iθ∆  and 

sim,iθ∆  are the measured and simulated torsional angles, exp,iθ∆   and sim,iθ∆   are the corresponding tor-

sional velocities, 2
0 /k Iθω = . The objective function approaching the minimum value means that the 

simulation results have the best fit to the experimental results. The sim,iθ∆  is calculated by Eq. (3.43) 

with given initial conditions in the stick region 
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0 exp,0 0 exp,0 0 0 0

0
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k k
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θ θθ θ

θ θ θ θ
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∆ ∆
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(4.3)   

Classical optimization methods (such as gradient-based algorithms) are normally suitable for the pa-
rameter identification of a linear model [106]. The bristle friction model has high nonlinear 
characteristics and its optimization problem is not convex. Therefore, a binary genetic algorithm is 
used to find the minimum value of the objective function W(X). A genetic algorithm is a metaheuristic 
inspired by the process of natural selection, which is commonly used to generate high-quality solu-
tions to optimization problems by relying on bio-inspired operators such as mutation, crossover and 
selection. The genetic algorithm has the advantage to find the global minimum of non-convex optimi-
zation problems. The algorithm is given in the MATLAB genetic algorithm toolbox with its 
parameters shown in Table 4.2. After 200 generations, the objective function approaches the minimum 
value, and the optimized parameters are presented in Table 4.3. Fig. 4.4 shows the values of parame-
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ters and the value of the objective function over each generation. In order to present the parameters 
with different physical units in one figure, they have been divided by their maximum optimal boun-
dary. Once the parameters are obtained, the experimental and simulation results are compared with 
each other. Fig. 4.5 shows the measured and simulated torsional angle and torsional velocity of the 
drive shaft, while the simulated acceleration of the brake pads and the simulated friction force are 
presented in Fig. 4.6. When the system converts to the slip region from the stick region, a large im-
pulse appears. Meanwhile, the simulated friction force changes suddenly.  

 

Parameters Values Parameters Values 

Maximum generations number 200 Generation gap 0.8 

Numbers of individual 10 Mutation probability 0.7 

Table 4.2: Parameters of the genetic algorithm 

 

Parameters Values Parameters Values 

dµ  0.325 σ1 53.84 10 Ns/m⋅  

s dµ µ−  0.009 vs 0.025 m/s 

σ0 83.97 10 N/m⋅    

Table 4.3: Parameters of the friction law 

 

           

Fig. 4.4: Paramter values (a) and the value of W(X) (b) in each generation 

Fig. 4.7 exhibits the simulated stick-slip limit cycle by Coulomb’s friction law compared to experi-
mental results, while Fig. 4.8 exhibits the simulated stick-slip limit cycle by the bristle friction law 
compared to experimental results. Both simulated limit cycles are coincided with the measured limit 
cycle. It is clear that both friction laws have the ability to describe the stick-slip limit cycle [67], [68]. 
However, the bristle friction law can describe the pre-sliding effect between the stick and slip regions. 
In the later discussion, it can be found that the unstable equilibrium solution of the system under low 
speed will show up if the bristle friction law is used. 
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Fig. 4.5: Torsional angle (a) and torsional velocity (b) of the shaft 

                

 

Fig. 4.6: Acceleration of the brake pads (a), and the simulated friction force (b). 

       

Fig. 4.7: Simulated stick-slip limit cycle by Cou-
lomb’s friction law compared to experiments 

Fig. 4.8: Simulated stick-slip limit cycle by the 
bristle friction law compared to experiments 

With the identified parameters of the system, the map of creep groan can be calculated through the 
method proposed in section 3.2, shown in Fig. 4.9, whose horizontal axis is the driving speed and the 
vertical axis is the brake pressure which is proportional to the brake normal force. According to the 
analysis of section 3.2, the system has three parameter regions if the bristle friction law is used. Re-
gion I means that the system has a stable equilibrium solution but no stick-slip limit cycle. Region II 
means that the system has a stable stick-slip limit cycle and equilibrium solution (and an unstable limit 
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cycle solution in between). Region III means that the system has a stable stick-slip limit cycle and an 
unstable equilibrium solution.  

This map can be used to study creep groan during the accelerating and decelerating processes. If the 
operation starts with parameters in region III, creep groan must occur, as the limit cycle is the only 
stable solution. If then the parameter region of type II is entered from region III (i.e. with creep groan), 
creep groan will proceed until region I is entered. This is usually the case when the vehicle is accele-
rating. Different things will happen if the vehicle is decelerating. In region I the silent solution without 
creep groan is the only stable solution. The system will stay in the attractor of the silent solution when 
entering region II from region I and no creep groan occurs. Creep groan will then occur unless region 
III is entered.  

 

Fig. 4.9:  Map of creep groan with identified parameters, the red points represent the measured boun-
dary points between regions II and III, while the blue points represent the measured boundary points 
between regions I and II  

Experiments are carried out to confirm the existence of the different critical conditions of creep groan 
during accelerating and decelerating of a vehicle, and the approach is shown in Fig. 4.9 with the solid 
line. The brake pressure is constant (8 bar) and the driving speed of the motor is varied. Corresponding 
experimental results are shown in Fig. 4.10. The red line describes the driving speed, while the blue 

line presents the torsional vibration angle θ∆   ( eqθ θ θ∆ = ∆ − ∆ ) of the drive shaft. The torsional vi-

bration of the drive shaft becomes large when creep groan appears. At first, the speed is slowly 
increased from 0 rad/s to 0.7 rad/s, the system has creep groan at low speed, but creep groan disap-
pears when the speed is higher than a critical speed Ωc12 (0.62 rad/s, marked with a red point in Fig. 
4.9). After that, the speed is slowly decreased from 0.7 rad/s. Creep groan doesn’t occur at high speed 
and appears when the speed is lower than another critical pressure Ωc23 (0.42 rad/s, marked with a blue 
point in Fig. 4.9). Therefore, the both critical speeds during accelerating and decelerating are found out, 
and the measured critical speeds are near the simulated boundary of regions. The difference between 
these two limit speeds in fact proofs the existence of region II with both stable equilibrium solution 
and limit cycle. 
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Fig. 4.11 shows the equilibrium solution and the limit cycle of the brake system with different speeds 

in the phase plot with θ∆   as a function of θ∆  . When the driving speed is higher than Ωc12, only the 
equilibrium solution can be measured both in the accelerating and decelerating process, meaning that 
the system is in region I and creep groan cannot occur. When the speed is lower than Ωc23, creep groan 
is measured in both processes, meaning that the system is in region III and creep groan always occurs 
in this region. When the speed is higher than Ωc23 but lower than Ωc12, creep groan is measured in the 
accelerating process, but not in the decelerating process, meaning that the system is in region II. In the 
decelerating process, the system begins with the equilibrium solution and stays in the attractor of the 
stable equilibrium solution. In the accelerating process, the system begins with the stick-slip state, and 
the system is in the attractor of the stable limit cycle. Therefore, experiments demonstrated the exis-
tence of the three regions. 

            

Fig. 4.10: Torsional vibration angle with variation of the speed of the motor, the red and blue points 
represent the measured boundary speeds 

 

   

Fig. 4.11: The equilibrium solution and the stick-slip limit cycle with different speeds, (a) in region I, 
(b) in region II with coexistence of the stable equilibrium solution and limit cycle, (c) in region III 

 

Another possibility to show the existence of the three regions is to keep the constant driving speed but 
vary the brake pressure. Here, the alternative approach is shown in Fig. 4.9 with the dotted line, where 
the driving speed of the motor is constant (0.2 rad/s) and the brake pressure varies. Corresponding 
experimental results are shown in Fig. 4.12. The red line describes the brake pressure, while the blue 
line presents the torsional vibration angle θ∆   of the drive shaft. At first, the brake pressure is slowly 
increased from 0 bar to 5 bar, the system has no creep groan at low pressure, but creep groan occurs 
when the pressure is higher than a critical pressure 23cp  (2.9 bar, marked with a red point in Fig. 4.9). 
After that, the pressure is slowly decreased from 5 bar to 0 bar. Creep groan occurs at high pressure 
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and disappears when the pressure is lower than another critical pressure 12cp  (2.3 bar, marked with a 
blue point in Fig. 4.9). It should be noticed that the measured critical pressure are around the simulated 
boundary between regions. The difference between these two critical pressure values also proofs the 
existence of region II with both stable equilibrium solution and limit cycle. Fig. 4.13 shows the equili-
brium solution and the limit cycle of the brake system under different pressure in the phase plot with 

θ∆   as a function of θ∆  . When the pressure is lower than 12cp , only the equilibrium solution can be 
measured in both the pressure-increasing and pressure-decreasing processes, meaning that the system 
is in region I. When the pressure is higher than 23cp , creep groan is measured in both processes, mean-
ing that the system is in region III. When the pressure is lower than 23cp  but higher than 12cp , creep 
groan is measured in the pressure-decreasing process but not in the pressure-increasing process, mean-
ing that the system is in region II. In the pressure-increasing process, the system is in the attractor of 
the stable equilibrium solution, so that creep groan doesn’t appear. In contrast, the system is in the 
attractor of the stable limit cycle and creep groan occurs.  

           

Fig. 4.12: Torsional vibration angle with variation of the brake pressure, the red and blue points 
represent the measured boundary pressure 

 

   

Fig. 4.13: The equilibrium solution and the stick-slip limit cycle with different pressure, (a) in region I, 
(b) in region II with coexistence of the stable equilibrium solution and limit cycle, (c) in region III 

During the pressure-increasing process, the amplitude of the torsional angle increases with the brake 
pressure, shown in Fig. 4.14 (a). By applying short time Fourier transformation (SFFT) (using Ham-

ming window with window size 0.5s) of θ∆  , one can see that the frequency of the stick-slip motion 
decreases with increasing of the brake pressure, shown in Fig. 4.14 (b). Meanwhile, the amplitude of 
the acceleration of the pad x increases with the brake pressure, shown in Fig. 4.14 (c). The reason is 
that the acceleration of the pad is proportional to the difference between static and dynamic friction 
forces, as well as the brake pressure. The SFFT of x is presented in Fig. 4.14 (d). If the brake pressure 
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is large enough, some high frequency vibration of the carrier can be excited. For the low brake pres-
sure, the frequency of peak appears at 200 Hz, while an additional peak frequency at 900 Hz appears 
when the brake pressure is larger than 6 bar. 

              

 

                

 

Fig. 4.14:  Measured signals during pressure-increasing process, (a) vibration of the torsional angle 

θ∆  , (b) SFFT of θ∆  , (c) acceleration of the pad x, (d) SFFT of x. 
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Similarly, the amplitude of the torsional angle increases with the speed, shown in Fig. 4.15 (a). The 
frequency of the stick-slip motion increases with the driving speed, and approaches the eigenfrequency 
of the shaft at high speed, expressed in Fig. 4.15 (b). Fig. 4.15 (c) shows that the amplitude of the 
acceleration of the pad, which is less influenced by the speed, since the brake pressure is constant. The 
SFFT of x is presented in Fig. 4.15 (d). The speed has less influence on the vibration frequency of the 
pad. 

             

 

              

 

Fig. 4.15: Measured signals during accelerating process, (a) vibration of the torsional angle θ∆  , (b) 

SFFT of θ∆  , (c) acceleration of the pad x, (d) SFFT of x. 
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4.3 Friction observer 
It is possible to calculate the friction according to the abovementioned model. However, a lot of work 
is required for modeling and parameter identification. Therefore, in this section, an observer is de-
signed to estimate the friction force directly from the measured signals.  

In the brake system, the friction force acts on the brake disk and leads to a torsional deformation of the 
drive shaft. If the friction force is considered as an input of the disk-shaft sub-system, and the torsional 
angle and angle velocity of the drive shaft are treated as the state variables, the dynamic system is 
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(4.4)   

where RF  is the input friction force, and X  are the state variables. Since the state variables θ∆  and 

θ∆   are known, and RF  changes slowly compared to the sample frequency, it is possible to design a 
Proportional-Integral observer to estimate the unknown input force RF  [107], [108]. The observer is 
given as 
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(4.5)   

where 1L  and 2L  is the observer matrixes, θ̂∆  and θ̂∆   are the estimated torsional angle and torsion-

al velocity. If the above equations is reformed so that X  is as the input and X̂  and ˆ
RF  are the state 

variables, then 
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(4.6)   

After the transformation, the unknown input is considered as a state variable. The error dynamics of 
the observer is 
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where ˆ= −e X X  and ˆ
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 has only eigenvalues with negative 

real part and the unknown input changes slowly (i.e. quasi-static), the estimated errors converge 

asymptotically to zero, and ˆ
R RF F≈  after finite time. According to the convergent critical, observer 
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chart of the designed observer. The friction force can be observed through the measured state variables. 

Fig. 4.17 exhibits the observed friction force. After some time ˆ
RF   becomes stable and is approximate 

to the real friction force. It is easy to distinguish the static friction force from the dynamic friction 
force, where the dynamic friction force approaches a constant while the static friction force varies 
between the minimal and maximum values (marked with blue color in Fig. 4.17 (b)). Compared to the 
modeling approach, designing a friction observer requires only a linear disk-shaft model, so that the 
parameters of the friction law don’t need to be identified. However, a disadvantage is that the mea-
surement noise will strongly influence the accuracy of the observed friction force. 

 

Fig. 4.16: Flow chart of the friction force observer 

 

 

 

Fig. 4.17: Observed friction force (a) and it enlarged details (b), where the stick region marked with 
blue color 

At the end, the calculated friction forces from different models are compared with the observed fric-
tion force in Table 4.4. The observed friction force is similar to the friction calculated by the model 
with the bristle friction law. It proves that the bristle friction law is more suitable to describe the con-
tact interface between the disk and the pads. In contrast, Coulomb’s friction law cannot describe the 
full dynamics of the friction. 
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Modeled friction by Coulomb’s 
friction law 

Modeled friction by the bristle 
friction law 

Observed friction 

   

Table 4.4: Simulated friction force and the observed friction force 

 

4.4 Summary 
In this chapter, parameter identification methods are proposed for the models with different friction 
laws. For the model with Coulomb’s friction law, its static and dynamic friction coefficients can be 
identified by analyzing the geometric shape of the stick-slip limit cycle. For the model with the bristle 
friction law, their parameters, including the static friction coefficient, the dynamic friction coefficient, 
the Stribeck velocity, the contact stiffness, and the contact damping, are estimated by comparing the 
simulated and measured results. A genetic algorithm is assisted to find the optimized parameter set.  

The model with the bristle friction law indicated that the brake system has three regions of parameters 
according to the stability of the equilibrium solution and the existence of the stick-slip limit cycle. 
Two possible methods are employed to confirm the three parameter regions. One way is to keep the 
brake pressure constant and vary the driving speed; another way is to keep the driving speed constant 
and vary the brake pressure. Both experiments are carried out and the theoretical and experimental 
results have good agreement with each other. In the region II, both stable equilibrium solution and the 
stick-slip limit cycle can be measured with different initial conditions. 

At the end, a Proportional-Integral observer is designed to observe the friction force from the meas-
ured θ∆  and θ∆  . Compared to the modeling method, designing a friction observer requires only a 
linear disk-shaft model, so that the parameters of the friction law don’t need to be identified. However, 
it has a disadvantage that the measurement noise will strongly influence the accuracy of the observed 
force. By comparing the calculated friction force with the observed friction force, it is found that the 
observed friction force is more similar to the friction calculated by the model with the bristle friction 
law than that with Coulomb’s friction law. It proves that the bristle friction law is more suitable to 
describe the friction interface of the brake system. 
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5 Theoretical and experimental analysis of creep groan on the 

test rig with a real brake 

In this chapter, a dynamic model of the test rig with a real brake is studied. Different from the test rig 
with an idealized brake, the test rig with a real brake consists of a complex brake carrier with a sus-
pension system. Therefore, a model with large number of degrees of freedom is required to describe 
the dynamic system. With respect to the modeling, it is hard to identify the stiffness and damping of 
each component of the test rig due to their complex construction. On the other hand, it needs plenty of 
calculation time for the transition analysis of a nonlinear system with large number of degrees of free-
dom. In order to solve these issues, Butlin and Woodhouse use the transfer function model to describe 
the friction-induced vibration [109]. Inspired by this work, a reduced-order model expressed by trans-
fer functions is studied in this chapter. After parameter identification of the reduced-order model, 
simulation results will be compared with the experimental results. Some results of experimental inves-
tigations are already described in [33]. 

5.1 Modeling of the test rig with a real brake  
The real brake system can be decomposed into three sub-systems, in terms of the rotating parts, the 
non-rotating parts and the friction interface. The rotating parts include the disk, the drive shaft and the 
motor. The non-rotating parts include the brake pads, the carrier, the caliper, and the suspension sys-
tem. During modeling, the suspension is considered as a rigid body and hung on the basic frame with a 
set of mass-spring systems. According to experimental analysis, both pads move simultaneously dur-
ing creep groan. Then, two pads are treated as one rigid body which connects to the suspension 
through a set of mass-spring systems. The disk is assembled in the drive shaft, which is supported by a 
bearing assembled in the suspension. The shaft is driven by the motor with a reduction gear box. The 
structure of the brake test rig and its dynamic model are sketched in Fig. 5.1. 

  

Fig.5.1: Structure of the test rig of real brake and its dynamic model 

The dynamic equation of the non-rotating parts is given as 

,MX + DX + KX = F   (5.1)  
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where 
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where M is the mass matrix, D and K are the damping and stiffness matrixes, which are symmetric 
matrices, FR is the friction force, x1, xL and xN are the displacement of the pad, the suspension and the 
frame in vertical direction, respectively. It is assumed that D is a proportional modal damping propor-
tional to K with a factor β. 

The rotating parts consist of the disk and the drive shaft. Its dynamic equation is written as 

,RI d k F rθ θθ θ θ∆ + ∆ + ∆ =   (5.2)  

where r is the radius of the point where the pad acts, kθ and dθ are the stiffness and damping of the 
drive shaft, ∆θ is the torsional angle of the drive shaft. 

According to the bristle friction law, the friction force between the contact surface of the pads and disk 
is 

0 1 ,RF z zσ σ= +   (5.3)  

and z is a nonlinear function of v and z 

0

( , ) | | .zz v z v v
g

φ= = −

 

(5.4)  

and 

( )( )0
0

1 ( )exp / ,d s d sg N N v vµ µ µ
σ

= + − −  
(5.5)  

where 0g  is a scalar including the Stribeck effect, v is the relative velocity between the pads and disk. 
It is important to define v. Since the disk is rotating around the bearing fixed in the suspension, the 
disk has no relative transition motion referring to the suspension. Then, the relative velocity between 
the pad and disk is 

( )0 1 ,Lv r r x xθ= Ω − ∆ + −

   (5.6)  

where 1x  is the velocity of the pads in vertical direction, Lx  is the velocity of the suspension in vertic-

al direction, 0Ω  is the driving speed of the motor, the rotating angle of the disk is θ , and the torsional 

angle of the shaft is θ∆   with 0θ θ∆ = Ω −  . The relationship in Eq. (5.6) is also true for a real vehicle, 
i.e. it is possible to isolate the brake-suspension system from the frame or the chassis for the study of 
the stick-slip motion, and complex components such as the chassis can be at first ignored.  
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Substituting Eqs. (5.3)-(5.6) into (5.1) and (5.2), the integrated dynamics of the test rig can be written 
as first order differential equations 
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(5.7)  

5.2 A reduced-order model for the simulation of creep groan 
In practice, it is very hard to measure the damping and stiffness matrix D and K. Instead, it is possible 
to measure the transfer function of the non-rotating parts by modal analysis. Therefore, 1 Lx −  can be 

expressed through a rational transfer function ( )1 ,x xL FH jω−  as 
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(5.8)  

where the input of the transfer function is the friction force, the output is the relative velocity of the 
pad referring to the suspension, ω  represents the angular frequency with unit [rad/s], j is the imagi-

nary unit with the property 2 1j = −  [107]. The transfer function is the ratio of two polynomials. The 
orders of the numerator polynomials are less than the orders of the denominator polynomials. The 
poles of the transfer function correspond to values of the ω -variable for which the denominator poly-
nomial is zero. The zeros of the transfer function correspond to values of the ω -variable for which the 
nominator polynomial is zero. 

The transfer function can also be written in the partial transfer function, which is expressed as the sum 
of independent second order transform functions. Since D is proportional to K, the partial transfer 
function has a standard form as 
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(5.9)  

where ( )iH jω  is a mode of the system. The transfer function can be obtained from the FE model, 

multi-body dynamic model, or measured by modal analysis on the test rig. Since the original transfer 
function may have lots of modes, it is necessary to reduce them to gain a reduced-order model. For 

purposes of potential modes reduction, the H 2 norm of ( )iH jω  is calculated, and the modes with 

( )
2iH jω ε>  is defined as the relative importance modes [110]. 

2
.  is H2 norm of a stable conti-

nuous-time system and measures the steady-state power of the output response, which is given by 
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 =  ∫ . ε  is a threshold determined by the designer. By 

ignoring relative unimportant modes, the reduced-order transfer function can be written as 
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where LR < L, ( )1 ,x xL FH jω−
  consists of the relative important modes, ( )1 ,x xL FH jω−∆  is the relative 

unimportant modes. In order to simplify the calculation, ( )1 ,x xL FH jω−
  is instead of ( )1 ,x xL FH jω−  to 

calculate the friction force. 

For the rotating parts, Eq. (5.2) converts to a transform function as 
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(5.11)  

where ,FHθ  is a transfer function from the input friction force to the torsional velocity of the shaft.  

Then, the complete equations of the reduced-order model are given as 
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(5.12)  

With two transfer functions to hand, the calculation procedure is given as follows with its flow chart in 
Fig. 5.2: 

1. Give the initial relative velocity 1 Lx −  and the torsional velocity θ∆  , 

2. Calculate the friction force by the bristle friction law with given 1 Lx −  and θ∆  , 

3. Let the calculated friction force feedback to the transfer function ( )1 ,x xL FH jω−
  and ( ),FH jθ ω , so 

that the 1 Lx −  and θ∆   for the next time step can be calculated, 

4. Repeat steps 1 to 3 iteratively to obtain the friction force during creep groan. 

Compared to the original model, the reduced-order model has some advantages. On the one hand, the 
calculation time of the reduced-order model is much less than that of original model; on the other hand, 
only the system parameters are required in the reduced-order model, which can be easily identified by 
modal analysis. 
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Fig. 5.2: Flow chart of the calculation procedure 

5.3 Transfer function identification through modal analysis 
In this section, modal analysis is performed to identify the transfer function between the friction force 
and the velocity of the pad related to the suspension. In practice, the acceleration of the pad instead of 
its velocity is measured, but the velocity can be obtained by doing time integration of the acceleration. 
The frequency response function (FRF) is really the transfer function evaluated along the frequency 
axis [111], which is rewritten as  
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(5.13)  

The way to find the unknown parameters ak and bk is equivalent to solve the curve fitting problem such 
that the error between the analytical expression and the frequency response measurement is minimized 
over a chosen frequency range [111]. The error between the analytical FRF and measured FRF is 
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(5.14)  

where hi is the frequency response measurement at ωi, which is a complex number. Multiplying 
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(5.15)  

Then, the error vector can be expressed as [ ]T1 ... Le e=E   . The error vector can be rewritten in a 

more compact form by expanding each of the summations 

,− −E = PA TB W  (5.16)  
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The squared error criterion is the squared norm of the error vector 
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where 
2

E  is the Euclidian norm. Once the criterion function has a single minimum value, its deriva-

tives with respect to the variables A and B should be zero in the minimum point. Therefore, the 
following equations exist [111] 
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The above equations can be written in a compact form 
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(5.20)  

In this equation, P, T and W are known variables, and A and B are unknown variables. The parameter 
vectors A and B can be obtained by solving the linear equations (5.20). However, the matrixes P and T 
are commonly in ill-conditioning and hence Eq. (5.20) is difficult to solve. A method to solve this 
issue is proposed in [111], where orthogonal polynomials are used to remove the ill-condition. 

In order to obtain the frequency response function of the test rig, modal analysis is performed, shown 
in Fig. 5.3. A modal hammer is knocked on the brake carrier when the disk is rotating under constant 
speed and brake pressure without stick-slip. The input force ( )inF t  can be measured by a force sensor. 
In the meantime, two accelerometers, which are adhered to the brake pad and near the bearing of the 
suspension, measure the excited accelerations.  
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Fig. 5.3: Modal analysis of the test rig with a real brake 

The frequency spectra of the velocity on the pad 1( )x t  and the velocity near the bearing ( )Lx t  are 
presented in Fig. 5.4 with the red line and the blue line, respectively. As a result, the transfer function 

1 ,x xN FH −  and 1 ,x xN FH −  can be identified as 
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(5.21)  

where  ( ).  denotes Fourier transform. It should be noted that in Fig. 5.4 the frequency spectra of 

1( )x t  and ( )Lx t  coincide with each other at frequency 27.5 Hz. After analysis, this frequency is the 
eigenfrequency of the suspension system, so that the suspension and brake system move synchronous-
ly. Since the motion of the suspension will not influence the friction force between the pads and disk, 
this frequency should be not considered in the calculation of the stick-slip motion. The transfer func-
tion between the relative velocity and the friction force 1 ,x xL FH −  is expressed as 
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(5.22)  

Fig. 5.5 shows the measured FRF of  1 ,x xL FH −  with the blue line. Obviously, there is no peak frequency 

at 27.5 Hz. The transfer function is identified by analyzing the measured FRF according to Eq. (5.20). 
The FRF of the estimated transfer function with 12 modes is shown in Fig. 5.5 (a) with the red line. It 
is worth to declare that with 12 modes the estimated FRF has good agreement with the measured FRF. 
In general, the more modes are used, the better result can be obtained. However, a large number of 
modes of a system may lead to an over-fitting problem, and may bring some difficulties for the numer-
ical calculation. Therefore, only 4 important modes are chosen to describe the non-rotating parts. The 
FRF of the estimated transfer function with 4 modes is shown in Fig. 5.5 (b) with the red line. Com-
pared to Fig. 5.5 (a), the error between the estimated and the measured FRF becomes larger. It is well 
understood that the calculation efficiency can be increased by sacrificing some calculation accuracy by 
using the reduced-order model. However, since the error between those models is limited, it is more 
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sensible to use the reduced-order model to save calculation time. The transfer function of the reduced-
order model 1 ,x xL FH −

  is given as 
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2 8

,

2 7

0.01028( ) s 0.07617( ) s
( ) ( ) kg ( ) ( ) k150 3.234 10 359.3 6.434 10

144.9 1.432 1

g
0.1334( ) s 0.06125( ) s .

( ) ( ) 0 543.7 1.47kg ( ) ( ) kg5 10

x xL F
j jH

j j j j
j j

j j j j

ω ω
ω ω ω ω

ω ω
ω ω ω ω

− + + ⋅ + + ⋅

+

= +

⋅
+

+
+

+ ⋅ +



 

(5.23)  

 

       

Fig. 5.4: Frequency spectra of the velocities of the pad and suspension 

 

   

Fig. 5.5: Measured FRF and estimated FRF, (a) approximated with 12 DOFs, (b) approximated with 4 
DOFs 

5.4 Comparison study of experimental and simulation results 
The parameters of the test rig with a real brake should be identified at first. The way to identify the 
transfer function 1 ,x xL FH −

  has been presented in section 5.3 and is given in Eq. (5.23). The transfer 
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function of ,FHθ  is easy to measure, since only one mode is considered. The static friction coefficient, 

the dynamic friction coefficient, the Stribeck velocity, the contact stiffness and contact damping can 
be identified according to the process proposed in section 4.2. As a result, the parameters of Eq. (5.12) 
are given in Table 5.1. It should be noticed that the parameters in Table 5.1 are different with the pa-
rameters in Table 4.3, since different brake components are used in the test rig with a real brake as that 
of the idealized brake. 

Parameters Values 

,FHθ  ( )
( ) ( )2 3

0.15 s
kgm0.225 1.8 9.38 10

j
j j

ω

ω ω+ + ⋅
 

dµ  0.335 

s dµ µ−  0.03 

σ0 88.88 10 N/m⋅  

σ1 58.88 10 Ns/m⋅  

vs 0.0547 m/s 

 Table 5.1: Parameters of the friction law 

 

With parameters to hand, the simulation results are expressed in Figs. 5.6-5.9. The driving speed is 
0.31 rad/s and the brake pressure is at 8 bar. Fig. 5.6 shows the measured and simulated torsional angle 
and torsional velocity of the drive shaft, while the simulated acceleration of the brake pads and the 
simulated friction force are presented in Fig. 5.7. When the system converts to the slip region from the 
stick region, the friction force has a sudden change, so that the acceleration shows a large impulse. The 
same signal can also be observed in the measurements as shown in Fig. 2.12. However, the measured 
acceleration also exhibits an impulse between the stick and slip region, while the simulation results 
show only a week impulse. In Fig. 5.8, the frequency spectrum of the torsional velocity of the shaft 
shows a dominant frequency at 30 Hz and a second frequency at 60 Hz, which is the frequency of the 
stick-slip motion. The frequency spectrum of the acceleration of the pad shows a lot of frequencies of 
peak, also at much higher frequencies than the frequency of the stick-slip motion, this vibration is the 
driver heard or felt during creep groan. Fig. 5.9 exhibits the simulated and measured stick-slip limit 
cycle in the phase plot with θ∆   as a function of θ∆ , where the simulation results have good agree-
ment with experimental results.  

Just as the test rig with an idealized brake, both test rigs can be described by the similar models, which 
are two linear systems coupled by a nonlinear friction law. Therefore, the limit cycle obtained from 
those models are qualitatively same. However, the test rig with a real brake is much more complex 
than that of the idealized brake, so that a model with more DOFs is required to describe the vibration 
of the carrier. The question will be if the proposed model still works for a real vehicle. The answer 
seems to be yes, because the stick-slip motion is related to the velocity of the pad referring to the sus-
pension, i.e. the stick-slip motion is only related to the isolated brake-suspension sub-system. 
Therefore, the stick-slip motion will be the same no matter whether the suspension is assembled in the 
frame or assembled in the chassis of a vehicle. However, even though the stick-slip motion is un-
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changed, the generated creep groan will be different if the chassis of a vehicle is considered, since the 
vibration of the chassis can also be excited by the varied friction force. As a conclusion, the proposed 
model in Eq. (5.12) also works for a real vehicle. The stick-slip motion only relates to the brake-
suspension sub-system, but creep groan noise will be influenced by the other components of a vehicle, 
such as the chassis, the axle and so on. 

      

Fig. 5.6:  Experimental and simulated torsional angle (a) and torsional velocity (b) of the shaft 

  

Fig. 5.7:  Simulated acceleration of the pad (a) and the simulated friction force (b) 
 

  

Fig. 5.8:  Frequency spectra of torsional velocity of the shaft (a) and acceleration of the pad (b) 
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In order to study the existence condition of creep groan, the stability of the solution is proposed as 
follows. At first, the transfer function 1 ,x xL FH −

  is converted to the state space function 
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(5.24)  

Then, the equivalent position of Eq. (5.12) is given as 
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The stability of the equilibrium solution of Eq. (5.12) is obtained by analyzing the eigenvalue of the 
linearized system under its equilibrium position 
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where A is the corresponding system matrix. The stability of the equilibrium solution can be analyzed 
by studying the eigenvalues of A. If the real parts of all eigenvalues are negative, the equilibrium solu-
tion is asymptotically stable. If any of the real parts of the eigenvalues is positive, the equilibrium 
solution is unstable, and the solution will show increasing amplitudes. The stick-slip limit cycle of the 
test rig with a real brake can be calculated by performing numerical integration based on Eq. (5.12). If 
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the system has no stick-slip limit cycle, the system reaches its equilibrium solution with the initial 
condition in the stick region. Otherwise, the stick-slip limit cycle is reached. 

 

 
Fig. 5.9:  Simulated and measured stick-slip limit cycle 

According to the conditions for the existence of the stick-slip limit cycle and the stability of the equili-
brium solution, the system shows three different regions with different types of solutions. Fig. 5.10 
shows the simulated map of creep groan with the estimated parameters. It is similar to the map of 
creep groan for the idealized brake shown in Fig. 4.9.  

 

Fig. 5.10: Simulated map of creep groan of the real brake  

Experiments are carried out to confirm the existence of the three regions, where the driving speed of 
the motor is constant (0.31 rad/s) and the brake pressure is varied. Corresponding experimental results 
are shown in Fig. 5.11. The red line describes the brake pressure, while the blue line shows the tor-
sional vibration angle θ∆   of the drive shaft. When the brake pressure increase slowly from 0 bar to 5 
bar, the system has no creep groan at low pressure, but creep groan occurs when the pressure is higher 
than a critical pressure pc23 (2 bar). After that, the pressure is slowly decreased from 5 bar to 0 bar. 
Creep groan occurs at high pressure and disappears when the pressure is lower than another critical 
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pressure pc12 (1.2 bar). The difference between critical pressure in fact proofs the existence of three 
regions of the system.  

Fig. 5.12 shows the equilibrium solution and the limit cycle of the brake system with different pressure 

in the phase plot with θ∆   as a function of θ∆  . When the pressure is lower than pc12, only the equili-
brium solution can be measured both in the pressure-increasing and pressure-decreasing processes, 
meaning that the system is in region I and creep groan cannot occur. When the pressure is higher than 
pc23, creep groan is measured in both processes, meaning that the system is in region III and creep 
groan always occurs in this region. When the pressure is lower than pc23 but higher than pc12, creep 
groan is measured in the pressure-decreasing process, but not in the pressure-increasing process, 
meaning that the system is in region II. 

       

Fig. 5.11: Torsional vibration angle with varied brake pressure, the red and blue points represent the 
measured boundary pressure between the three regions. 

 

   

Fig. 5.12: Equilibrium solution and stick-slip limit cycle under different pressure 

In the rest part of this section, an experimental method is proposed to identify the map of creep groan 
of the brake system. The detailed steps are given as follows. At a constant speed 0,c iΩ , the brake pres-

sure is increased from 0 bar. The system is in its equilibrium solution at low brake pressure. If the 
pressure is higher than a critical value 23,c ip , creep groan will occur. At this moment, the speed as well 

as the brake pressure is recorded as a boundary point 0, 23,c i c ip Ω   in the velocity-pressure map with 

a triangle. Once creep groan occurs in the system, the brake pressure is slowly decreased until the 

disappearance of creep groan. Meanwhile, the boundary point is recorded as 0, 12,c i c ip Ω   in the 

velocity-pressure map with a cycle. 
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Furthermore, the driving speed is changed to 0, 1c i+Ω  and find the corresponding boundary points 

0, 1 23, 1c i c ip+ + Ω   as well as 0, 1 12, 1c i c ip+ + Ω  . Repeating this process, the boundary points under dif-

ferent speeds can be measured. It is possible to find a polynomial regression that fits the data set 

0, 12, ,  1,2,...,c i c ip i N Ω =  . This curve is the boundary between regions I and II. It is also possible to 

find a polynomial regression that fits the data set 0, 23, ,  1,2,...,c i c ip i N Ω =  . This curve is the boun-

dary between regions II and III. As a result, the boundaries of regions I, II and III can be obtained by 
experimental analysis, shown in Fig. 5.13 (Similar results have been published in [33]). Compared to 
the simulated map of creep groan in Fig. 5.10, the measured map shows the similar behavior with the 
simulated one.  

 

 
Fig. 5.13:  Map of creep groan identified by experiments, the triangles represent the measured boun-
dary points between regions II and III, while the cycles represent the measured boundary points 
between region I and II; the red line and the blue line are the polynomial regression curves of the 
measured boundary points 

During the pressure-increasing process, the vibration amplitude of the drive shaft increases with the 

brake pressure, shown in Fig. 5.14 (a). By doing SFFT of θ∆   (using Hamming window with window 
size 0.5s) as shown in Fig. 5.14 (b), one can see that the frequency of the stick-slip motion decreases 
with increasing of the brake pressure. Meanwhile, the amplitudes of the acceleration of the pad 1x  
increases with the brake pressure, shown in Fig. 5.14 (c). The SFFT of 1x  is shown in Fig. 5.14 (d), 
and the frequency of 1x  changes with the brake pressure.  

Similarly, during the accelerating process, the vibration amplitude of the drive shaft is increased with 
the speed, shown in Fig. 5.15 (a). The frequency of the stick-slip motion increases with the speed, and 
approaches the eigenfrequency of the disk-shaft sub-system, shown in Fig. 5.15 (b). In Fig. 5.15 (c), 
the amplitude of the acceleration of the pad x is almost not influenced by the speed. The SFFT of x is 
presented in Fig. 5.15 (d), and the speed has almost no influence on the vibration frequency of the pad. 
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Fig. 5.14: Measured signals during pressure-increasing process, (a) vibration of the torsional angle 

θ∆   with increasing brake pressure, (b) SFFT of θ∆  , (c) acceleration of the pad with increasing brake 
pressure, (d) SFFT of x. 

 

Time [s] 
(a) 

θ∆   
[rad] 
 

p 
[bar] 

p 
[bar] 

Time [s] 
(b) 

Fr
eq

ue
nc

y 
[H

z]
 

 

Time [s] 
(c) 

1x  
[m/s2] 
 

Time [s] 
(d) 

Fr
eq

ue
nc

y 
[H

z]
 

 



 
 

72 

     
 

 

      

 

 

Fig. 5.15: Measured signals during accelerating process, (a) vibration of the torsional angle θ∆   with 

increasing speed, (b) SFFT of θ∆  , (c) acceleration of the pad with increasing speed, (d) SFFT of x. 
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5.5 Summary 
In this chapter, theoretical and experimental investigations of creep groan on a test rig with a real 
brake are carried out. According to the analysis of the dynamic model, it is possible to isolate the 
brake-suspension system from the frame, the axle, and the chassis for the study of the stick-slip motion. 
Therefore, complex components such as the chassis can be at first ignored. 

In order to analyze creep groan in such test rig efficiently, a reduced-order model is proposed by ig-
noring the relative unimportant modes. The advantages of the reduced-order model are that it requires 
only system parameters and it has high computational efficiency.  

Modal analysis is carried out to identify parameters of the test rig with a real brake. Based on the iden-
tified transfer function, the simulated results are compared with the experimental results quantitatively. 
Both results have good agreement with each other. It is confirmed that the reduced-order model is of 
efficiency to describe creep groan of the brake system.  

Furthermore, a map of creep groan is obtained by stability analysis of the equilibrium solution and 
stick-slip limit cycle. Additionally, this map is measured through an experimental method. The meas-
ured and calculated maps show the similar behavior. 
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6 Countermeasures against creep groan  

After understanding the mechanism of creep groan, different methods against creep groan are dis-
cussed in this chapter. At first, a pad, which contains piezoceramic staple actuators [112], is used to 
suppress creep groan. Then, damping materials are added between the shaft and disk to suppress creep 
groan. Furthermore, during the accelerating process, a skillful driver can employ the cadence braking 
technique to decrease the time of creep groan. Inspired by the optimal braking technique, a control 
loop is designed and integrated into an anti-lock braking system to prevent creep groan. 

6.1 Suppression of creep groan through a active pad  
It is a well-known effect that vibration can influence frictional contacts see e.g. [47], [57]-[61], [80], 
[81]. Therefore, a pad, which contains piezoceramic staple actuators, is applied to eliminate creep 
groan of the brake system. Von Wagner et al. have successfully used such “smart pads” for the active 
suppression of brake squeal via optimal control [112], [113]. As an extension of this work, similar 
active pads are used to suppress creep groan in this thesis. In this case, creep groan can be eliminated 
by giving an external vibration at a constant frequency via the active pad. 

At the beginning of this section, the Prandtl-Tomlinson model is studied to understand the frictional 
mechanism on the atomic scale [78]. The Prandtl-Tomlinson model describes a sharp tip scanning a 
corrugated surface at a constant normal force in nanotribology, and the friction force is generated by 
the torsional bending of the cantilever which the tip is mounted on. The way to calculate the static 
friction on the atomic scale is given in [80]. Assuming that the corrugated surface has sinusoidal sur-
face potential with amplitude E0 and periodicity a, the potential energy Vint of the system is  

( )20
int

1cos 2 ,
2 2

t
t t s

E xV k x x
a

π = − + − 
 

 
(6.1)  

where the pulling spring with stiffness tk  is extended between the position of the tip tx  and the mov-
ing tip sx . If the tip moves slowly, it always resides in a minimum of the effective potential. The 
condition of the minimum of the effective potential is int / 0tV x∂ ∂ =  [80] 

int 0 sin 2 ( ).t
t t s

t

V E x k x x
x a a

π
π

∂  = + − ∂  
 

(6.2)  

The pulling force FL is equal to the force in the spring if ignoring the damping and acceleration of the 
tip. With ( )L t t sF k x x= − , it follows that 

0 sin 2 .t
L

E xF
a a

π
π = −  

 
 

(6.3)  

The corrugation of the surface potential E0 is linearly related to the maximum lateral force FL, the 
maximum of the absolute value of the force FL is found at / 4tx a= . It is obtained 
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0 ,L
EF
a

π
=  

(6.4)  

where FL is considered as the static friction force, which is the minimum force to let the tip jump out 
the energy barrier of height 0 /E aπ . The static friction coefficient is therefore given as 

0
,0 ,s

N

E
Fa

π
µ =  

(6.5)  

where FN is the normal force. 

If a mechanical vibration f is added in the out-of-plane direction of the disk, the oscillation causes the 
variation of the normal force FN and the energy corrugation E0. It is assumed that the corrugation ener-
gy changes with time as 0( ) (1 cos 2 )E t E ftα π= +  when the normal oscillation acts on the lateral tip 
motion, where α is a scale associated to the amplitude of the vibration. If /sf x a>>   , the tip reaches 
the minimum corrugation 0 (1 )E α−  many times when the tip slowly moves on the surface [81]. It 
means that the surface potential energy under mechanical vibration can be expressed as 0 (1 )E α− , 
then 

0 (1 ) .L
EF

a
π α−

=  
(6.6)  

As a result, the static friction coefficient under mechanical vibration is expressed as 

,0 (1 ).s sµ µ α= −  (6.7)  

Obviously, the static friction coefficient is decreased with increasing α. The dynamic coefficient will 
not change until the tip separates from the surface. 

  

  

 

 

 

Fig. 6.1: Prandtl-Tomlinson model [78] 

A pad with integrated piezoceramics manufactured at MMD TU Berlin provides high frequency exci-
tation in the out-of-plane direction, which is similar to the pad used in [112]. This pad contains two 
piezoelectric layers with an electrode layer between them, shown in Fig. 6.2. A signal generator can 
produce a sine form voltage with frequency from 1 Hz to 100 kHz. A signal amplifier is utilized for 
the voltage amplification. Then the excitation voltage is 
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0sin 2 ,pU U f tπ=  (6.8)  

where Up is the amplitude of the voltage, and f0 is its frequency. 

There are numerous publications on active influencing frictional contacts [47], [57]-[61], [80], [81], 
but author is to the best of his knowledge not aware of the prior usage of such active pads for the sup-
pression of creep groan so far. In order to suppression of creep groan, the active pad is assembled to 
the carrier as shown in Fig. 6.3 (a). According to the above analysis, it is possible to decrease the static 
friction coefficient by giving a high frequency mechanical vibration in the out-of-plane direction via 
the active pad. Creep groan can therefore be eliminated when the static friction coefficient is less than 
some critical value. Experiments are performed to confirm this statement. The frequency of the exter-
nal variation is chosen in such a way that, on the one hand, the frequency should be one of 
eigenfrequencies of the caliper to maximize the amplitude of the external vibration. On the other hand, 
it should be higher than the human limits of hearing to avoid additional noise. As a result, the frequen-
cy 20 kHz is chosen which fulfills both requirements. 

 

Fig. 6.2: Construction of the active pad 

   

Fig. 6.3: Location of the piezoceramic actuator, (a) active pad in the idealized brake, (b) active carri-
er, (c) active pad in the real brake 

The speed of the motor is set as 0.2 rad/s and the brake pressure is given as 6 bar. Under this condition 
the system is in region III and creep groan will always occur without external excitation. The mea-
surement is started when a stable stick-slip limit cycle is observed in the system. In Fig. 6.4, the 
vibration of the shaft θ∆   is exhibited with a blue line, while the driving voltage Up is shown as a red 
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line. It is noticed that the amplitude of the creep groan decreases with the increase of the voltage. Once 
the voltage is larger than another critical value Uc1, creep groan is eliminated. The reason is that the 
system shifts into region I due to the decrease of the static friction coefficient. This experiment con-
firms that creep groan can be eliminated by adding an external vibration in the out-of-plane direction. 

Furthermore, if the voltage is decreased and lower than a critical value Uc2, creep groan appears again. 
The reason is that the system returns to region III due to the increase of the static friction coefficient. 
Uc2 is lower than Uc1, which also confirms the existence of region II with both stable equilibrium solu-
tion and limit cycle.  

Fig. 6.5 shows the equilibrium solution and stick-slip limit cycle of the system. If the driving voltage 
is lower than Uc2, the system is in region III and the stick-slip limit cycle is the only stable solution of 
the system. If the driving voltage is higher than Uc1, the system is in region I and the stick-slip limit 
cycle does not exist. If the driving voltage is between Uc1 and Uc2, the system is in region II and the 
occurrence or absence of creep groan depends on its initial condition. Therefore, the stick-slip limit 
cycle can be observed in the voltage-increasing process in region II, while the equilibrium solution can 
be observed in the voltage-decreasing process. 

        

Fig. 6.4: Suppression of creep groan by adding an external excitation in the out-of-plane direction of 
the disk, the blue points are the critical voltage that creep groan disappears, while the red points are 
the critical voltage that creep groan appears again.  

 

   

Fig. 6.5:  Equilibrium solution and limit cycle with different amplitude of voltage, (a) system in re-
gion III, (b) system in region II, (c) system in region I 

Furthermore, a mechanical vibration added in the in-plane direction of the disk will be considered. In 
this case, the oscillation will change the position of xt. According to the Ref. [58], Eq. (6.3) becomes 
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( )( )0
0

2sin sin 2 ,L t
EF x f t
a a

π π β π = − +  
 

(6.9)  

where β is a scalar associated to the amplitude of the in-plane vibration. Integrating Eq. (6.9) with a 
period 01 /T f=  
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0 0

0 0

2sin sin 2

2 2sin cos sin 2 cos sin sin 2 .

f

L t

f f

t t

EF x ft dt
a a
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∫

∫ ∫
 

(6.10)  

The mean value of the second term is equal to 0, since it is an odd function. The mean value of the 
first term can be calculated with the help of the Bessel-function [58] 

0
0

2sin ( ),L t
EF x J
a a

π π β = −  
 

 
(6.11)  

where J0 is the Bessel function of the first kind. The maximum value of Eq. (6.11) is  

0 0
0 0

max

2sin ( ) ( ),L t
E EF x J J
a a a

π ππ β β = − = 
 

 
(6.12)  

where FL is the static friction force. As a result, the static friction coefficient is  

0 ,0( ) .s sJµ β µ=  (6.13)  

Therefore, the static friction coefficient is decreased with increasing β. In order to confirm the above 
analysis, a piezoceramic actuator is assembled under the short edge of the L-shaped steel plate which 
constitutes an active carrier, shown in Fig. 6.3 (b). The voltage of the piezoceramic actuator is given as 

0sin 2pU U f tπ= . After test, it is found that creep groan can be eliminated when the frequency of the 

voltage is 8 kHz, which is one of the eigenfrequencies of the carrier. The operation condition is at the 
brake pressure 10 bar with the speed 0.3 rad/s. Experimental results are presented in Fig. 6.6. At the 
beginning, the system is in the region III and creep groan occurs without external excitation. It is ob-
vious that creep groan is eliminated when the piezoceramic actuator turns on. Once the piezoceramic 
actuator turns off, creep groan appears again. 

It should be noted that the active carrier has disadvantages compared to the active pad: The vibration 
source is far from the contact surface; it is hard to add a piezoceramic actuator in a real brake carrier 
due to its compact structure. 
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Fig. 6.6: Suppression of creep groan by an external excitation in the in-plane direction of the disk 

Therefore, the active pad is employed in the test rig with a real brake against creep groan. Once this 
technique is successfully performed in the test rig with a real brake, it can be considered to use in a 
real vehicle. An active pad is assembled in the piston side of the caliper as shown in Fig. 6.4 (c). The 
speed of the motor is set as 0.2 rad/s and the brake pressure is given as 6 bar. Under this condition the 
system is in region III and creep groan occurs without external excitation. In the first experiment, the 
amplitude of the voltage is kept constant and its frequency is changed. The voltage of piezoceramic 
actuator is set as 70 V and varies from 10 kHz to 20 kHz. Experiment results are exhibited in Fig. 6.7, 
where the red line presents the frequency of the voltage and the blue line shows the vibration of the 
torsional angle of the shaft. The vibration amplitude of the shaft varies with the frequency and has the 
minimum value at 15.8 kHz and 16.5 kHz, which are eigenfrequencies of the caliper. The external 
vibration has the maximum amplitude under those frequencies, so that the static friction coefficient 
has the minimum value. 

In the second experiment, the frequency of the voltage is set as 15.8 kHz, and the amplitude of the 
voltage is slowly increased from 0 V to 100 V. In Fig. 6.8, the stick-slip vibration θ∆   is exhibited 
with a blue line, and the amplitude of the voltage is shown as a red line. The system has creep groan 
when the voltage equals to 0. The vibration amplitude of the shaft decreases with increasing the ampli-
tude of the voltage. Once the voltage is larger than a critical value, creep groan is eliminated. If the 
amplitude of the voltage is decreased, creep groan occurs again. 

For a conventional active noise cancellation method, a feedback control loop is required [112]. In 
order to guarantee the stability of feedback control as well as good control performance of the control 
loop, lots of work is required and the corresponding hardware is generally expensive. In contrast, the 
proposed active pad system is easier and cheaper.  

    

Fig. 6.7: Suppression of creep groan by an external excitation with varied voltage frequency 
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Fig. 6.8: Suppression of creep groan by an external excitation with varied voltage amplitude  

6.2 Passive method against creep groan  
Another feasible method against creep groan is to increase the damping of the shaft. Compared to the 
active method, the passive method doesn’t require external actuators and sensors. When the damping 
of the drive shaft increases, energy dissipation in the slip region becomes so large, that the system may 
not return to the stick region. As a result, the stick-slip motion cannot repeat and creep groan cannot 
occur in the system. On the other hand, if damping of the carrier is increased, the vibration of the pad 
may be reduced, but the stick-slip motion on the disk-shaft sub-system is not influenced. The map of 
creep groan will not change. Therefore, only the countermeasure with increasing the damping of the 
shaft is discussed here. 

   

 
Fig. 6.9: Simulated map of creep groan of the system with (-) and without (- -) damping materials. The 
rhombus represent the measured critical points of the system without damping materials, the cycles 
represent the measured critical points of the system with damping materials 

Theoretical analysis is by the model proposed in Eq. (3.42) with its parameters in Table 4.1 and Table 
4.3. Fig. 6.9 shows the map of the parameter regions with and without damping materials, where the 
dotted line represents the region boundaries of the original system ( 2 Nmsdθ = ), while the solid line 
denotes the region boundaries of the system with damping materials ( 2.5 Nmsdθ = ). Compared to 
map of the original system, the area of regions II and III is decreased with the increase of damping of 
the drive shaft, i.e. damping materials reduce the risk of creep groan generation. 
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Fig. 6.10: Adding damping materials between the disk and the driven shaft 

 

 

 

 

Fig. 6.11: The critical speed of original the system (a), and that of the system with damping materials 
(b), the rhombus represent the measured critical points of the system without damping materials, the 
cycles represent the measured critical points of the system with damping materials 

In practice, damping materials are added between the shaft and brake disk as shown in Fig. 6.10, and 
experiments are carried out to testify the above theoretical analysis. The driving speed is varied under 
a constant brake pressure (8 bar). The measured results are shown in Fig. 6.11, where the blue line 
denotes the vibration of the shaft and the red line presents the motor speed. For the original brake 
system, the critical speed between regions I and II is 0.62 rad/s and the critical speed between regions 
II and III is 0.42 rad/s, which are marked in Fig. 6.9 with the rhombus. For the system with damping 
materials, both the critical speeds are decreased. The critical speed between region I and II becomes 
0.48 rad/s and the critical speed between regions II and III is decreased to 0.35 rad/s, which are 
marked in Fig. 6.9 with circles. The experiments indicate that both critical speeds are decreased by 
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adding damping materials between the shaft and the disk. In practice, the shaft can be designed with a 
large damping coefficient. It is possible to increase the thickness of the shaft so that the damping of 
the shaft increases. 

6.3 Suppression of creep groan through an optimal brake technique 
In this section, the occurrence of creep groan in drive processes will be studied with the assistance of 
the map of creep groan. Instead of redesigning the components of a vehicle, another way to influence 
creep groan is to control the velocity of the wheel and brake pressure during drive processes. For the 
sake of simplification, a two wheel vehicle model is used for the simulation. The dynamics of a ve-
hicle is given as 

2

0
1

( ) ( ( )) ( ) ,r p i
i

RM t r F t T r A p t
r

µ
=

Ω + Ω = −∑  (6.14)  

where M is the mass of the vehicle, r is the radius of the wheel, rF  is the resistance force such as wind 
force, 0T  is the drive moment provided by the motor, ( )p t  is the brake pressure, Ap is the area of the 
pressure surface, µ  is the friction coefficient, R is the radius of the friction contact to the center of the 
disk, ( )tΩ  is the angular speed of wheels, which is calculated as 

0
0

( ) ( ) .
t

t dτ τΩ = Ω +Ω∫   
(6.15)  

In the accelerating process, it is assumed that the driver releases the brake pedal slowly, while the 
drive moment and the resistance force keep constant. As a result, the brake pressure and the corres-
ponding velocity is given as 
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µ µ
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(6.16)  

where p0 is the initial brake pressure, 0a  is the slop of the linear decreasing brake pressure.  

If this process is plotted in the map of creep groan, the time of creep groan can be easily estimated 
with the assistance of the map. As shown in Fig. 6.12 (a), the system is at first in region III and creep 
groan occurs since the stick-slip limit cycle is the only stable solution of the system, where the red line 
denotes the system with creep groan. With increasing speed, creep groan disappears once the system 
enters region I, where the blue line denotes the system without creep groan. Fig. 6.12 (b) shows the 
brake pressure and the angular speed of the wheel. In the accelerating process, creep groan appears at 
the beginning and disappears at 4.7 seconds. 

In the decelerating process, it is assumed that the driver presses the brake pedal slowly, and the brake 
pressure is increased with a slop 0a . Then, the brake pressure and the corresponding velocity of the 
vehicle is given as 
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(6.17)  

The decelerating process is plotted in the map of creep groan as shown in Fig. 6.13 (a). The system is 
at first in regions I and creep groan doesn’t appear. Creep groan appears when the system reaches to 
region III since the equilibrium solution of the system becomes unstable. Fig. 6.13 (b) shows the brake 
pressure and the angular speed of the wheel. In the decelerating process, creep groan appears at 7 
seconds and disappears at 9 seconds. 

From the simulations, it is obvious that the time of creep groan in the accelerating process is longer 
than the time of the decelerating process. In the decelerating process, the initial condition is near the 
equilibrium solution, and creep groan happens when the equilibrium solution is unstable. In the accele-
rating process, the initial condition is near the stick-slip limit cycle, and creep groan disappears when 
the stick-slip limit cycle doesn’t exist. This can explain why creep groan is more serious in the accele-
rating process than in the decelerating process, which agrees with driving experience. In practice, 
creep groan normally happens in the accelerating process. 

In order to reduce the time of creep groan, an optimal accelerating process is proposed. Instead of 
linear decreasing the brake pressure, the cadence braking technique is introduced to prevent creep 
groan. Cadence braking means that the driver releases the brakes for a short time and brakes again. 
When the driver releases the brakes at low speed, the system leaves regions III and II rapidly. After 
that, even the brake pressure increases again and enters region II, creep groan doesn’t appear since its 
initial condition is near its equilibrium solution. Simulation results are shown in Fig. 6.14. In this op-
timal accelerating process, creep groan appears at the beginning and disappears at 0.8 seconds, which 
is much shorter than the time of creep groan under the linear accelerating process described in Eq. 
(6.16) (with 4.7 seconds). 

 

       

Fig. 6.12: Creep groan in accelerating process  
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Fig. 6.13: Creep groan in decelerating process 

  

   

Fig. 6.14: Creep groan in optimal accelerating process 

An anti-lock braking system (ABS) is an automobile safety system that allows the wheels on a vehicle 
to keep traction contact preventing the wheels from locking up. It can imitate the cadence braking that 
was practiced by skillful drivers [114]. An ABS can apply cadence braking 15 times per second, while 
human can do just 1 or 2 times per second. Because of this, the wheels of cars equipped with the ABS 
work much better than the human. Typically, an ABS includes a central electronic control unit (ECU), 
wheel speed sensors, and hydraulic valves within the brake hydraulics. The speed sensors determine 
the acceleration or deceleration of each wheel; the ECU constantly monitors the rotational speed of 
each wheel and controls the valves to avoid wheel lock. If a wheel rotates significantly slower than the 
others, the ECU can judge the impending wheel lock and actuate the valve to reduce hydraulic pres-
sure of the brake at the affected wheel. As a result, the braking pressure on that wheel is reduced and 
the wheel then turns faster. Conversely, if the ECU detects a wheel turning significantly faster than the 
others, the brake pressure to the wheel is increased so the braking pressure is reapplied, slowing down 
the wheel. This process is repeated continuously to prevent the wheel block. 

In the following parts, simulation analysis will be proposed to confirm that an ABS can be delivered to 
prevent creep groan of a vehicle, if cadence braking is applied by the ABS during the occurrence of 
creep groan. 

0Ω [rad/s] 
(a) 

Time [s] 
(b) 

 

0Ω [rad/s] 
(a) 

Time [s] 
(b) 

III 
II 

 I 

III 
II 

 I 

p  
[bar] 

p  
[bar] 

0Ω  
[rad/s] 

p  
[bar] 

0Ω  
[rad/s] 

p  
[bar] 



  



 
 

86 

If an ABS is used in the brake system, the brake pressure can be controlled to prevent the vehicle from 
creep groan. The accelerating process with the assistance of the ABS is plotted in the map of creep 
groan as shown in the Fig. 6.17 (a). This process can be described as that the brake pressure is de-
creased once the stick-slip motion occurs, while the brake pressure returns to the designed pressure 
when the stick-slip motion disappears. As a result, the speed and the pressure of the vehicle will fol-
low the boundary between regions II and III. The angular velocity of disk is shown in Fig. 6.17 (b), 
where the stick region is marked with red color. Fig. 6.17 (c) exhibits the acceleration of the pad. 
Compared to the simulation results without ABS, creep groan of the brake system with the ABS oc-
curs only in short time intervals, i.e., creep groan can be successfully eliminated through the ABS.  

 

 

 

 

Fig. 6.16: Accelerating process without the assistance of an ABS, (a) accelerating process plotted in 
the map of creep groan, (b) angular velocity of disk, (c) acceleration of the pad 
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Fig. 6.17: Accelerating process with the assistance of an ABS, (a) accelerating process plotted in the 
map of creep groan, (b) angular velocity of disk, (c) acceleration of the pad 

6.4 Summary 
In this chapter, different methods are proposed to suppress creep groan, in terms of adding piezoce-
ramics actuator, increasing the damping of the drive shaft, and by an optimal braking technique. 

At first, theoretical and experimental investigations are carried out to confirm that creep groan can be 
eliminated by giving a high frequency mechanical vibration in the out-of-plane direction of the disk. 
The high frequency vibration is provided by an active pad, which contains two piezoelectric layers 
with an electrode layer between them. The static friction coefficient is decreased by giving a high 
frequency vibration, and creep groan can be eliminated when the static friction coefficient is less than 
a critical value. If a piezoceramic actuator is assembled between the short edges of the L-shaped steel 
plates and the frame, a high frequency mechanical vibration can be provided in the in-plane direction 
of the disk, and Creep groan can also be eliminated. Furthermore, the active pad is assembled in the 
test rig with a real brake, and creep groan of the real brake is suppressed by the active pad successfully. 
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Another feasible method against creep groan is to increase the damping of the shaft. By adding damp-
ing materials between the drive shaft and disk, energy dissipation during the slip region becomes large. 
As a result, the system cannot return to the stick region again so that creep groan is suppressed. Expe-
rimental and simulation results indicate that the area of regions II and III decreases with the increase of 
the damping of the shaft, i.e. there is less the risk of creep groan generation. 

With the assistance of the map of creep groan, creep groan in accelerating and decelerating processes 
is studied. It is found out that creep groan is more serious in the accelerating process than in the dece-
lerating process, which agrees with driving experience. After that, an optimal brake technique 
(cadence braking) is proposed to minimize the time of creep groan. Furthermore, an ABS can perform 
the cadence braking through a simple control loop to avoid creep groan just like a skillful driver. Si-
mulation results indicate that creep groan can be eliminated with the assistance of the ABS. 
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7 Conclusions and Future Work 

The main objective of this thesis is to study the fundamental mechanism of creep groan theoretically 
and experimentally. In Chapter 1, brief introductions on major development of brake noise, vibration 
and harshness, stick-slip motion and creep groan are presented. Due to the increasing comfort claims 
of customers, the study on low frequency creep groan has been receiving increasing attention currently. 

In order to understand creep groan step by step, test rigs concentrating on creep groan are presented in 
Chapter 2. At first, a test rig with an idealized brake is built to study creep groan concentrated on fric-
tion contact. Subsequently, a test rig with a real brake, which is more similar to a real vehicle, is set up 
to study creep groan. Experimental results from both test rigs are presented and compared with each 
other.  

In Chapter 3, different friction laws i.e. Coulomb’s friction law and the bristle friction law are used to 
describe creep groan of the test rig with an idealized brake. The stick-slip limit cycle is firstly obtained 
by coupling the system model with Coulomb’s friction law, in which the static friction coefficient is 
larger than the dynamic friction coefficient. However, the non-smooth characteristic appears between 
the stick and slip regions due to the switch function in Coulomb’s friction law. In contrast, the bristle 
friction law, containing the Stribeck effect, pre-sliding effect and hysteresis, can overcome this issue. 
According to the stability of the equilibrium solution and the stick-slip limit cycle, the system with 
Coulomb’s friction law has two parameters regions, i.e. a region with a stable equilibrium solution but 
no stick-slip limit cycle named as region I; and a region with both stable equilibrium solution and 
stick-slip limit cycle named as region II. In contrast, the model with the bristle friction law has three 
parameter regions. Besides regions I and II, there is an additional region with an unstable equilibrium 
solution and a stable stick-slip limit cycle, named as region III. Since different friction laws lead to 
different dynamic characteristics, one should choose the suitable friction law carefully to describe 
creep groan of brake systems. 

Chapter 4 focuses on the study on the parameter identification of the friction law. If Coulomb’s fric-
tion law is employed, the unknown parameters related to the contact surfaces are static and dynamic 
friction coefficients. They can be identified by analyzing the geometric shape of the stick-slip limit 
cycle. If the bristle friction law is employed, the unknown parameters related to the contact surfaces 
contain the static friction coefficient, the dynamic friction coefficient, the Stribeck velocity, the con-
tact stiffness and the contact damping. As a result, a genetic algorithm is used to estimate those 
parameters by comparing the simulation results with the experimental results. Compared to the model 
with Coulomb’s friction law, the model with the bristle friction law can describe the pre-sliding effect 
between the stick and slip regions. Besides, by changing the speed of the motor under constant brake 
pressure, three parameter regions namely regions I, II and III can be detected experimentally. This 
demonstrates that the model with bristle friction law is more reasonable to describe creep groan. At the 
end of Chapter 4, a Proportional-Integral observer is designed to observe the friction force from the 
measured θ∆  and θ∆  . Compared to the modeling method, the friction observer requires only a linear 
disk-shaft model. However, it has a disadvantage that the measurement noise will strongly influence 
the accuracy of the observed force. The observed friction is similar to the calculated friction by the 
model with the bristle friction law. 
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The theoretical and experimental studies of creep groan on the test rig with a real brake are presented 
in Chapter 5. Compared to the idealized brake, the test rig with a real brake contains a real brake carri-
er and an additional suspension system. A model with large number of degrees of freedom is firstly set 
up to describe the brake system. By analyzing the dynamic model, it is possible to isolate the brake 
suspension system from the frame, the axle and the chassis for the study of the stick-slip motion. 
Therefore, complex components such as the chassis can be at first ignored for the friction force calcu-
lation. Subsequently, a reduced-order model is proposed to improve the calculation efficiency. The 
advantages of the reduce-order model are that it requires only system parameters instead of the physi-
cal parameters and it has high computational efficiency. With the identified parameters to hand, the 
simulated stick-slip limit cycle is compared to the experimental one. Both results have good agreement 
with each other, which confirms that the reduced-order model is of efficiency to describe creep groan 
of the brake system. Furthermore, a map of creep groan is obtained by stability analysis of the equili-
brium solution and stick-slip limit cycle. This map is compared with the map measured through 
experiments. The measured and calculated maps show the similar behavior. 

In Chapter 6, some suppression methods of creep groan are finally implemented on the theoretical 
model as well as on the test rigs. At first, an active pad, containing two piezoelectric layers with an 
electrode layer between them, successfully eliminates creep groan by providing a high frequency me-
chanical vibration in the out-of-plane direction of the disk. The high frequency vibration decreases the 
static friction coefficient, and thus eliminates creep groan. Later, by adding a high frequency vibration 
in the in-plane direction, creep groan is also eliminated. Another feasible method against creep groan 
is to increase the damping of the shaft. It is confirmed that by increasing the damping of the shaft, the 
area of the regions II and III decreases, i.e. there is less risk to generate creep groan. At last, a method 
to shorten the time of creep groan by using an optimal brake technique is presented. The system can 
leave the regions III and II rapidly by preceding the optimal brake technique. If this optimal brake 
technique is integrated in an ABS, the ABS can perform the optimal braking process through a simple 
control loop to avoid creep groan just like a skillful driver. Simulation results indicate that creep groan 
can be eliminated with the assistance of the ABS.  

In general, this thesis attempts to build a detail model to describe creep groan on the brake system. 
Methods for suppression of creep groan are suggested based on the model. Some future work is out-
lined as follows. 

• Theoretical and experimental investigations of creep groan on a real vehicle can be studied and 
compared with the results from the test rigs. 

• The efficiency of the active pad needs to be tested under real drive conditions. It is important to 
know the influence of the external high frequency excitation on a real vehicle. 

• Experimental investigations on the suppression of creep groan by an anti-lock braking system can 
be further studied. Since an ABS is a safety relevant system, is it sensible to use it to solve the 
comfort problem? This question should be further discussed. 
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