












































































































5 Testcases
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Fig. 26: SPL and phase deviation of the reference and optimized sound field at the virtual
microphone positions of the complex circular piston with K = 0.1.

(a) 1.5 kHz (b) 2.0 kHz (c) 2.5 kHz (d) 3.0 kHz

(e) 1.5 kHz (f) 2.0 kHz (g) 2.5 kHz (h) 3.0 kHz

Fig. 27: Amplitude balloon plots of the reference (a-d) and optimized (e-h) complex circular
piston with K = 0.1. The plots are taken at the circle radius r = 0.3m from the
center of the source at [0.5, 0.5, 0.5]T m.
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5 Testcases
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Fig. 28: SPL and phase deviation of the reference and optimized sound field at the virtual
microphone positions of the complex circular piston with K = 1.0.
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6 Conclusion

6 Conclusion

The present thesis introduced a novel method of monopole synthesis using an adjoint-based

CAA solver in a finite differences time domain (FDTD) discretization scheme. In addition,

a complex directivity point source (CDPS) solver in the frequency domain was implemented

into the existing environment of the computational aeroacoustics (CAA) solver to efficiently

compute reference sound fields as demonstrated in Sec. 5.1. Sec. 5.2 investigated the spatial

expansion of the monopole sources. Following, the method was evaluated for a dipole, a

quadrupole and a (complex) circular piston model.

In general, the method provided satisfactory results in the frequency range between 1.5 kHz

and 2.5 kHz for the employed simulation setup. Also, it was demonstrated that the method

is able to reproduce complex directivity patterns in the same manner as directivity patterns

consisting only of real values. However, a higher complexity of the directive source in terms of

amplitude and phase variations results in an inferior reproduction when the same amount of

monopoles is used. It can be assumed that the correctly reproduced frequency range can be

enlarged by (i) a larger computing domain, i.e., a larger spherical receiver radius to avoid near

field shares on the evaluation sphere and (ii) a higher grid resolution, i.e., more grid nodes

per meter in the computing domain to reduce the source expansion or increase the possible

amount of monopole sources. A disadvantage of the method is that positioned monopole

sources remain on their positions for the whole computation and a spatial adjustment is not

possible.

The ability of the adjoint-based monopole synthesis method to reproduce sound sources with

a high complexity, e.g., real world loudspeakers, was already demonstrated by Stein et al.

(2020). Therein, the deviations are lower to the reference directivity pattern due to the

variable location and the higher number of monopoles, or rather, Dirac pulses. In fact, the

focus of this thesis was also to show how the adjoint-based monopole synthesis method

proceeds to reproduce the directivity pattern. It principally locates monopoles around a

main monopole in the center and transfers the forcing signal of the main monopole to

the surrounding monopoles. Subsequently, the amplitude and the phase is adjusted. The
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6 Conclusion

presented method is also able to efficiently reproduce simple sources with a low number

of monopoles, such as the dipole or the quadrupole. Moreover it was recognized that the

objective function (see Fig. 29) begins to increase at a certain iteration loop due to the

constant step width αs at the line search process. To find a variable and optimized αs, the

Gaussian distribution has to be adjoint as well. This was not investigated since the grid-based

method by Stein et al. (2020) provides more promising results.

In future, the method could be tested in a larger computing domain with a higher grid

resolution (smaller ∆x) to reproduce a reference directivity pattern with greater precision

and even synthesize very complex sources. As the available computing power is increasing

rapidly in the recent time, more accurate calculations will be possible. A grid refinement of

the source region—while the free space around the source region remain unrefined—could

improve the directivity pattern reproduction as well.
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A Objective Functions and Source Positions

Fig. 29 shows the relative objective function Jn/J0 over the iteration loop numbers n for the

cases (III) - (V). The source positions xs,m up to the minimum of Jn/J0 are given in Tab. 4

and Tab. 5.

1 4 7 10 13 16 19 22 25 28
loop iteration number n

10−1

100

J
n
/J

0

Case (III): Dipole

Case (IV): Quadrupole

Case (Va): Real Circular Piston (K = 0.0)

Case (Vb): Complex Circular Piston (K = 0.1)

Case (Vc): Complex Circular Piston (K = 1.0)

Fig. 29: Relative objective function Jn/J0 over the iteration loops n. A new monopole source
is added at every tick of the loop iteration number n.
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A Objective Functions and Source Positions

Tab. 4: Monopole source positions of the cases (III) – (Va) determined by the adjoint-based
monopole synthesis method.

Case

Source (III): Dipole (IV): Quadrupole (Va): Circ. Piston (K = 0.0)

xs,1 in m [0.50, 0.50, 0.50]T [0.50, 0.50, 0.50]T [0.46, 0.50, 0.50]T

xs,2 in m [0.42, 0.50, 0.50]T [0.57, 0.57, 0.50]T [0.42, 0.50, 0.50]T

xs,3 in m [0.59, 0.50, 0.51]T [0.44, 0.44, 0.50]T [0.59, 0.50, 0.51]T

xs,4 in m [0.50, 0.50, 0.42]T [0.44, 0.57, 0.50]T [0.50, 0.50, 0.42]T

xs,5 in m [0.50, 0.58, 0.46]T [0.57, 0.44, 0.50]T [0.50, 0.58, 0.46]T

xs,6 in m [0.50, 0.42, 0.46]T [0.50, 0.65, 0.50]T [0.50, 0.42, 0.46]T

xs,7 in m [0.50, 0.58, 0.55]T [0.50, 0.38, 0.50]T [0.50, 0.57, 0.56]T

xs,8 in m – [0.63, 0.50, 0.50]T [0.50, 0.49, 0.59]T

xs,9 in m – [0.38, 0.50, 0.50]T –

Tab. 5: Monopole source positions of the cases (Vb) – (Vc) determined by the adjoint-based
monopole synthesis method.

Case

Source (Vb): Cmp. Circ. Piston (K = 0.1) (Vc): Cmp. Circ. Piston (K = 1.0)

xs,1 in m [0.50, 0.50, 0.50]T [0.47, 0.50, 0.50]T

xs,2 in m [0.59, 0.50, 0.51]T [0.38, 0.50, 0.50]T

xs,3 in m [0.42, 0.50, 0.50]T [0.58, 0.50, 0.50]T

xs,4 in m [0.50, 0.50, 0.42]T [0.48, 0.57, 0.59]T

xs,5 in m [0.50, 0.58, 0.46]T [0.48, 0.58, 0.54]T

xs,6 in m [0.50, 0.42, 0.46]T [0.49, 0.57, 0.46]T

xs,7 in m [0.50, 0.57, 0.56]T [0.48, 0.43, 0.54]T

xs,8 in m [0.50, 0.49, 0.59]T [0.48, 0.50, 0.42]T
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