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A B S T R A C T

Artificial Intelligence for IT Operations (AIOps) combines big data and ma-
chine learning to replace a broad range of IT Operations tasks. The task of
anomaly detection has a prominent position in ensuring the required reliabil-
ity and safe operation in distributed software systems. However, the frequent
software and hardware updates, system heterogeneity, and massive amount
of data create a challenging environment. The detection of anomalies in these
systems predominantly relies on metric, log, and trace data. Each of them
provides a different view of the internal states of the systems. By induction,
improving the detection in every data source increases the overall anomaly
detection performance in the system.

This thesis provides the following contributions. (1) We present a method
based on variational inference and recurrent neural network to address the
detection of anomalies in system metric data that possibly exhibit multiple
modes of normal operation. (2) We propose a novel log parsing through lan-
guage modelling that enables learning of log representations for downstream
anomaly detection. We identify the learning of log representations as a major
challenge toward a robust anomaly detection. Therefore, we additionally de-
sign a method that learns log representations by distinguishing between nor-
mal data from the system of interest and easily accessible anomaly samples
obtained through the internet. (3) We describe a self-supervised anomaly de-
tection task that utilizes the entire trace information to robustly detect anoma-
lies that propagate through system components. (4) In a rule-based approach,
we combine the presented methods for a multi-view anomaly detection.

The methods presented in this thesis were implemented in prototypes
and evaluated on various datasets including production data from a cloud
provider. They provided (1) an F1 score of 0.85 on metric data, (2) parsing
accuracy of 99% and F1 score improvement of 0.25 in log anomaly detection,
(3) increase in F1 score of 7% in trace anomaly detection over the state of
the art, and (4) broadened spectrum of detected anomalies. The results were
peer-reviewed and published at renowned international conferences.
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Z U S A M M E N FA S S U N G

Für den Betrieb großer und komplexer IT-Infrastrukturen in Rechenzentren
werden immer häufiger KI-gestützte Methoden und Werkzeuge eingesetzt.
Durch das Kombinieren von großen Mengen an Daten mit Machine Learn-
ing Prinzipien, können viele klassische Aufgaben in dem Betrieb und der
Wartung von IT-Systemen ersetzt werden. Die Anomalieerkennung nimmt
dabei eine besondere Stellung ein, um die geforderte Zuverlässigkeit und den
sicheren Betrieb in verteilten Softwaresystemen zu gewährleisten. Die große
Anzahl von heterogenen Komponenten und Diensten, häufige Software- und
Hardware-Updates, die steigende Anzahl von Benutzern und Anwendungen
sowie die riesigen zu verarbeitenden Datenmengen stellen eine signifikante
Herausforderung dar. Die Anomalieerkennung in diesen Systemen basiert
an mehreren komplementären Datenquellen (Metriken, Logs, Traces) zur
Beschreibung und Analyse des aktuellen Systemzustandes, die zusammen
einen einen gesamtheitlichen Einblick in das laufende System ermöglichen.
Die Verbesserung der Anomalieerkennung in jeder der Datenquellen würde
daher die Leistung der Anomalieerkennung im gesamten System verbessern.

In dieser Arbeit liefern wir die folgenden Beiträge. (1) Wir stellen eine Meth-
ode zur Anomalieerkennung in metrischen Daten (von Monitoringsystemen)
vor, die auf Variationsinferenz und rekurrenten neuronalen Netzen basiert,
um eine zuverlässige Detektion trotz des wechselnden Systemmodi und des
Vorhandenseins von Rauschen zu ermöglichen. (2) Wir erwähnen eine neuar-
tige Log-Parsing Methode die auf Sprachmodellierung basiert ist. Diese Meth-
ode ermöglicht das Lernen von Log-Repräsentationen für die Anomalieerken-
nung, was einen wichtigen Meilenstein für eine robuste Anomalieerken-
nung darstellt. Aus diesem Grund haben wir im Zusatz einen klassifikation-
basierten Ansatz entwickelt, der Log-Repräsentationen durch die Unterschei-
dung zwischen normalen Daten des untersuchten Systems und online ver-
fügbaren Anomalie-Muster lernen kann. (3) Wir beschreiben eine sich selbst
überwachende Pseudo-Anomalie-Erkennungsaufgabe, welche die gesamten
Trace-Information nutzt, um robust Anomalien zu erkennen, die sich auf
mehrere Systemkomponenten verteilen. (4) In einem regelbasierten Ansatz
kombinieren wir die vorgestellten Methoden, um Anomalieerkennung mit-
tels mehrere Datenquellen zu ermöglichen.

Die in dieser Arbeit vorgestellten Methoden wurden in Prototypen imple-
mentiert und auf verschiedenen Datensätzen, in experimentellen Testbeds
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und auf Produktionsdaten einer großen kommerziell eingesetzten Cloud-
Infrastruktur evaluiert. Die Ergebnisse zeigten (1) einen F1-Score von durch-
schnittlich 0,85 auf Metrik-Daten, (2) eine Genauigkeit von 99% beim Log-
Parsing und eine Verbesserung des F1-Scores um 0,25 gegenüber dem Stand
der Technik bei der Erkennung von Log-Anomalien, sowie (3) eine Steigerung
des F1-Scores um 7% gegenüber dem aktuellen Stand der Technik in Trace
basierten Anomalieerkennung und (4) eine Erweiterung der Spektrum der
erkennbaren Anomalien. Die Gesamterkennung von Anomalien durch eine
Kombination der Methoden führte ebenfalls zur Steigerung der Ergebnisse
im Vergleich zu den Einzelmethoden. Die Erkenntnisse wurden auf renom-
mierten internationalen Konferenzen veröffentlicht.
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1
I N T R O D U C T I O N

Distributed software systems are a key technology that transforms numerous
industries including healthcare, finance, manufacturing, education, and trans-
portation. Billions of devices and users communicate, compute, and store in-
formation, and thus depend on the reliability and availability of distributed
systems such as cloud, high-performance computing (HPC), and other critical
platforms. Major companies have already utilized the benefits of transform-
ing their monolithic or centralized software into distributed components [1].
Most of the distributed software systems are based on the so-called (micro)
service-oriented architecture (SOA) paradigm or its variants. The SOA enables
rapid, frequent, and reliable delivery of large complex applications. These
paradigms in software engineering provide flexibility of the systems, but also
largely increase their complexity [2].

Owing to the complexity and inevitable weaknesses in the software and
hardware, the systems are prone to failures [3, 4]. Several studies showed
that such failures lead to a decreased reliability, high financial costs, and can
impact critical applications [5–7]. Therefore, loss of control is not allowed
for any system or infrastructure, as the quality of service (QoS) is of high
importance [8].

The large service providers are aware of the need for always-on services
with a high availability, and thus already deployed numerous measures such
as site reliability and DevOps engineers. However, the scale and complexity
of the computer systems steadily increase to a level where the manual oper-
ation becomes infeasible. Operators start using artificial intelligence tools for
automation in various operation tasks including system monitoring, anomaly
detection, root cause analysis, and recovery. [8, 9].

Anomaly detection is one of the essential steps toward supporting opera-
tions and ensuring reliability, security, and resilience of software systems [10,
11]. The automation in anomaly detection aims to reduce the time spent in
finding the failures to help the development teams. It implies detection and
recognition of patterns that do not conform to the expected system behav-
ior [3]. Unlike most of the machine learning problems and tasks that address
majority, regular, or evident patterns, anomaly detection addresses minority,
unpredictable/uncertain, and rare events, leading to some unique complexi-
ties [12].
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introduction 2

The diversity of the anomalies in distributed software systems is large.
More than 60% of the anomalies develop from operation processes such as
software upgrades and configuration issues [13], while the others are per-
formance problems, component failures due to outages, and security inci-
dents [14]. Particularly, in complex computer systems, anomalies are asso-
ciated with numerous unknowns. For example, instances with unobserved
abrupt behaviours and distributions cannot be estimated until they occur,
such as novel attacks, software bugs, and network intrusions. Anomalies are
irregular, which implies that one class of anomalies may exhibit completely
different characteristics from those of another class of anomalies. An anomaly
can be related to a recent upgrade or network failure due to hardware prob-
lems [15]. Anomalies can also be not reflected in all monitoring sources. A
recent study on distributed system failures and their mitigation [15] showed
that, in the 31.3% of the failures, the problem was not notified to the user
through exceptions, while the others were notified only after long delays. This
behavior threatens the data integrity during the period between the occur-
rence of the failure and its notification (if any) and hinders failure recovery
actions. In 8.5% of the failures, no indication of the failure was observed in
the logs. These cases represent a high risk for system operators as they lack
clues for understanding the failure and restoring the availability of services
and resources. In most of the failures (37.5%), the injected bugs propagated
across several OpenStack components. Indeed, 68.3% of these failures were
notified by a component different from the injected component.

A prerequisite to capture the anomalies arising in these systems is the avail-
ability of system data, which in software systems are referred to as observ-
ability data [16]. They contain information about the runtime state. The data
generated by distributed systems can be classified into three main categories:
metrics, logs, and traces, also referred to as three pillars of observability.

The three major sources of system observability have specific characteris-
tics and are complementary in unison. Each revealing shared but also specific
anomalies. The utilization of the three sources of data provides maximum visi-
bility of the behaviors of complex systems [16]. Improving the performance of
the anomaly detection in each of the system data components by addressing
the presented challenges increases the overall anomaly detection performance.
Moreover, integrating them as one solution for anomaly detection increases
the overall robustness and widens the spectrum of anomalies that can be
detected. The combination of several observers and several methods can over-
come the weaknesses and limitations attributed to single observers and single
methods [17–19].
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Despite the large number of anomaly detection approaches addressing each
of the data sources, the task remains challenging owing to the changing com-
plex environment [13, 20]. Few challenges still need to be addressed, includ-
ing the (1) reduction in the number of false alarms that overwhelm the system
operators [12, 21], (2) generalization of the methods in evolving software sys-
tems [8, 9, 22, 23], (3) noise-resilient anomaly detection attributed to the low
signal-to-noise ratio as numerous different components affect the response
time of microservices such as switches, caching, routers, memory capacity,
programming languages, thread and process concurrency, bugs, and volume
of user requests, and (4) detection of complex anomalies that do not appear
in all observability sources [13, 15, 21].

1.1 problem definition

This thesis is focused on anomaly detection from distributed software system
data. The objective of this thesis is to

"Improve the development, operation, and reliability of distributed software systems
by developing robust methods for anomaly detection using system data."

The objective of this thesis is addressed by decomposing the problem into
the following components.

Metric analysis and anomaly detection. In distributed systems, the met-
rics are noisy and fast-evolving over time, producing data with several dis-
tributions of normal system behaviour. This leads to two main challenges for
modeling, the stochastic nature of the metric data and sequential properties
that need to be preserved. We aim to address these issues in metric data to
support the overall system anomaly detection.

Log analysis and anomaly detection. Logs are widely available and inte-
grated in almost every computer system. System components evolve and gen-
erate new logs due to software updates performed multiple times daily [24].
The problem of generalization, robustness, and efficiency of anomaly detec-
tion in such evolving log data is attributed to the lack of accurate parsing and
representative log vector representations. We aim to improve the log parsing
and learning of log vector representations, which increases the generalization
and performance of the log anomaly detection.
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Trace analysis and anomaly detection. Traces are complex structures and
complement the metrics and logs, in a sense that they provide workflow in-
formation. This is request-centered information about all involved services.
It correlates various components of the distributed system, where the detec-
tion of an anomaly often is related to the root cause. Detecting anomalies
in tracing data is challenging owing to their structure, noise, representation,
and constant system evolution due to new or updated services and hardware
components. We aim to address the challenges and provide a reliable and ro-
bust detection of anomalies that includes an efficient anomaly detection on
traces with different sizes, generalization on unseen traces, and identification
of services that may be a root cause.

Integration of the detectors to detect complex anomalies. Complex anoma-
lies occur due to the redundancy, complexity, and intractability inherited in
the distributed systems. Examples of such anomalies are those that are not
reflected in all observability data components and propagated anomalies re-
flected in a set of system components different than the faulty component. Full
observability of the system helps reveal patterns that are not visible when us-
ing individual sources of information. We aim to evaluate how the anomalies
are reflected in different data sources, classify the state of the system (e.g.,
normal, degraded, or failure), integrate the anomaly detectors, and show that
their combination broadens the spectrum of detected anomalies in compari-
son to single methods.

By the richness of information, difficulty of integration of the observability
components, and system overhead, we rank the above components by impor-
tance as (1) log data, (2) tracing data, and (3) metric data. We emphasize the
log data analysis as is available in almost every computer system and mostly
used data source for troubleshooting [21].

1.2 contributions

This thesis proposes a set of methods to address the above problems. It con-
tributes to the area of computer science, particularly to the fields of machine
learning and distributed software systems with focus on anomaly detection
and troubleshooting of software systems.

Considering the analysis of massive amount and complexity of the data
generated from large-scale distributed systems as motivation, in this thesis,
each of the presented anomaly detection methods belongs to the field of deep
learning [25, 26], and thus the adjective "deep" is used in the title.
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We summarize the contributions of this thesis as follows.

1. Method for detection and classification of anomalies utilizing metric
data. The high noise and constant evolution of the metric data require
methods that capture multiple modes of normal operation. In this re-
gard, we present stochastic recurrent neural networks based on varia-
tional inference. The core principle is to learn robust latent representa-
tions to capture normal patterns of a time series, considering both tem-
poral dependence and stochasticity. In addition, we provide descriptive
classification of the anomalies.

2. Methods for log parsing and anomaly detection. As a first step toward
log anomaly detection, this thesis presents a novel log parsing approach.
It has an impact on numerous log anomaly methods that make use of
log parsers in their anomaly detection pipelines. The method reformu-
lates the parsing problem as a language modelling task. The model en-
ables learning log representations, which can be subsequently utilized
for supervised and unsupervised anomaly detection. However, through
an analysis we find a large gap between the results obtained by super-
vised and unsupervised learning methods. To bridge the gap, we de-
scribe a novel objective and model for anomaly detection in log data. It
is a classification-based method to learn log representations in a manner
to distinguish normal data from the system of interest and anomaly sam-
ples from auxiliary log datasets, cost-free and easily accessible through
the internet. Through evaluations we show that the use of the auxiliary
dataset is sufficiently informative for an accurate representation of the
normal data, yet diverse to regularize against overfitting and improve
the generalization. The method improves the log vector representations,
and thus the anomaly detection.

3. Method for trace anomaly detection. We introduce a trace as a text
representation, which enables anomaly detection using deep learning.
We present a novel approach that addresses the problem of anomaly
detection from distributed tracing data. The method is based on self-
supervised learning. We formulate a learning task, a masked span pre-
diction, which is used as a pseudo task for anomaly detection. The
method uses the entire trace to detect execution time anomalies allowing
to utilize the inherent properties of the tracing data with the help of a
transformer neural network. We demonstrate an additional property of
the method that enables tracking of the differences between the normal
and abnormal traces, leading to an improved reasoning of the anomaly
cause.
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4. Detection of complex anomalies by integration of the anomaly detec-
tors. Finally, we present a rule-based approach for combining the predic-
tors. We propose a heuristic to classify the severity of the anomaly by its
appearance in the data sources. Lastly, we evaluate how the anomalies
are reflected in different data sources through real production scenarios
and show the importance of the utilization of the three data components.

Each of the methods is implemented as a prototype and evaluated on bench-
mark datasets, experimental testbeds, and production data from a global ser-
vice provider.

Parts of this thesis have been published in:

[1] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao. “Self-
Attentive Classification-Based Anomaly Detection in Unstructured
Logs.” In: 2020 IEEE International Conference on Data Mining (ICDM).
2020, pp. 1196–1201.

[2] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Car-
doso, and Odej Kao. “Self-supervised Log Parsing.” In: Machine Learn-
ing and Knowledge Discovery in Databases: Applied Data Science Track.
Cham: Springer International Publishing, 2021, pp. 122–138.

[3] J. Bogatinovski, S. Nedelkoski, J. Cardoso, and O. Kao. “Self-
Supervised Anomaly Detection from Distributed Traces.” In: 2020
IEEE/ACM 13th International Conference on Utility and Cloud Computing
(UCC). 2020, pp. 342–347.

[4] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. “Anomaly Detection
and Classification using Distributed Tracing and Deep Learning.” In:
Proceedings of the 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). 2019, pp. 241–250.

[5] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. “Anomaly Detection
from System Tracing Data Using Multimodal Deep Learning.” In: Pro-
ceedings of the 12th IEEE International Conference on Cloud Computing
(CLOUD 2020). IEEE. 2019, pp. 179–186.

[6] Sasho Nedelkoski and Jorge Cardoso. Apparatus and method for detecting
an anomaly among successive events and computer program product therefor.
Approved by the European Patent Office, WO2020125929A1, 2020.

[7] Sasho Nedelkoski, Mihail Bogojeski, and Odej Kao. “Learning More
Expressive Joint Distributions in Multimodal Variational Methods.” In:
Machine Learning, Optimization, and Data Science. Cham: Springer Inter-
national Publishing, 2020, pp. 137–149.
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[8] Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, So-
eren Becker, Jorge Cardoso, and Odej Kao. “Multi-source Distributed
System Data for AI-Powered Analytics.” In: Service-Oriented and Cloud
Computing. Cham: Springer International Publishing, 2020, pp. 161–
176.

[9] Jasmin Bogatinovski and Sasho Nedelkoski. “Multi-Source Anomaly
Detection in Distributed Systems.” In: Proceedings of the 18th Interna-
tional Conference on Service Oriented Computing (ICSOC 2020). 2020.

[10] S. Nedelkoski, L. Thamsen, I. Verbitskiy, and O. Kao. “Multilayer Ac-
tive Learning for Efficient Learning and Resource Usage in Distributed
IoT Architectures.” In: 2019 IEEE International Conference on Edge Com-
puting (EDGE). 2019, pp. 8–12.

[11] Jasmin Bogatinovski, Sasho Nedelkoski, and Jorge Cardoso. Distributed
Trace Anomaly Detection with Self-Attention based Deep Learning. Filled in
European Patent Office, 9014694. 2020.

[12] Li Wu, Jasmin Bogatinovski, Sasho Nedelkoski, Johan Thordsson, and
Odej Kao. “Performance Diagnosis in Cloud Microservices using Deep
Learning.” In: Proceedings of the 18th International Conference on Service-
Oriented Computing, ICSOC 2020. 2020.

[13] Sabtain Ahmad, Kevin Styp-Rekowski, Sasho Nedelkoski, and Odej
Kao. “Autoencoder-based Condition Monitoring and Anomaly Detec-
tion Method for Rotating Machines.” In: Proceedings of the 7th IEEE
International Conference on Big Data (IEEE BigData 2020). 2020.

[14] Thorsten Wittkopp, Alexander Acker, Sasho Nedelkoski, Jasmin Bo-
gatinovski, and Odej Kao. “Superiority of Simplicity: A Lightweight
Model for Network Device Workload Prediction.” In: Proceedings of the
15th Conference on Computer Science and Information Systems (FedCSIS
2020). 2020.

[15] Lauritz Thamsen, Jossekin Beilharz, Vinh Thuy Tran, Sasho
Nedelkoski, and Odej Kao. “Mary, Hugo, and Hugo*: Learning to
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Code and related resources for the open-sourced prototypes are available
on GitHub 1.

1 https://github.com/snedelkoski



1.3 outline of the thesis 8

1.3 outline of the thesis

The rest of this thesis is structured as follows.
Chapter 2 presents the necessary background on modern distributed sys-

tems and their observability components, various approaches for anomaly de-
tection, and analytical concepts required for the understanding of the method-
ology of this thesis.

Chapter 3 describes the main problems and challenges of the anomaly
detection of the system data. The chapter presents a reference architecture
and positions the methods described in the thesis. It provides an overview of
the proposed methods.

Chapter 4 presents a method for anomaly detection and classification from
time-series resource metric data. The chapter also presents the evaluation of
the method on time series data from testbed microservice architectures and
global industrial service provider. We conclude the chapter with a review of
the related studies and summary.

Chapter 5 presents the challenges for log parsing, as the first step toward
anomaly detection. We then present a novel self-supervised log parsing ap-
proach. The applicability of the presented parser for anomaly detection is
demonstrated through an evaluation, two use cases, and their analysis. We
present a novel log anomaly detection method with a new objective function.
Through exhaustive experiments, we evaluate the method against previous
state-of-the-art approaches to show its effectiveness. In the end of the chapter,
we discuss the related studies and provide a summary of the contributions.

Chapter 6 introduces trace analogy to natural language sentence and sim-
ple sequential learning model for anomaly detection. It presents novel prob-
lem formulation and method based on self-supervised learning. It demon-
strates an approach for localizing faulty services. We also evaluate the pre-
sented method, discuss related studies, and conclude the chapter with a sum-
mary.

Chapter 7 includes the motivation for the utilization of all three sys-
tem sources for anomaly detection through practical examples, where the
incidents are reflected in different data types. We then present and discuss
three system health states, which depend on the data sources affected by an
anomaly. We describe a flexible rule-based approach to integrate the detectors,
and provide an evaluation. The chapter is concluded with a summary.

Chapter 8 summarizes our findings and identifies directions for future
studies.
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In this chapter, we describe the main concepts and principles behind system
dependability, observability in distributed systems, and the use of artificial in-
telligence in IT operations (AIOps). Then, we explain key concepts of anomaly
detection needed for understanding the methods in this thesis.

2.1 system dependability

Dependability is defined as the trustworthiness of a computer system such
that reliance can justifiably be placed on the service it delivers [27]. In software
engineering, dependability can be broken down into three elements [28]:

1. The threats (impairments) to dependability: faults, errors, failures; they
are undesired circumstances causing that reliance cannot, or will not
longer be placed on the service.

2. The means for dependability: fault prevention, fault tolerance, fault re-
moval, and fault forecasting, which provide the ability to deliver a ser-
vice on which reliance can be placed.

3. The attributes of dependability: Depending on the application running
in the system, dependability may be viewed according to different, but
complementary, properties: (1) with respect to the readiness for usage,
dependable means available; (2) with respect to the continuity of ser-
vice, dependable means reliable; (3) with respect to the avoidance of
catastrophic consequences on the environment, dependable means safe;
and (4) with respect to the prevention of unauthorized access and/or
handling of information, dependable means secure [28].

9
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The methods presented in this theses are contributing towards the improve-
ment of dependability of the distributed systems by detecting the threats to
system dependability. In the following we describe the concepts behind faults,
errors, and failures.

A fault or bug is a defect in a system. The presence of a fault in a system
may or may not lead to a failure. For example, although a system may contain
a fault, its input and state conditions may never cause this fault to be executed
so that an error occurs.

An error is a difference between the desired behaviour of a system and
its actual behaviour. Errors usually occur at runtime when some part of the
system enters an unexpected state due to the activation of a fault. Since errors
are generated from invalid states they are hard to observe without special
mechanisms, such as debuggers or debug output to logs.

A failure is an instance in time when a system displays behaviour that is
contrary to its specification. An error may not necessarily cause a failure, for
instance an exception may be thrown by a system but this may be caught
and handled using fault tolerance techniques so the overall operation of the
system will conform to the specification.

In modern paradigms of distributed software systems, ensuring high de-
pendability is a challenging problem as the threats can appear in hardware
failures, unreliable networks, software bugs, and even human errors [29]. In
the following, we describe key concepts of distributed systems, and observ-
ability as a key paradigm that provides the starting point for improving the
dependability.

2.2 distributed system observability

A distributed system has multiple components located on different machines,
which communicate and coordinate actions over the network by passing mes-
sages to each other [30]. SOAs have been introduced more than 20 years
ago [31]. Since then, the field of distributed systems has been actively re-
searched, which has led to a large paradigm shift. Recently, a variant of SOA,
referred to as microservice architecture, emerged as a standard architecture
for software systems. Today, more than two decades after the introduction of
SOA, systems based on microservices are state of the art and utilized by ma-
jor companies such as Google, Twitter, and Amazon [1]. Furthermore, cloud
providers such as Amazon Web Services and Microsoft Azure enabled compa-
nies to migrate their infrastructures into the cloud, where ideas similar to mi-
croservices can be easily implemented. This facilitated the general paradigm
shift in software [32].
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The conceptual change in software architectures implies that the services in-
creasingly rely on communication. This introduces an additional complexity
into the distributed systems. The increased complexity of a highly distributed
architecture leads to difficulties in O&M, which directly affects the reliability,
availability, resilience, and security of the systems [33]. Availability is a char-
acteristic of a system, which aims to ensure an agreed level of operational
performance, usually uptime, for a higher-than-normal period. Reliability is
the probability of continuous correct operation [34].

Owing to the complexity, distributed systems are prone to failures and are
not available at all times at 100% [13, 15]. Building dependable with respect
to reliability systems requires context-aware monitoring of the distributed in-
frastructure, which is referred to as observability. Therefore, collecting every
possible snapshot of the system can be used to develop intelligent tools to sup-
port troubleshooting and operations such as anomaly detection, root-cause
analysis, and probably self-healing triggers into the system [1].

Observable systems require the collection of factual data and extraction
of insightful information. The distributed system data are in the forms of
metrics, logs, and traces, often referred to as three pillars of observability [1,
19]. Metrics are numeric values measured over a period of time. They describe
the utilization and status of the infrastructure, typically regarding the CPU,
memory, disk, network throughput, service latency, and error rates [14, 35].
Logs enable developers to record actions executed at runtime by software.
Services and other systems generate logs composed of timestamped records
with a structure and free-form text [23, 36–38]. Distributed traces record the
workflows of services executed in response to requests, e.g., hypertext transfer
protocol (HTTP) or remote procedure call (RPC) requests. The records contain
information about the execution graph and performance at a microservice
level [18, 39, 40].

Notably, these major observability components can be instrumented and
available for most distributed software system, as they comply with mod-
ern software engineering practices [16]. We describe each of the system data
sources below.

2.2.1 Metrics

Most components of the software infrastructure serve as a resource to other
components or systems. Some resources are low-level, e.g., server resources
such as CPU, memory, disks, and network interfaces. However, a higher-level
component, such as a database or microservice, can also be considered a re-
source if another system requires that component to produce work. Resource
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Figure 1: Examples of metric time series data. Response time (left) and error rate
(right) [42].

metrics can help reconstruct a picture of a system’s state, which makes them
valuable for investigation and diagnosis of problems. Often, for each service
in a software system, several metrics are collected in key areas [41]:

• Saturation defines the load on the network and server resources. Every
resource has a limit after which the performance decreases or becomes
unavailable. This is valid for resources such as CPU utilization, memory
usage, disk capacity, and operations per second. Often, these metrics are
leading indicators, so that the system’s capacity can be adjusted before
the performance degrades. Reaching these limits can lead to component
failures.

• Errors can reflect infrastructure misconfigurations, software bugs, or bro-
ken dependencies. For example, a spike in error rate can indicate a fail-
ure of a database or network outage. Following a code deployment, it
can indicate bugs in the code that survived the testing or only surfaced
in the production environment.

• Traffic is a measure of the number of requests flowing across the net-
work. Times of peak traffic can lead to an additional stress on the system.
It is a key signal because it helps differentiate capacity problems from
improper system configurations that can cause problems even during a
low traffic.

• Latency or response time is the time required to send a request and re-
ceive a response. Latency is commonly measured from the server side.
However, it can also be measured from the client side to consider differ-
ences in network speed. The response time of a service is a measure of
the QoS of particular service or system.

We define a single observation of a metric as a value, timestamp, and some-
times list of properties that describe the observation, such as a source or tags.
A time series is a set of observations xi, each being recorded at specified
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time t [43]. We show examples of two time series from metric data in Fig-
ure 1, requests per second and error rate. As metrics are simply numbers
measured over intervals of time, they can be compressed, stored, processed,
and retrieved efficiently. Metrics are optimized for storage and enable a longer
retention of data, which can be used to build dashboards to reflect historical
trends. The cost of metrics does not increase with the user traffic or any other
system activity. Metrics, once collected, are more suitable for mathematical
and statistical transformations such as sampling, aggregation, summarization,
and correlation, which makes them better suited for monitoring and profiling
purposes. Metrics are also suited to trigger alerts, as running queries against
an in-memory time-series database is considerably more efficient than run-
ning a query against a distributed system storage, and then aggregating the
results before deciding if an alert needs to be triggered [16, 44].

Metrics can be sufficient for understanding the health of individual sys-
tem components and application services. However, they are not sufficient to
understand the lifetime of a request that traverses multiple systems, nor the
semantics of the anomaly. Complex anomalies that propagate through several
services and system components are more challenging to detect using solely
metric data owing to the diminishing effect [1, 16].

2.2.2 Logs

Logs are important in understanding and improving software systems. Sys-
tem operators and developers leverage the rich information in logs to gen-
erate workload information for capacity planning in large-scale systems [45,
46], monitor the overall system health [47], perform anomaly detection [8, 9,
14, 21–23, 38, 48], analyze the root cause of a problem [49–51], reproduce fail-
ures [52], improve the performance, reduce the energy consumption, address
security issues [53], reconstruct workflows [54], and discover bugs [55].

Logs are not only beneficial for developers and operators for successfully
managing the system, but are also often needed to comply with legal regula-
tions. For example, the Sarbanes-Oxley Act of 2002 specifies that the execution
of telecommunication and financial applications must be logged to help pro-
tect the general public from errors and fraudulent practices [56].

In modern distributed systems, logs provide vital insights by capturing the
state of the system for each service/component [21]. Logs are generally instru-
mented as per their usability by developers. Depending on the storage rules,
they are processed, aggregated, and ultimately stored in a centralized data
store from where they can be analyzed. Logs can originate from the applica-
tion logic code, middleware, network communications (e.g., from switches),
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Table 1: Raw log messages from OpenStack cloud platform.
Nr. Log messages

1 2019-11-25T15:48:55.530, INFO, "memory limit not specified", nova.compute.claims
2 2019-11-25T15:48:55.531, INFO, "Total vcpu: 8 VCPU, used: 0.00 VCPU", nova.compute.claims
3 2019-11-25T15:48:55.533, INFO, "Claim successful on node wally117", nova.compute.claims
4 2019-11-25T15:49:19.895, INFO, "VM Resumed (Lifecycle Event)", nova.compute.manager
5 2019-11-25T15:49:23.333, INFO, "Instance destroyed successfully.", nova.virt.libvirt.driver

database communication, message brokers, caches, interaction with load bal-
ancers, and communication with security and authentication modules[1].

Independent on their origin type, logs contain free-form text with a times-
tamp, alongside other system-dependent fields. We show few typical log mes-
sages from a cloud computing infrastructure software (OpenStack [57]) in
Table 1. The first field is the timestamp when the log was generated, followed
by a log level (INFO, WARNING, ERROR, etc.), payload or actual print state-
ment written by developers, and name of the service from which was gener-
ated. Logs can also contain host names and IP addresses, class names, and
other features.

Log is a string, blob of JSON, or typed key-value pairs, which enables to
easily represent any data in the form of a log line. Most languages, application
frameworks, and libraries are accompanied by support for logging [58]. Logs
are also simple to instrument, as adding a log line is as trivial as adding a
print statement. Logs exhibit high performances in terms of surfacing a highly
granular information with a rich local context, provided that the search space
is localized to events that occurred in a single service [16, 59].

However, logs, similar to the metric data, are system/service-scoped, which
hinders the understanding of the full life cycle of a request that propagates
through multiple connected services in the distributed system [16]. Often, var-
ious possible triggers across a highly interconnected graph of components
are involved [13, 15]. By solely observing discrete events that occurred in any
given component at some point in time, it becomes challenging to determine
all such triggers. This is the strongest drawback of log data.

2.2.3 Distributed traces

The introduction of distributed traces helps address the drawbacks of the log
data. They are a series of causally related distributed events that encode the
end-to-end request flow through a distributed system. A single trace can pro-
vide visibility into the service response time to a request, path traversed by a
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Figure 2: Path through simple microservice system on behalf of the user request.

request, and structure of a request [39, 60]. The path of a request enables soft-
ware developers and operators to understand the different services involved
in executing a particular request. The structure of a request helps understand
the junctures and effects of asynchrony in the execution of a request. The re-
sponse time contained in the traces is related to the actual user experience,
QoS, and can be considered as metric data [14, 18].

A tracing infrastructure (e.g., Dapper [60]) for distributed services records
information about all work in a system on behalf of a given initiator. In Fig-
ure 2, we show an example of a system with four servers and six microser-
vices. We describe the path of invocation of services and simple trace. A user
sends a request at the frontend. The front service sends two calls to microser-
vices in hosts 1 and 2. Service 11 on host 1 calls service 12 (e.g., database)
and responds to the request from the frontend. However, services 21 and 22

require work from service 31 at host 3, before a reply is sent to the frontend.
A simple trace for this request will be a collection of message identifiers and
timestamped events for every message sent and received at each service.

Such execution path with distributed tracing can be naturally described
as a graph. In a trace graph, the nodes are basic units of work, referred to
as events or spans. Each service invocation produces one span in the trace.
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Figure 3: Causal and temporal relationships between events in a trace.

The edges indicate a causal relationship between services. We illustrate spans
forming the structure of a larger trace in Figure 3. Tracing records a human-
readable span name for each span, as well as a Span ID and Parent ID. To
reconstruct the causal relationships between the individual spans in a single
distributed trace, we need to follow the parent–child relationship between the
spans (representing a service invocation). Spans created without a Parent ID
are known as root spans. All spans associated with a specific trace also share
a common identifier Trace ID. All these IDs are probabilistically unique 64-bit
integers [60].

Figure 4 provides a more detailed view of the logged events in a typical
trace span. Each span within the trace is described by its start and stop times,

Figure 4: Detailed view of a single event from a trace.
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name of the host of the service, name of the service/project, HTTP endpoint,
and list of its children spans/services. If application owners choose to aug-
ment the trace with their annotations, these are also recorded with the rest of
the span data.

Figure 5: Overview of AIOps tasks [61, 62].

2.3 artificial intelligence for it systems

The amount and descriptive power of the observability data sources are
favourable for the use of artificial intelligence methods. In this context, the
term AIOps was coined by Gartner [62] to address the DevOps challenges
with AI. AIOps aims to achieve high service intelligence, customer satisfac-
tion, and engineering productivity. However, numerous challenges still need
to be overcome.

The software industry is still at the early stage of innovating and adopting
AIOps solutions. According to FutureScape and Gartner predictions [61, 63],
by 2024, 60% of the companies will adopt ML/AI analytics for their develop-
ment, maintenance, and operation tasks.
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2.3.1 AIOps tasks

AIOps can enhance a broad range of IT operation processes and tasks, includ-
ing performance analysis, anomaly detection, event correlation and analysis,
IT service management, and automation (see Figure 5). The focus of AIOps,
according to Gartner [61, 62], includes:

• Basic and advanced statistical analyses: a combination of univariate and
multi-variate analyses including correlations and computing other statis-
tic indicators.

• Anomaly detection: use of the observed normal system behavior to ini-
tially develop a model, and then flag departures from the normal system
behavior [10, 64–66].

• Root cause localization: isolation of links of dependency that represent
genuine causal relationships in terms of providing recipes for an effec-
tive intervention when an anomaly is detected [67–71].

• Prescriptive advice and healing: classification of anomalies and root
causes into known categories, relating them with solutions, analyzing
the possible solutions for applicability, and offering them in a prioritized
form for usage of remediation [72, 73].

• Topology: for the patterns detected to be relevant and actionable, a con-
text must be placed around them. The context is topology. Without the
context, the detected patterns, although valid, may be unhelpful and
even distracting. Deriving patterns from data within a topology will
reduce the number of patterns, establish relevancy, and illustrate hid-
den dependencies. Using topology as a part of the causality determi-
nation can largely increase its accuracy and effectiveness. Capturing
where events occurred and their up- and downstream dependencies us-
ing graph and bottleneck analyses can provide valuable insights to focus
the remediation efforts [74–78].
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2.4 anomaly detection

Anomaly detection has been a lasting yet active research field in various re-
search domains for several decades. As an application-driven research field,
numerous methods have been proposed including those in statistics, com-
puter systems, healthcare, banking, and earth sciences [79]. Anomaly detec-
tion is used as a general method for various techniques and approaches that
share the aim of finding unusual observations in given data. A general widely
accepted definition of anomaly has been reported by Hawkings [80]:

"An outlier (anomaly) is an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different mechanism."

Predecessor definitions have also been reported (e.g., that by Grubbs in
1969 [81]):

"An outlying observation, or "outlier" (anomaly), is one that appears to deviate
markedly from other members of the sample in which it occurs."

These definitions suggest that anomaly detection is a quite old method in
computer science and statistics. However, recently, the importance of anomaly
detection significantly increased with the appearance of the internet, online
services, big data, large computer systems, and their economical impact. Nu-
merous online services rely on combinations of anomaly detection methods.
For example, cloud platforms utilize anomaly detection to improve their re-
silience and reliability, fraud detection is extensively used in the banking sec-
tor, and intrusion detection tools are implemented to prevent cyber attacks.
Depending on the application and context of use, the term "anomaly" is often
substituted by outlier, exception, noise, abnormality, and deviation.

A common anomaly detection approach is to define a region representing
the normal behavior and declare any observation in the data that does not
belong to the normal region as an anomaly. However, several properties make
this apparently simple approach challenging to use [3, 12]:

• Defining a model that captures every possible normal behavior is chal-
lenging as it is not possible to identify every possible normal behaviour
in most applications.

• When anomalies are results of malicious actions, the malicious adver-
saries often adapt to make the anomalous observations appear as nor-
mal.
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Figure 6: Example of point anomalies (left). Example of a contextual anomaly (mid-
dle, the value of the data instance at the minimum is not anomalous; how-
ever, it is anomalous in the region outlined by the dashed line). Example
of a collective anomaly (right); the absence of a whole group of data points
forms an anomaly.

• In numerous domains, the normal behavior continuously evolves and a
current notion of normal behavior might not be sufficiently representa-
tive in the future.

• The availability of labeled data for training/validation of models used
by anomaly detection techniques is often a major issue.

• The data contain noise, which tends to be similar to the actual anomalies,
and hence is challenging to distinguish and remove.

Considering the above challenges, the anomaly detection problem, in its
most general form, is not simple. Therefore, most of the existing anomaly
detection techniques solve a specific formulation of the problem, which is
application-dependent.

Furthermore, anomalies appear in numerous different forms and contexts.
In general, regarding the type of anomalies that could possibly arise, three
different types are considered [3] (Figure 6):

• Point anomalies are data points that appear isolated from the bulk of
the data.

• Contextual anomalies, sometimes referred to as conditional anomalies,
are data points whose values are anomalous only in a specific contextual
relation. Contextual features might be time, location, or broader data
structure.

• Collective anomalies consist of a sequence of data points that only as a
group, not as individual points, can be regarded anomalous.



2.4 anomaly detection 21

Point anomalies have been extensively investigated as numerous methods
assume that data points are independent instances [3, 82]. However, data
points can have strong dependencies. Therefore, it is expected to handle these
data points in a collective or contextual manner. For example, asynchrony logs
might not have emphasized contextual dependencies, while metric and trace
data are inherently dependent.

The labels associated with a data instance denote whether that instance is
normal or anomalous. Notably, the acquisition of labeled data that are accu-
rate as well as representative of all types of behaviors is often prohibitively
costly [3]. The labeling in all domains is often carried out manually by a hu-
man expert and hence a substantial effort is required to obtain the labeled
training data set. Typically, the provision of a labeled set of anomalous data
instances that cover all possible types of anomalous behavior is more chal-
lenging than the provision of labels for the normal behavior. Moreover, the
anomalous behavior is often dynamic in nature; e.g., new types of anomalies
may arise, for which no labeled training data exist. In certain cases (e.g., in air
traffic safety), anomalous instances may translate to catastrophic events, and
hence are rare [83]. The provision of labeled data from distributed systems is
costly and challenging owing to mostly practical limitations. As already men-
tioned, such systems undergo constant changes, e.g., software updates and
hardware modernization, where labeled data become deprecated over time.
Moreover, injection of anomalies to obtain data points is not possible as most
running systems cannot risk possible downtimes [13, 15, 23]. Based on the
extent to which the labels are available, anomaly detection techniques can op-
erate in one of the following three modes: supervised, semi-supervised, and
unsupervised anomaly detection, discussed below.

2.4.1 Supervised anomaly detection

The methods for supervised anomaly detection are similar to building predic-
tive models [3]. These techniques assume the availability of a training data set,
which has labeled instances for normal as well as anomaly classes. A typical
approach in such cases is to develop a predictive model for binary classifica-
tion, which aims to learn the distinctions between the normal and anomaly
classes. Any unseen data instance is compared against the model to determine
which class it belongs to.

Two major issues exist in supervised anomaly detection. First, issues
emerge owing to imbalanced class distributions. Second, the provision of ac-
curate and representative labels, particularly for the anomaly class, is usually
challenging [84, 85].
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2.4.2 Semi-supervised anomaly detection

In numerous real-world applications including anomaly detection in dis-
tributed systems, the operators have access to some verified (i.e., labeled)
normal or anomalous samples in addition to the unlabeled data. The inclu-
sion of these samples together with the bulk of unlabeled data leads to a
semi-supervised anomaly detection problem.

Considering N (mostly normal but possibly containing some anoma-
lous samples) unlabeled samples x1, . . . , xN and M labeled samples
(x̂1, ŷ1), . . . , ( ˆxM, ˆyM), where ŷ = 0 and ŷ = 1 denote normal and anomalous
samples, respectively, the task is to learn a model that compactly characterizes
the normal class. The typical approach used in semi-supervised techniques is
to develop a model for the class corresponding to the normal behavior and
use the model to identify anomalies in the test data. The term semi-supervised
anomaly detection has been used to describe two different anomaly detection
settings. Most existing semi-supervised AD methods are instances of learn-
ing from positive (i.e., normal) and unlabeled examples. A few studies have
been carried out on the general semi-supervised AD setting where labeled
anomalies are also utilized. However, existing deep approaches are domain-
or data-type-specific [3, 86]. A limited set of anomaly detection techniques
assume availability of only the anomaly instances for training due to the chal-
lenges to obtain anomalies that cover all cases [86].

2.4.3 Unsupervised anomaly detection

Techniques that operate in the unsupervised mode do not require labeled
training data, and thus are most widely applicable [8, 14, 18, 23, 83, 86, 87].
The techniques in this category use the implicit assumption that normal in-
stances are far more frequent than anomalies in the test data [83]. If this
assumption is not true, such techniques suffer from a high false alarm rate.
Numerous semi-supervised techniques can be adapted to operate in an un-
supervised mode using a sample of the unlabeled data set as training data.
Such adaptation assumes that the test data contains few anomalies. The model
learnt during the training is robust to these few anomalies. However, a large
gap exists between the supervised and unsupervised anomaly detection meth-
ods. The supervised anomaly detection is largely favored under the assump-
tion that all data are labeled [83].
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2.4.4 Deep anomaly detection

The performances of traditional algorithms in detecting outliers can still be
improved on the sequence and image datasets as they cannot capture com-
plex patterns in the data [12]. Moreover, as the volume of data increases, for
example, to gigabytes, it becomes almost impossible for the traditional meth-
ods to scale to such large-scale data to find anomalies [88]. To mitigate these
issues, deep learning for anomaly detection, shortly deep anomaly detection,
aims to learn feature representations or anomaly scores through neural net-
works. A large number of deep anomaly detection methods have been intro-
duced, with significantly higher performances than those of the conventional
anomaly detection methods [12]. However, the lack of a well-defined repre-
sentative normal boundary poses challenges for both conventional and deep
learning-based algorithms.

Deep neural networks leverage complex compositions of linear/nonlinear
functions that can be represented by a computational graph to learn expres-
sive representations [26]. The basic building blocks of deep learning are ac-
tivation functions and layers. Activation functions determine the output of
computational graph nodes (i.e., neurons in neural networks) for given inputs.
They can be linear or nonlinear functions. Popular activation functions include
linear, sigmoid, tanh, rectified linear unit (ReLU), and its variants. A layer in
neural networks refers to a set of neurons stacked in some forms. Commonly
used layers include fully connected, convolutional & pooling, and recurrent
layers. These layers can be leveraged to build different popular neural net-
works. For example, multi-layer perceptron (MLP) networks are composed
of fully connected layers, convolutional neural networks (CNNs) have vary-
ing groups of convolutional & pooling layers, and recurrent neural networks
(RNNs), e.g., vanilla RNN, gated recurrent units (GRUs), and long-short-term
memory (LSTM), are based on recurrent layers. We refer the reader to Good-
fellow et al. [26] for a detailed description of the neural networks.

For a dataset X = tx1, x2, ¨ ¨ ¨ , xNu with xi P RD and Z P RK as a repre-
sentation space, deep anomaly detection aims to learn a feature represen-
tation mapping function φ(¨) : X ÞÑ Z or anomaly score learning function
τ(¨) : X ÞÑ R in a manner that anomalies can be easily differentiated from the
normal data instances in the φ or τ space, where φ and τ are a neural-network-
enabled mapping function with H P N hidden layers and their weight matri-
ces Θ = tM1, M2, ¨ ¨ ¨ , MHu, respectively. In the case of learning the feature
mapping φ(¨), an additional step is required to calculate the anomaly score
of each data instance in the new representation space, while τ(¨) can directly
infer the anomaly scores with raw data inputs.
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Pang et al. [12] provided an exhaustive overview of deep anomaly detec-
tion methods grouped by three conceptual paradigms: deep learning for fea-
ture extraction, learning feature representations of normality, and end-to-end
anomaly score learning. We discuss below the main concepts and methods for
each group. For details, we refer the reader to more comprehensive reviews
of the literature [12, 83, 88].

2.4.4.1 Deep learning for feature extraction

This category of studies aims to leverage deep learning to extract low-
dimensional feature representations from high-dimensional data for down-
stream anomaly detection. The feature extraction and anomaly scoring are
fully disjointed and independent on each other. Thus, the deep learning com-
ponents are used only for dimensionality reduction. Formally, the approach
can be represented by

z = φ(x;Θ), (1)

where φ : X ÞÑ Z is a deep-neural-network-based feature mapping function,
with X P RD, Z P RK, and normally D " K. An anomaly scoring method f
that has no connection to the feature mapping φ is then applied onto the new
space to calculate anomaly scores.

Compared to the dimension reduction methods, popular for anomaly de-
tection, such as principal component analysis (PCA) [89], deep learning tech-
niques have exhibited substantially better capabilities in extracting semantic-
rich features and nonlinear feature relations [26, 90].

2.4.4.2 Learning feature representations of normality

The deep anomaly detection methods in this category couple feature learning
with anomaly scoring to some extent, which are different from the methods
in the last section, which fully decouple these two modules.

This category of methods learn the representations of data instances by
optimizing a generic feature learning objective function that is not primarily
designed for anomaly detection, but the learned representations can be still
utilized for the anomaly detection as they are forced to capture some key
underlying data regularities. Formally, this framework can be represented by

tΘ˚, W˚
u = Θ, W

ÿ

xPX

`
(
ψ
(
φ(x;Θ); W

))
, sx = f(x,φΘ˚ ,ψW˚), (2)
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where φ maps the original data onto the representation space Z, ψ param-
eterized by W is a surrogate learning task that operates on the Z space and
is dedicated to enforce the learning of underlying data regularities, ` is a loss
function relative to the underlying modeling approach, and f is an anomaly
scoring function that utilizes these two functions with the trained parameters
Θ˚ and W˚ to calculate the anomaly score s. This approach includes meth-
ods driven by several perspectives, including data reconstruction, generative
modeling, predictability modeling, and self-supervised classification.

2.4.4.3 End-to-end anomaly score learning

This approach aims to learn scalar anomaly scores in an end-to-end manner.
Compared to anomaly measure-dependent feature learning, the anomaly scor-
ing in this type of approach is not dependent on existing anomaly measures.
It has a neural network that directly learns the anomaly scores. Novel loss
functions are often required to drive the anomaly scoring network. Formally,
this category of methods aims to learn an end-to-end anomaly score learning
network: τ(¨;Θ) : X ÞÑ R. The underlying framework can be represented as

Θ˚ = arg min
Θ

ÿ

xPX

`
(
τ(x;Θ)

)
, (3)

sx = τ(x;Θ˚). (4)

2.4.4.4 Autoencoders

Autoencoders are utilized as a neural architecture throughout this thesis. This
type of approach aims to learn some low-dimensional feature representation
space on which the given data instances can be well reconstructed. This is a
widely used technique for data compression or dimension reduction [25, 91,
92]. The heuristic for using this technique in anomaly detection is that the
learned feature representations are enforced to learn important regularities
of the data to minimize reconstruction errors. It is challenging to reconstruct
anomalies from the resulting representations, and thus they have large recon-
struction errors.

It is assumed that normal data instances can be better restructured from the
compressed feature space than anomalies. In autoencoders, the output (target)
value is set equal to the input, i.e., yi = xi [25] (see Figure 7). The autoencoder
learns a function h(w,b(x)) » x. In other words, it aims to learn an approxi-
mation to the identity function, to output y similar to x. The identity function
seems a trivial function to learn. However, by placing some constraints, e.g.,
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Figure 7: Architecture of an under-complete autoencoder.

by limiting the number of hidden units or introducing regularization, we can
extract some valuable features from the data. Modern autoencoders have gen-
eralized the idea of encoder and decoder beyond deterministic functions to
stochastic mapping. One approach to obtain useful features, as mentioned, is
to have a smaller h-dimension than x. This is referred to as under-complete
autoencoder. Learning the under-complete representation forces the autoen-
coder to capture the most important features of the data. The learning consists
simply of minimizing the error function by back-propagation.

If the hidden layer has a higher dimensionality than that of the input, the
under-complete autoencoder will not learn salient features because it will
only trivially copy the input to the output. A possible solution to train au-
toencoders is to include regularization. Rather than limiting the model capac-
ity, regularized autoencoders use a loss function that encourages the model
to have other properties besides the ability to copy its input to its output.
These properties include sparsity of the representation, robustness to noise,
and handling missing inputs. Autoencoders have been successfully applied to
dimensionality reduction, anomaly detection, and information retrieval. For
example, a lower-dimension representation can improve the performances of
numerous tasks, such as classification, so that the models will consume less
memory and run-time [12, 83].
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2.4.4.5 Self-supervised learning

Self-supervised learning is learning of representations by solving auxiliary
tasks. These auxiliary prediction tasks do not require ground-truth labels for
learning and thus can be applied to unlabeled data, which makes the self-
supervised learning suitable for anomaly detection. Self-supervised methods
introduced for visual anomaly detection train multi-class classification mod-
els based on pseudo-labels that correspond to various geometric transforma-
tions (e.g., flips, translations, and rotations) [93]. In a broader context, it is of
interest to identify to what extent the self-supervision can facilitate the learn-
ing of semantic representations. It has been evidenced that self-supervised
learning helps improve the detection of semantic anomalies and thus exhibits
inductive biases toward semantic representations [94]. On the other hand, the
self-supervision mainly improves the learning of effective feature representa-
tions for low-level statistics [95]. Hence, this research question remains to be
answered. It has a high potential for numerous domains where large amounts
of unlabeled data are available.

2.4.5 Evaluation scores for anomaly detection methods

To compare our method to those in the previous studies, we use the stan-
dard evaluation scores from the literature [12, 83]. We evaluate our method in
terms of F1-score, precision, recall, and accuracy, which depend on the true
negative (TN), true positive (TP), false negative (FN), and false positive (FP)
predictions. The positive class of 1 is assumed to be anomalous. The F1 score
can be interpreted as a weighted average of the precision and recall. The best
F1, precision, recall, and accuracy scores are 1, while the worst are 0. The rel-
ative contributions of the precision and recall to the F1 score are equal. The
precision is the ratio TP

(TP+FP) , which, intuitively, is the ability of the classifier

to not label as positive a sample that is negative. The recall is the ratio TP
(TP+FN) ,

which, intuitively, is the ability of the classifier to find all positive samples.
Even if a sufficient number of labeled samples are available, the class bal-

ances will be extremely skewed and some measures, e.g., the classification
error, will not be suited to appropriately reflect the state of the generalization
error. To circumvent these problems, error measures that are transient to class
imbalances are used, such as the area under the receiver operating character-
istic curve (AUC or AUROC) [96]. The area under the ROC curve represents
the fraction of detected anomalies, averaged over the full range of decision
thresholds.
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This chapter describes the main challenges, problems addressed, and as-
sumptions made in this thesis related to anomaly detection in each of the
system data sources. We position the methods developed in this thesis in the
more general AIOps platform and provide an overview of the solution.

3.1 anomaly detection challenges in distributed software

systems

Several challenges that hinder the anomaly detection include training a model
to capture every possible normal behavior, existence of anomalies from ma-
licious adversaries, evolving normal behaviour, absence of labeled data, and
high noise.

The complex nature of the anomaly detection problem translates some of
the detection challenges to the domain of distributed software systems.

• Low prediction rate. Anomalies are rare events. It is challenging to iden-
tify all of them. Numerous normal instances are wrongly reported as
anomalies while sophisticated anomalies are missed out. Although ex-
tensive studies have been carried out [97, 98], a large number of false
positives exist in real-world datasets [38, 86, 87, 96]. Large distributed
systems such as the cloud are constantly prone to new infrastructure
and software updates and varying levels of load, noise, and users [5].
For example, a system upgrade often generates novel log messages,
changes the "normal" metric behavior, and most likely generates a dif-
ferent trace [22, 40]. In this regard, the data continuously evolve and
thus the current normal behaviour may be outdated in the future. This
creates a challenging environment for modeling of the normal behavior,
which is crucial for anomaly detection.

28
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• Anomaly detection in high-dimensional data. Anomalies often exhibit
evident abnormal characteristics in a low-dimensional space, yet be-
come hidden and unnoticeable in a high-dimensional space. Identify-
ing high-order, nonlinear, and heterogeneous feature interactions and
couplings may be essential in high-dimensional data. It is still a major
challenge for anomaly detection. In addition, it is challenging to detect
anomalies from instances that may be dependent on each other, e.g.,
by temporal, spatial, graph-based, and other interdependency relation-
ships [12]. These properties are particularly valid for log and trace data
in distributed systems. Logs, as text data, often are represented as high-
dimensional data [99], while traces have an inherit graph-based relation-
ship between the spans (representing services).

• Anomaly detection in noisy data. Numerous anomaly detection meth-
ods assume that the given labeled training data are clean, which can
be highly vulnerable to noisy instances that are mistakenly labeled by
the opposite class label. For example, in training data collected from a
distributed system, it is often assumed that all data are normal. How-
ever, with a high probability, anomaly samples exist in the training data,
which can contaminate and degrade the model performance. Therefore,
the models should be robust to such unknown deviations [100].

• Detection of complex anomalies. Current methods mainly focus on de-
tection of anomalies from single data sources, while various applica-
tions require detection of anomalies with multiple heterogeneous data
sources, e.g., multidimensional data, graph, and text data. A main chal-
lenge is that some anomalies can be detected only when considering two
or more data sources [12]. Similar anomalies exist in distributed systems.
For certain anomalies, no indication of the failure exists in the logs and
no considerable change in the execution path in the traces is observed
when the system operates in a degradation state.

For all observability components in distributed software systems, the large
amounts of false-positive alarms are a major obstacle for using them in real-
world production environments [23]. Detection of anomalies and alerting en-
able a system to report when something is broken or degraded. Notifying
an operator is costly. When the alerts occur too frequently, operators second-
guess, skim, or even ignore incoming alerts as they classify them as false
positives (alarms). Sometimes even real treats masked by the noise of alarms
are ignored. Therefore, effective anomaly detection and alerting systems have
good signals and low noise or low rates of false alarms.
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Figure 8: Multiple distributions representing the normal system behavior in metric
data.

3.1.1 Metric data

In metric data from a distributed system, several challenges arise, including
the lack of labeled data, concept drift, and concept evolution. Other major
sources of difficulties emerge owing to the low signal-to-noise ratio, multi-
ple frequencies and multiple distributions, large number of distinct time se-
ries generated by microservice applications, and concept drifts. The signal-
to-noise ratio is typically low as numerous different components affect the
response time of microservices such as switches, routers, memory capacity,
CPU performance, programming languages, thread and process concurrency,
bugs, and volume of user requests. Multiple frequencies are correlated with
system and user behaviors as request patterns are different, e.g., from hour to
hour due to business operation hours, from day to day due to system mainte-
nance tasks, and from month to month due to cyclic patterns. Some of these
challenges are illustrated in Figure 8. The response time metric from a cloud
service has a high level of noise ([0 ms, 2000 ms]), several distributions chang-
ing over time (P1, P2, and P3), representing the normality of the system, and
additional small uptrend.

These are stochastic properties that introduce uncertainty during the mod-
elling phase. An additional property of metric time series inherent from time
series data in general is the sequential dependence of the data points. Similar
data points in the time series upon rearrangement represent different system
behaviours. For example, a gradually increasing pattern, if flipped horizon-
tally, will be a gradually decreasing pattern. The values of the data points
used to form these patterns can be equal or similar; however, they reflect op-
posite system states. Therefore, models that aim to learn patterns from such
time series need to consider the stochastic and sequential properties.
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Table 2: Examples of evolving, noisy, and new log messages.

Case Log messages

Evolution
Faking execution of cmd: %s"
Faking execution of cmd (subprocess): %s"

Noise
While synchronizing instance power states, two instances
in the database and one instance on the hypervisor were found.
While synchronizing instance power states, two instances
were found in the database.

New Loaded extension: binding-extended

3.1.2 Log data

Developers and operators with understanding of the system can detect a prob-
lem that can be observed in the logs based on semantic reasoning. However,
as explained above, owing to the massive amounts of log data, manual inspec-
tion is often infeasible.

In almost all live software systems, the log statements from their services
evolve and are prone to processing noise over time. Developers may fre-
quently modify source codes including logging statements, which in turn
leads to changes to log data. Kabinna et al. [101] observed that approximately
20%-45% of logging statements in their studied projects changed throughout
their lifetime. Google’s systems have up to thousands of new log printing
statements every month [102].

Furthermore, during collection, retrieval, and preprocessing of log data, a
certain degree of noise is inevitably introduced into the original log data. For
example, the noise may originate from the data collection process. In a large-
scale system, numerous logs are produced by geographically distributed com-
ponents separately, and then uploaded to a centralized location for further
analysis. Missing, duplicated, or disordered log messages can originate from
such a process (e.g., due to network errors, limited system throughput, and
storage issues).

We show examples of evolving, noisy, and new log statements in Table 2.
In the case of evolving statements, the (subprocess) word is added for clarity.
In the noisy logs, owing to the lack of instances on the hypervisor, a different
print statement that shortens the message is observed. In system upgrades,
often new log messages appear owing to, e.g., extensions.

Logs are developer-written text sentences. Each developer has a specific
style of programming and writing log statements [21]. This contributes to



3.1 anomaly detection challenges in distributed software systems 32

the inability of log analysis methods (e.g., parsing and anomaly detection) to
have a standardized or more structured approach that will generalize across
different datasets with minimal number of domain/system based heuristics.

These problems suggest that any method developed for log analysis needs
to discard the close-world assumption, where systems are not evolving [38,
103]. The methods need to address the described challenges during the design
of their models. This is particularly important for organizations that use the
Continue Delivery/Deployment approaches, where the environment poses
larger challenges [104].

Figure 9: Software patterns; e.g., the retry pattern affects the running system and
trace data.

3.1.3 Distributed tracing data

Three important challenges exist in anomaly detection from distributed traces.
They are related to the existence of noise, arbitrary lengths of the traces, and
lack of labels. From these challenges, the lack of labels is a lasting problem in
the task of anomaly detection in general and was described in the previous
chapter.

Owing to the complex nature of the operations within a distributed envi-
ronment and high noise, although the observed sequence of events may not be
present in the set of observed traces, it may still be normal. Noise in the traces
occurs because complex systems rely on software patterns, such as caching
and load balancing, to increase the efficiency and reliability. For example, it
can be a retry pattern where an operation is executed, leads to a timeout, and
is performed again until completion (see Figure 9). The noise has a strong im-
plication for trace anomaly detection as methods need to classify traces that
were not observed before as normal.

The challenge related to the range of lengths of a trace occurs mainly ow-
ing to the existence of different requests. For example, creation of a virtual
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machine and creation of a storage will lead to two different traces. The novel
methods for anomaly detection from distributed traces, similarly to metric
and log data, are faced with the scarcity and unavailability of labels when a
trace is normal or anomaly. The unsupervised learning methods are consid-
ered as obtaining labels from the systems is a challenging task. The frequent
system updates and volatile environment contribute to the manifestation of
new patterns, which imposes a constraint of frequent updates of the labels.
This is often an expensive procedure because it assumes constant availability
of a domain expert.

3.1.4 Complex anomalies

Anomalies can be complex and not always represented in all data sources. Ex-
amples of such anomalies are hidden anomalies, not reflected in all observabil-
ity data, and propagated anomalies, reflected in a set of system components
different than the faulty component. These anomalies may not be notified to
the user through exceptions or may not be monitored [15]. These cases repre-
sent a high risk for system operators as they lack clues for understanding the
failure and restoring the availability of services and resources [13, 15, 20].

According to a set of experiments [20] on OpenStack, software anomalies
often cause an erratic behavior of the cloud management system, hindering
detection and recovery of failures. Failures were notified to the users only
after a long delay, when it is more difficult to trace back the root cause of
the failure and recovery actions are more costly (e.g., reverting the database),
or the failures were not notified. Anomalies are not always present in all
observability components and often propagate and are detected at system
components different than the root-cause component. This makes the task of
debugging more challenging. Therefore, for improved diagnostics, often, a
combination of highly accurate models for anomaly detection in multi-view
data sources is required.

3.1.5 Assumptions

In this section, we discuss observations in each of the data components, which
were treated as assumptions for the design of the practical solutions.
General assumptions. Throughout this thesis and description of the meth-
ods, unless otherwise stated, we use a general assumption that all data used
to create the models reflect the normal system behaviour and almost do not
contain anomalies [3, 83, 86]. Most of the systems operate normally, most of
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the time, while anomalies occur rarely [18, 23, 38]. Thus, in most of the produc-
tion cases, using all available data satisfies the assumption, considering that,
even if anomalies are present, their number is considerably smaller than the
number of normal data points. The models described in this thesis implement
practices to handle such cases.

A general assumption for most deep learning methods, also implemented
in this thesis, is the existence of a sufficient amount of data representing the
normal system behavior. Unless otherwise stated, anomaly labels are not ac-
cessible. These are important assumptions for the development of anomaly
detection methods for distributed system data. They pose requirements for
the methods to be unsupervised, which is desirable and of practical value.

Lastly, a general assumption of this thesis is that system anomalies are re-
flected in at least one of the three data sources. In practice, the anomaly may
not be reflected in the data, but can only be found by reproduction and trou-
bleshooting in the source code. We assume that the source code of the system
is not available.

Below, we discuss assumptions considered for each of the data sources.

1. In metric data, we assume univariate time series data (unless otherwise
stated in a particular experiment). Univariate anomaly detection aims
to find anomalies in each individual metric, while multivariate anomaly
detection learns a single model for all metrics in the system. Univariate
methods are simpler, and thus they can be more easily scaled to many
metrics and large datasets [105]. However, the task of learning the causal
relationships between the anomalies in the resulting alerts from the uni-
variate anomaly detectors remains to be performed on a higher level of
abstraction [106]. This is in line with the long-lasting research on univari-
ate time series data [107]. With multivariate methods, each added metric
introduces interactions between it and all other metrics. As multivariate
anomaly detection methods have to model the entire complex system,
the computational cost rapidly increases with the number of modeled
metrics. In addition, individual metrics need to have similar statistical
behaviors for accuracy of the multivariate methods [108].

2. Logs are generated by a software program that follows a set of instruc-
tions to serve a request, e.g., creating a virtual machine in cloud plat-
forms. In distributed systems, multiple such requests are served in par-
allel. In many systems, the logs do not contain identifiers that could
chain events that serve the same requests together into a group. Often,
when sorted by timestamp, such sequences of logs are lost. Therefore, in
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this thesis, we focus on the analysis of the collected log messages as inde-
pendent instances. The log anomaly detection method detects anomalies
per log message, not per sequence of log messages.

A common assumption in anomaly detection from logs is that the infor-
mation of the log messages is contained in their log templates (constant
parts). For example, we consider a log message "Took 20.12 seconds to
build instance". The methods for log-based anomaly detection focus on
detecting anomalies on "Took * seconds to build instance", without con-
sidering the variable part. This assumption is common in numerous log
anomaly detection approaches [22, 23, 38, 100, 109]. Anomalies that ex-
ist in the variable parts of the log messages (e.g., numeric values) are
considered as a part of time series anomaly detection (metric data).

3. For trace data, we assume that the traces are composed of a finite num-
ber of possible spans. This implies that test traces are composed of spans
observed during the modeling phase. As the spans correspond to in-
voked services, we consider this as a weak assumption, which is not
valid only when new services are deployed. In this regard, the learned
model on the traces will need to be retrained once a new service is de-
ployed within the distributed system.

3.2 conceptual overview

To address the above challenges and consider the assumptions for anomaly
detection, in this thesis, we present methods for the three observability com-
ponents, metrics, logs, and traces. The observability and anomaly detection
methods are base components of a broader-context platform referred to as
AIOPs platform. We show a reference architecture in Figure 10, where a soft-
ware system based on a distributed architecture (e.g., microservices) is de-
ployed.

In every service of the distributed system, three data collection components,
metrics, logs, and traces, exist. The data are then aggregated and forwarded
to the analytic part. For the metric data, the aggregation is carried out per
service where metrics such as CPU, memory, disk utilization, and network
statistics are collected. The logs from all services are aggregated in a database
with a possible separation by the service/physical host. Finally, the tracing
data involve multiple hosts and services traversed while executing a request
(e.g., user request).
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Figure 10: Overall architecture of a distributed system with integrated observability
components (metrics, logs, and traces) utilized by the analytic part for
visualization and alerting.

The data serve as a basis for the analytic and machine learning parts where
several major tasks are performed. The analytic part involves preprocessing
for each type of data.

In the anomaly detection module, we consider three anomaly detectors
fm(xm), fl(xl), and ft(xt) for the metrics, logs, and traces, respectively. The
input data in (1) fm(xm) are a time series representing a system metric
xm = xwm

m , xwm
m , . . . , xwm

m , where wm is a window size, in (2) fl(xl) are a system
log message xl = x1l , x

2
l , . . . , x

m
l , where xil are d´dimensional representations

of the words in the log message and m is the number of words, and in (3)
ft(xt) are a trace xt = x1t , x

2
t , . . . , x

k
t , where xit is a span and k is the number

of spans in the trace. Each of the separate methods for anomaly detection in
metrics, logs, and traces presented in this thesis is designed to mitigate the
previously described challenges. Below, we present main questions derived
from the challenges and methods to address them on an abstract level.

1. The challenges of anomaly detection in metric data pose difficulties
toward an accurate understanding of the system behavior. The major
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questions are related to the efficient extraction of temporal correlations
within the time series, learning of multiple modes of normal behavior,
noise mitigation, and description of the anomaly patterns. We address
these questions aiming to improve the analysis of metric data and alert
the user if there is an abnormal system behavior in the system. The core
idea of the approach is to learn robust latent representations to capture
normal patterns of a time series, considering both temporal dependence
and stochasticity. We design the method’s basis to have a variational
component that provides the needed capacity of the method to learn
multiple scenarios of normal system behavior and mitigate the effect of
the noise and recurrent encoder and decoder networks to extract sequen-
tial features.

2. System log analysis is a lasting research topic, which, through the years,
established an analysis pipeline. Traditionally, the first step in the pro-
cess is to parse the unstructured log messages into structured data or ex-
tract log templates. Structured data usually refer to the constant string in
each log message or the print statement. Subsequently, these templates
are vectorized (e.g., count vectors [67, 110]) to obtain numerical repre-
sentations suited for further analysis. Lastly, the log vectors are utilized
as an input to the anomaly detection model. It is important that all steps
in the pipeline are addressed correspondingly. Therefore, we analyze
several topics including the generalization of parsing and log anomaly
detection methods on unseen log messages (e.g., due to upgrades), effi-
cient log parsing without system-dependent heuristics, and generation
of learnable log vectors that are sufficiently robust to mitigate the ef-
fects of log evolution. We start with a self-supervised neural language
modelling approach to log parsing. The advantage of such approach is
that it replaces heuristics with learnable parameters optimized for the
respective data. Concurrently, the model is designed to learn and gener-
ate log vectors, which is crucial to improve the anomaly detection [22].
To further improve the generalization in log anomaly detection, we de-
scribe a novel objective function and propose modification to the parsing
approach. Such approach aims to learn meaningful log representations
for anomaly detection, regularize against over-fitting, extract semantic
knowledge from the log messages, and improve the generalization. The
core principle of the method is to learn log representations in a man-
ner to distinguish normal data from the system of interest and anomaly
samples from auxiliary easily-accessible log datasets.
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3. The challenges of the trace data lead to several questions, which, when
addressed, have the potential to improve the anomaly detection. The
research questions regarding the trace data that are addressed in this
thesis are related to the modeling of traces with variable lengths, miti-
gation of the noise that reflects as added/missing spans form the trace,
and identification of key spans within the trace, representative of the
normal system behaviour, which help find the root cause of the prob-
lem. We compile the trace structure as a text sequence. This allows to
utilize methods from the field of natural language processing that al-
ready tackle problems as modeling inputs with different lengths (e.g.,
for texts). Subsequently, to mitigate the effects of the noise, we present
a task formulation based on self-supervised learning to learn the like-
lihood of appearance of particular span with given context spans. This
enables the model to focus on particular important spans of the trace
and mitigate the effects of the noise.

The output of each anomaly detectors at time t is a label y P t0, 1u, where 0

represents a normal system behaviour, while 1 represents an anomaly. On top
of the outputs of the anomaly detection methods, a time window w is utilized
to aggregate the predictions for a final decision, whether an anomaly exists
in the observed distributed system. Formally, the final output at a time of t is
gt(fm, fl, ft,w), which again is 0 or 1. The main contributions of the thesis are
the methods presented for metrics, logs, and traces. Finally, we analyze their
integration into a framework for detection of complex anomalies.

The identified anomalies can be further employed in other AIOPs tasks. For
example, together with the system topology, they are often utilized to perform
a root cause analysis to identify the reason for and location of the anomaly.
To complete the AIOPs loop, recovery actions need to be executed to restore
a failed component or prevent further fatalities. Finally, the alerts from the
anomaly detection, root cause analysis, and recovery actions are visualized to
the developers, reliability engineers, and management teams to obtain better
insights into the system.
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Anomaly detection for metric data with various patterns and data quality
has been a great challenge, especially without labels. Existing anomaly detec-
tion algorithms suffer from the hassle of algorithm picking/parameter tuning,
heavy reliance on labels, which among other challenges results in large num-
ber of false alarms. Metric time series from distributed systems exhibit com-
plex temporal relationships and stochasticity [44, 111]. Accordingly, a possible
solution should address both properties. In this chapter, we present a method
that captures normal patterns of a time series with an unsupervised anomaly
detection model based on VAE (captures stochastic properties) with an RNN
as encoder and decoder parts (captures temporal dependence). The observa-
tions that deviate from this model of normality are likely to be considered
anomalies.

We summarize the contributions in this chapter, which form a part of a
metric anomaly 10 detection method, denoted as Metano 1.

• Model for metric anomaly detection in metric data.

• Dynamic error threshold approach coupled with a tolerance module to
reduce the FP predictions.

• Anomaly classification module to enrich the description of the anomaly
patterns.

1 Parts of this chapter are published in [14, 70, 112] and patented in [113].
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Figure 11: Overview of Metano.

4.1 metano : anomaly detection and classification in metrics

To formally define Metano, we consider historical observations of a part
of a discrete time series representing metric data xt = xt´w, xt´w+1, . . . , xt,
where w is the size of a defined sliding window over the time series and
xt´w, xt´w+1, . . . , xt are observed values. φ(xt, θ) : Rw Ñ Rh Ñ [0,a],a P R is
a function represented by a neural network, which maps the input time series
window xt to a latent representation in Rh, and then to an anomaly score.
The method learns the parameters θ, and then, for each incoming instance
in the prediction phase xtest

1 , xtest
2 , . . . , xtest

i , . . . , predicts whether it is anoma-
lous or normal based on the anomaly scores and threshold τ. If an anomaly
is detected, the method classifies it into a finite set of predefined patterns
yp P 0, . . . ,k with a classifier network φ(xtest

i , θ̂).
The overall structure of Metano is shown in Figure 11, which consists of two

parts, offline training and online (test-time) detection. The time series from the
metric data is preprocessed. After the preprocessing, the transformed data are
sent to the model training module to learn a model that captures the normal
patterns of the time series and outputs an anomaly score for each observation.
These anomaly scores are used by the adaptive thresholding and tolerance
modules to choose threshold parameters. This offline training procedure can
be carried out routinely, e.g., once per day, week, or month.

The test-time detection module uses the trained model. An observation,
xtest at time t, after the preprocessing, is predicted by the model to obtain an
anomaly score. If the anomaly score passes the checks in the threshold and
tolerance module, it will be declared as anomalous; otherwise, it is normal.
Parts of the time series that are detected as anomalies are forwarded in the
pattern recognition module, where a description of the anomaly will be added.
Finally, Metano outputs a dictionary object containing the start timestamp of
the window, end timestamp of the window, prediction, and pattern class if
the prediction suggests an anomaly.
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4.1.1 Time series preprocessing

This step involves two parts, preprocessing in model training and test-time
prediction. The module starts by querying the N data points of a time se-
ries and forwards them into a three-stage pipeline consisting of data cleaning,
normalization, and noise reduction. Figure 12 shows an overview of the pre-
processing module.

Figure 12: Detailed overview of the time series preprocessing part.

In the offline training phase, we perform data cleaning as the first step. Sam-
ples having values larger than three standard deviations from the mean are
removed from the training batch, according to the three-sigma rule [114]. This
is important for robustness and to remove possible anomalies in the training
data, as labels are not available. The values are then normalized using min-
max scaling (0, 1). Normalization is required and makes the optimization
function of the neural network well-conditioned, which is crucial for conver-
gence [115]. The min-max normalization is expressed by

xt,scaled =
xt ´min(X)

max(X)´min(X)
, (5)

where min(X) and max(X) are saved as scaling parameters and are later
used for normalization in the test data. Lastly, in the pipeline, we apply
smoothing for noise removal and robustness against small deviations. To this
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end, the time series is convolved with a Hamming smoothing filter defined
with its optimal parameters [116] and size of M as

f(n) = 0.54´ 0.46 ¨ cos
(
2πn

M´ 1

)
, 0 ď n ďM´ 1. (6)

During the test-time prediction, the time series follows the same prepro-
cessing steps. In the normalization module, min(X) and max(X) are the pre-
viously obtained values during the model training part. This implies that
time series values, which have values larger (smaller) than max(X) (min(X))
obtained during the training, will have normalized values larger than 1.0
(smaller than 0.0).

Time series partitioning

The next step in the pipeline is to transform the time series data into win-
dowed format. In contrast to methods that perform anomaly detection on fi-
nite time series data (already windowed, e.g., ECG signals [117]), here we for-
mulate the anomaly detection on sliding windows of the time series, which en-
ables test-time prediction in streaming fashion. Therefore, we define w, which
is the size of the sliding window. The window is applied to the time series
and leads to a training data shape of (N´w,w, 1),

Xtrain =


x1 x2 . . . xw

x2 x3 . . . xw+1

. . .

xN´w xN´w+1 . . . xN


(N´w)ˆw.

(7)

In the test-time prediction, for each new collected value of the time series,
a window of points xtest with a size of w is formed, preprocessed, and fed to
the network for prediction.

4.1.2 Network architecture

To learn the patterns of the time series data representing the normal system
behavior, we design an architecture based on a VAE [118], which maps ob-
servations (i.e.,input values) to stochastic (i.e., latent) variables, and then re-
constructs the input (Figure 13. The dimensionality of the latent variables is
lower than the dimensionality of the input. Therefore, the latent variables are
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Figure 13: Architecture of a VAE.

enforced to capture salient features of the normal patterns of the time series.
To detect anomalies, the model uses a window of a time series as an input
and performs reconstruction. The reconstruction for normal time series data,
similar to those used for model training, is expected to provide a small recon-
struction error, as the model is trained by optimizing the error loss function.
The reconstruction error for an anomaly sample is expected to be large, as the
model is not trained to reconstruct such time series data [119]. The decision
for anomaly is then based on a threshold on the reconstruction error.

The optimization of VAE relies on variational inference. The variational
inference method approximates intractable probability densities through op-
timization. We consider a probabilistic model with observations X = x1:n,
continuous latent variables z = z1:m, and model parameters θ. The task is to
compute the posterior distribution

p(z|X, θ) =
p(z, X|θ)

ş

z p(z, X|θ)
. (8)

The computation requires marginalization over the latent variables z, which
is intractable. In variational methods, a distribution family is chosen over the
latent variables with its variational parameters q(z1:m|ν). The parameters that
lead to q as close as possible to the posterior of interest are estimated through
optimization [120]. However, the true posterior often is not in the search space
of the distribution family and thus the variational inference provides only an
approximation.
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The similarity between the two distributions is measured by the Kull-
back–Leibler (KL) divergence, a measure of the difference of one probability
distribution from a reference probability distribution,

KL(q}p) = Eq

[
log

q(z)
p(z|x)

]
. (9)

Direct and exact minimization of the KL divergence is not possible. Instead,
as proposed in [120], a lower bound on the log-marginal likelihood is con-
structed,

logpθ(x) ě logpθ(x)´KL(q(z|x)}pθ(z|x)) (10)
= Eq(z|x)

[
λ logpθ(x|z)

]
´βKL

[
q(z|x),p(z)

]
(11)

= ELBO(x),

where λ and β are weights in the Evidence Lower Bound (ELBO). In prac-
tice, λ = 1 and β is slowly annealed to 1 to form a valid lower bound on the
evidence [121]. In VAEs, the ELBO function is optimized by gradient descent
using the reparametrization trick, while the parameters of the distributions
p and q are obtained by neural networks (encoder and decoder). In Equa-
tion 11, the first term represents the reconstruction error, while the second
corresponds to the regularization. The VAE can only learn the distribution
from the windows of the metric time series data. However, it is still not able
to recognize temporal dependencies (sequence) in the data.

The second property of the time series data that needs to be addressed in
the model design is the sequential dependence between values. To preserve
the sequential nature of the metric data, in the encoder and decoder parts
of the VAE, RNNs are utilized [122]. They are a deterministic type of neural
network where the connections between neurons form a directed cycle. This
deterministic part of the autoencoder is crucial to capture long-term complex
temporal information between the values in the time series observation.

In a vanilla RNN, as presented in Figure 14, the largest issue is the van-
ishing gradient problem [123]. Numerous solutions exist for this problem,
which well perform in practice. The most used RNN types are LSTM [124]
and GRU [125] cells, which are used in Metano. The GRU cell is a simpler
version of the LSTM, which requires less computational resources. The GRU
computes an update gate based on the current input vector and hidden state,

zt = σ(W
(z)xt +U

(z)st´1), (12)
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Figure 14: Architecture of the RNN.

and then computes the reset game similarly but with different weights,

rt = σ(W
(r)xt +U

(r)st´1). (13)

The new memory content is

s̃t = tanh(Wxt + rt ˝Ust´1). (14)

If the reset gate is 0, this ignores the previous memory and stores only
the new information. The final memory content combines the current and
previous timesteps,

st = zt ˝ st´1 + (1´ zt) ˝ s̃t. (15)

The update gate z controls the effect of the past state on the state at times-
tamp t. If z is close to 1, it can copy information in that unit through numerous
time steps. Units with short-term dependencies often have active reset gates.

This gated flow of the information enables the GRU to model long-term
dependencies [126].

We replace the encoder and decoder, i.e., q(z|x) and p(x|z), with GRUs (Fig-
ure 13. In this regard, we address the stochasticity and temporal dependence
in the model design. The overall architecture of the model is shown in Fig-
ure 15 and described below. The objective for model training with gradient
descent is Equation 11.
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Figure 15: Model architecture.

The input layer has w units; each of them contains the metric value.
The first hidden GRU layer containsw/2 GRU cells for each timestep in the

input window. w/2 as a hidden dimension size is chosen to restrict and con-
tract the architecture, thus enforcing the hidden states to learn salient features
of the time series [26]. Each of the w input units is fed to the corresponding
GRU block. In the first timestep t = 0, the 0th value of the time series is fed.
The abstract representation learned in the 16 GRU cells, according to Equa-
tion 12-15, is then propagated to the next timestep T = 1, where the 1st value
of the time series of the window is fed, and so on. We can condition the re-
construction of the next point considering the input of past points. In this
regard, in the last timestep, we have an abstract representation of the window
of points, which has a salient information for that part of the time series.

The sampling layer represents the key part to be able to learn the stochas-
tic process of the time series. This layer is the core part of the VAE and con-
sists of w/4 units for the mean and variance of the Gaussian distribution.
Gaussian distribution has many beneficial properties, such as analytical eval-
uation of the KL divergence in the variational loss, and also we can use the
reparametrization trick for efficient gradient computation [118]. It does not
matter so much what distribution latent variables follow since using a non-
linear decoder can mimic arbitrarily complicated distribution of observations.
However, one of the apparent advantages of using the Gaussian in the sam-
pling layer is that it allows easy generation of new samples by sampling in
the latent space.
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The model learns the data distributions as an approximation to the multi-
variate Gaussian. The sampling layer only performs sampling from a multi-
variate Gaussian distribution with the learned mean and variance. The com-
plexity of the model allows to learn multiple distributions activated depend-
ing on the input.

The repeat layer repeats the sampling layer w times, which needs to be fed
into the last hidden GRU layer and utilized for the decoder and reconstruction
of the input. This layer is acts like a copy function used for implementation
purposes only.

Output/GRU layer: The network uses the output from the previous layer as
the input, learns an abstract representation, and, as an output, has the same
number w of timesteps, as the output x̂ in autoencoder architectures is the
same as the input x. This layer reconstructs the time series.

Through the training of this neural architecture with the loss function of
the VAE in Equation 11 on normal time series data, normal patterns from the
data are learned. Once the model of the normality in the system is trained,
it can be utilized for anomaly detection by performing reconstructions of the
test-time time series.

4.1.3 Dynamic error threshold

The difference between a prediction and observed value of the time series
vector is measured by the mean squared error (MSE),

MSE =
1

w

ÿ

(xt ´ x̂t)
2. (16)

Instead of setting a fixed error threshold for anomaly detection, we utilize
a validation set (part of the training data) for threshold selection. This is ben-
eficial for the operators and users of Metano, as they do not have to tune
and calibrate the threshold in each model training and for every metric. For
each window of time series points in the validation set, we apply the model
produced by the training set and calculate the MSE between the prediction
(reconstruction) and actual sample. At every time step, the errors between the
predicted vectors and actual vectors in the validation group are modeled by
a Gaussian distribution. We choose the Gaussian distribution to model the
MSEs, as per the central limit theorem [127] such samples follow normal dis-
tribution. In the test-time prediction, if the error between reconstructed and
observed windows of events (MSE) is within a high level of confidence inter-
val of the above Gaussian distribution, it is considered normal; otherwise, it
is considered anomalous.
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4.1.4 Test-time prediction

This module receives data from the preprocessing module described above.
The latest model along with the saved training parameters are loaded and
used for prediction. For each new value of the time series, the past values
forming a window xt = txt´w, xt´w+1, ..., xtu are fed as an input for predic-
tion. The reconstruction error MSEtest and probability under the Gaussian
distribution of the threshold, obtained during the validation procedure, are
computed,

Ptest = 1´ P(X ąMSEtest). (17)

4.1.4.1 Tolerance: FP reduction

In large-scale system architectures, a single anomalous point often exists in
the time series. However, this does not imply that something is wrong in the
particular component. For example, it can be attributed to a small bottleneck
in the disk usage or in one of the many components or services. The detection
of anomalies having larger impacts enables the DevOps to focus on the most
critical potential failures.

We define the tolerance and probability error threshold as parameters. The
tolerance represents the allowed number of anomalous windows that have
Ptest larger than the threshold before it flags the whole period as anomalous.
In practical scenarios, the tolerance parameter usually is in the range of 1 to
100, but is dependent on the dynamics of the system. The probability outputs
Ptest are kept in a queue with the same size (tolerance) for each new win-
dow. Each time a new sample is shown to the network to be reconstructed,
assigned with the probability of being anomalous, and added to the queue,
the tolerance module checks whether the average probability of the samples
in the queue

Pm =
1

tolerance

tolerance
ÿ

i

Ptest(i), (18)

is larger than the error threshold. If this is the case, the submodule flags this
part of the time series as unstable and reports an anomaly. In this regard, we
can address the problem of having too many FPs and allow the user to set the
sensitivity of the algorithm on his/her demand. The output of the module is
a tuple (first anomaly window timestamp, last anomaly window timestamp).
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4.1.5 Faulty pattern classification

Identifying an anomaly without providing insights into its nature is of limited
importance. The user may be interested in detecting particular types of anoma-
lies reflected in the time series (incremental, mean shift, gradual increase,
cylinder, etc.). Therefore, we provide a module based on a one-dimensional
CNN [128], which, with a window of the time series as an input, can classify
into one of the user-defined patterns described above. The architecture of the
CNN consists of a combination of convolutional and max-pooling layers fol-
lowed by a soft-max layer, which distributes the probability for given pattern.
A similar study on time series classification has been recently reported [129].

Figure 16: Anomaly pattern classification.

We show a detailed overview of this module in Figure 16. The data utilized
to train the previously described model (see Eq. 7) are queried and utilized to
represent the normal class. The preprocessed normal data are concatenated
with the user-defined patterns. These are then fed as an input to the CNN
model.

The model architecture consists of three (convolutional, max-pooling) lay-
ers with dropout regularization. The last layer, typical for multi-class classifi-
cation, is fully connected with the softmax function for computing the proba-
bility distribution over the classes. The convolutional networks are naturally
invariant to translation, which makes them suitable for faulty pattern detec-
tion with a sliding window over the time series. The network is trained using
the described data and the model is saved and used for prediction.
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The classifier triggers when the test-time prediction detects an anomaly.
The classifier module receives the output from the test-time prediction and re-
quests the particular time series within the provided anomalous time interval.
Using the trained model, it maps each sliding window to the predicted class.
If the particular pattern is recognized, the module will output the name of the
class to which the pattern belongs and will flag the interval as anomalous.

4.2 evaluation

In this section, we describe three experimental datasets. We then carry out ex-
periments to show the effectiveness and performance of our model. The meth-
ods in this chapter are implemented as prototypes in Python using Keras [130].
The evaluation on the collected datasets was carried out on a regular personal
computer with the following specifications: GPU-NVIDIA GTX 1060 6GB, 1TB
HDD, 256 SSD, and Intel(R) Core(TM) i7-7700HQ CPU at 2.80 GHz. We per-
formed series of experiments to learn the sequence with LSTMs and other
deterministic models. The models learned the running mean of the time se-
ries. Therefore, we discard comparisons to these methods in this section. In
the experiments, Metano is compared to Donut [44], a state-of-the-art univari-
ate metric time series anomaly detection approach based on VAE.

4.2.1 Microservice architecture testbeds

Artificial microservice response times. We created an experimental microser-
vice system to evaluate Metano on representative anomaly scenarios for mi-
croservice architectures. For the setup, we used two physical nodes and three
virtual machines with enabled tracing, with running instances of Python, Go,
and Java applications, respectively. The testbed architecture is shown in Fig-
ure 17. The collected data include the response time metric for each endpoint
in the microservice architecture.

To simulate the anomalies, we injected timed physical network anomalies
in the form of delay and packet loss, physical node anomalies in the form of
CPU stress, and service anomalies in the form of response time increase. They
led to six different scenarios on different endpoints in the system, described
below.

• Scenario 1: Baseline without anomaly - represents the normal operation
(no anomalies) of the system and is used to train the detection algo-
rithms.
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Figure 17: Experimental microservice system architecture.

• Scenario 2: Service latency increase - profile 1 (injection of latency (1 s)
for a duration of 15 s).

• Scenario 3: Service latency increase - profile 2 (injection of latency (1, 5,
30 s) for a duration of 30 s, 1 min, and 10 min on nodes 1,2,3).

• Scenario 4: Network packet loss - A packet loss (10%, 20%, 30%) is in-
jected on one of the network links for durations of 1, 5, and 10 min.

• Scenario 5: Network delay - A network delay (1, 2, 3 s) is injected on the
network for durations of 1, 5, and 10 min.

• Scenario 6: Server process dies - One process is killed on nodes 1 and 3

for durations of 1, 5, and 10 min.

Response times from production-cloud data. Even in small controlled ex-
perimental setups, the noise is high and the time series changes rapidly over
time. This already poses challenges for the anomaly detection algorithm. How-
ever, testing the approach on large-scale production cloud data is required to
show the viability of the approach.

The dataset contains response times of three main services for a period of
four days, obtained from a large-scale production cloud. The signal-to-noise
ratio in the data is small as numerous components affect the response time
of microservices. The time series evolves faster and changes its distribution
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over time while having a stochastic behavior. The time series of the response
time from one of the production services was already plotted and discussed
in Section 3.1.1.

Sockshop microservice testbed. In addition to the artificially created mi-
croservice architecture testbed, we set a second testbed on Google Cloud En-
gine2 where we run the Sock-shop3 microservice benchmark consisting of
seven microservices. The monitoring tools include node-exporter4, Cadvisor5,
and Prometheus6. Sock Shop simulates the user-facing part of an e-commerce
website, which sells socks. It is intended to aid the demonstration and testing
of microservice and cloud native technologies. We also developed a workload
generator to send requests to different services. To inject the performance
issues in microservices, we customize the Docker images of the services by
installing the fault injection tools. Three types of faults were injected into the
Sock shop services, (1) network anomalies by increasing the latency, (2) CPU
hog, and (3) memory leak, by exhausting the CPU and memory resources in
the container with stress-ng. For each anomaly, we repeated the experiments
multiple times in the duration of at least 2 min. To train the model, we collect
data for 1 h in the normal status. The data include a total of seven metrics for
each service (CPU, memory, and network usage, on host and container levels,
and service response time).

4.2.2 Results and discussion

Artificial microservices response times. The F1 scores of Metano and Donut
are shown in Table 3 for all 15 endpoints in our experimental testbed across
the five different scenarios. The number of injected anomalies depends on
each scenario and endpoint. The missing values in Table 3 imply that the
anomaly did not affect those endpoints.

Notably, the described approach in this chapter is comparable to or outper-
forms Donut [44]. Overall, the results in the table and figure indicate that the
combination of generative models, such as the VAE with GRU units, that ex-
tract temporal information is effective. The method generalizes over different
anomaly scenarios. The highest scores are observed in S5 and S6, where the
anomalies are most reflected in the values.

2 https://cloud.google.com/compute
3 https://microservices-demo.github.io/
4 https://github.com/prometheus/node_exporter
5 https://github.com/google/cadvisor
6 https://prometheus.io
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Table 3: Metano: F1 scores for 15 endpoints in five anomaly scenarios of the experi-
mental testbed data.

Scenario S2 S3 S4 S5 S6

Endpoint ID/
Method

Donut Metano Donut Metano Donut Metano Donut Metano Donut Metano

1 - - 0.85 0.85 0.93 0.95 0.95 0.98 0.99 0.99

2 - - - - 0.99 0.99 0.93 0.98 - -
3 - - - - 0.98 0.96 0.98 0.99 0.97 0.96

4 - - 0.90 0.99 - - - - - -
5 - - - - 1.0 1.0 0.95 0.98 0.97 0.97

6 - - 0.93 0.98 - - - - 0.81 0.86

7 - - 0.96 0.95 0.96 0.98 0.92 0.97 - -
8 - - 0.98 0.98 - - - - - -
9 - - 0.88 0.92 0.92 0.91 0.99 0.99 1.0 1.0
10 0.85 0.90 0.87 0.95 0.93 0.95 0.92 0.99 0.94 0.98

11 - - 0.96 0.96 - - - - - -
12 0.89 0.85 - - 0.79 0.83 1.0 0.99 0.95 0.97

13 0.90 0.95 0.91 0.98 - - 0.91 0.94 0.96 0.99

14 0.91 0.99 0.87 0.95 - - - - 0.94 0.98

15 - - 0.86 0.97 0.95 0.95 0.99 0.98 1.0 1.0
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Figure 18: Detected anomalies injected for scenarios (a) 5 and (b) 6.

In Figure 18, scenarios 5 and 6 are illustrated, where the method success-
fully flags the majority of anomalous values. The method successfully flags
almost all anomalous events. False positives are observed only around the
800-th and 1250-th data points of the time series, where the response time is
increased owing to the considerable noise.

Overall, the method performs comparably well, successfully handling vari-
ety of anomalies.
Production cloud data. In the production data, in contrast to the microservice
testbeds, we observed a higher noise. We show the results in Table 4. The
method has a good performance. However, decreases in the F1 scores were
observed for both Metano and Donut for the production data, mainly owing
to the high noise in the data. We illustrate the detection of anomalies on
one production endpoint in Figure 19. The plots show that Metano produces
more stable predictions, while Donut has a larger number of FPs between the
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Figure 19: Example of performed anomaly detection on the production data for one
endpoint. (a) Donut, (b) Metano.

5 December 2018 1

Mean shift Incremental Temporary change Gradual Additive outlier Step and decrement

Figure 20: Example of predefined patterns.

750-th and 1500-th points in the time series. The analysis of the data points
and method show that Metano leads to fewer FPs mainly owing to the noise
handling techniques implemented in Metano, i.e., the tolerance module and
increased model capacity.

Owing to the small number of production-system errors in the data, we
injected several types of anomalies to further test the described method. We
defined seven types of common anomalies, samples from normal distribu-
tions with different means, additive outlier, mean shift, step and decrement,

Table 4: F1 scores from production cloud metric data.

Service ID Donut Metano

1 0.72 0.90

2 0.26 0.4
3 0.67 0.86
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incremental, temporary change, and gradual. Some of the types of anomalies
are shown in Figure 20.

Table 5: Robustness of Metano for detection of injected anomalies in production data.

Pattern name Parameters

Additive outlier RTi ą 0.25
Normal_mean RTi ą 0.2
Temporary change RTi ą 0.25
Gradual RTi ą 0.3, size ą 10
Mean shift RTi ą 0.2
Step and decrement RTi ą 0.3, size ą 10
Incremental RTi ą 0.3, size ą 10

To analyze the robustness of the algorithm, we evaluated it for several differ-
ent augmentations of the original patterns, including translation, increasing
the response time (e.g., RTi = 0.2 implies setting the response time of the
event to 0.2 of the maximum value), and change in the size of the anomaly
(e.g., in gradual increase, size = 10 implies that the increase from amplitude
A to amplitude B is gradual over 10 events/data points). Table5 shows the
aggregated results. It summarizes the different anomaly patterns and needed
minimum values for the parameters size and RTi that lead to detection of the
corresponding anomaly type.
Sockshop microservice testbed. In this experiment, we slightly modified the
input of the method to support multi-variate time series data (CPU, memory,
network traffic, and response time). The method is designed for univariate
time series data, as previously mentioned. However, with slight changes in
the dimensionality of the input, we utilize the method to identify the root
cause with anomaly detection. We computed the reconstruction errors for
each of the time series. For each fault injected in a service, we train the au-
toencoder with normal data and test with the anomalous data. A larger error
of a particular metric compared to other metrics indicates that it has a higher
probability to be the cause of the anomaly.

Table 6 shows the results of our method on different microservices and
faults, in terms of precision for successfully predicting the anomaly and root
cause. Our method achieve good performances in different services and faults,
except for the service orders with the fault memory leak and network delay.
This occurs because (1) orders is a computation-intensive service, (2) we heav-
ily exhaust its resource memory in our fault injection, and (3) fault memory
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leak issues manifest as both high memory usage and high CPU usage. As our
method targets the root cause, which manifests with a significant deviation
in the causal metric, the accuracy decreases when the root cause manifests in
multiple metrics. On average, our system achieves a precision of 94.75%.

Table 6: Accuracy performance of Metano on Sockshop microservice testbed data.

Service Orders Catalogue Carts User

CPU hog 1.0 0.96 0.83 1.0
Memory leak 0.66 1.0 1.0 1.0
Network delay 0.83 0.93 0.91 1.0

Faulty pattern classification The module can be evaluated separately from
the rest of the solution, as data and predefined patterns as described. The
dataset consists of 15 different types of patterns similar to those in Figure 20.
In practice, the user can define patterns.

We evaluated the algorithm to analyze the performance and its limits ac-
cording to the level of noise in the signal and accuracy of classification. We
achieved an accuracy of 100% in data without additional noise and accuracies
of 80% and 48% when Gaussian noise was added with σ = 0.05 and σ = 0.1,
respectively. The CNN model accurately classifies the tested anomaly patterns,
with an expected lower accuracy obtained in noisy patterns. For comparison,
patterns recognizable by the human eye had noise levels up to approximately
σ = 0.05.

4.2.2.1 Performance evaluation

In large production systems, high performances of the model in training and
prediction time are desirable. In this regard, we evaluate the performance of
the approach. We show the results for training times in Table 7. The training
time scales linearly with the size of the time series (in number of windows). In
the test-time prediction, we achieve a performance of 0.22 ms per predicted
window of points (when w = 32). The prediction times can differ with the
reduction or expansion of the window size, but are still reasonably small for
production usage within the limit below 10ms [14].

4.3 related work

Anomaly detection for time series data has been extensively studied in
academia and industry over the past years on different types of data. Ma-
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Table 7: Performance evaluation of Metano in the training phase.

#windows s

10000 283.9
5000 148.2
2000 58.56

1000 31.33

chine learning approaches can be divided into two general categories [35],
supervised [131–134] and unsupervised [97, 135–137]. The supervised meth-
ods have a limited practical usage as obtaining labels in production systems
is costly and often infeasible, as described in Section 2.4.1. In the literature,
the unsupervised time series anomaly detection methods are categorized into
two types, deterministic and stochastic.

Deterministic models [44, 65, 138–142]. Several algorithms have been devel-
oped in the industry. Among them, the Netflix’s robust principle component
analysis (RPCA) method [141] and Twitter’s anomaly detection [140], where
the underlying algorithm is referred to as seasonal hybrid ESD (S-H-ESD),
which builds upon the Generalized ESD test for detecting anomalies, are most
prominent. Similar ideas have been reported. For example, Vallis et al. [140]
proposed a novel approach, based on an extreme studentized deviate (ESD)
test, for detecting anomalies in long-term time series data. The approach re-
quires detection of the trend component. Because these algorithms typically
have simple assumptions for applicable metric time series (KPIs), expert’s ef-
forts need to be involved to pick a suitable detector for a given KPI, and then
fine-tune the detector’s parameters based on the training data. Simple ensem-
ble of these detectors do not help much either according to [143]. As a result,
these detectors see only limited use in the practice.

To address the large volumes of data produced by large systems, deep learn-
ing techniques are increasingly investigated because of their success in vari-
ous domains. Malhotra et al. [138] used stacked recurrent hidden layers to
enable learning of higher-level temporal features. They presented a model of
stacked LSTM networks for anomaly detection in time series. A network was
trained on nonanomalous data and used as a predictor over a number of time
steps. Furthermore, Hundman et al. [142] showed the use of LSTMs for space-
craft anomalies on telemetry data. Vrushali et al. [65] in their paper on an
anomaly-based intrusion detection system using neural networks show that
these models can be used to detect various network attacks where the aim is
to identify those attacks with the support of a supervised neural network. Al-
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though LSTMs-based methods can address the temporal dependence of time
series, they are deterministic without stochastic variables. In our particular
case, owing to the high noise they did not perform well (see Section 4.2).

Stochastic-based models [111, 144, 145]. Zong et al. [144] presented a
deep autoencoding Gaussian mixture model (DAGMM) for unsupervised
anomaly detection. The model utilizes a deep autoencoder to generate a low-
dimensional representation and reconstruction error for each input data point,
which is further fed into a Gaussian mixture model (GMM). Instead of using
decoupled two-stage training and standard expectation-maximization (EM) al-
gorithm, DAGMM jointly optimizes the parameters of the deep autoencoder
and mixture model simultaneously in an end-to-end manner, leveraging a
separate estimation network to facilitate the parameter learning of the mix-
ture model. The joint optimization, which well balances the autoencoding
reconstruction, density estimation of the latent representation, and regular-
ization, helps the autoencoder escape from less attractive local optima and
further reduce the reconstruction errors, avoiding the need for pretraining.
However, this method ignores the inherent temporal dependence of the time
series. Previous studies suggest that, in general, stochastic variables can im-
prove the performance of the RNN, because they can capture the probabil-
ity distributions of the time series. Fraccaro et al. [111] introduced stochastic
RNNs, which combine a deterministic RNN and state space model to form
a stochastic and sequential neural generative model. Xu et al. [44] showed
the usability of VAEs for anomaly detection and triggering of timely trou-
bleshooting problems on key performance indicator (KPI) data of Web ap-
plications (e.g., page views, number of online users, and number of orders).
They proposed Donut, an unsupervised anomaly detection algorithm based
on variational inference. Donut, at the time of evaluating Metano was consid-
ered as state-of-the-art method for anomaly detection using metric data from
software systems, therefore used as a comparison method.

Compared to the above approaches, Metano is a variational RNN, which
merges VAE and GRU so that the temporal dependence and stochastics of the
time series can be explicitly modeled. Moreover, the inclusion of preprocess-
ing and postprocessing with autonomous threshold selection and tolerance
module improves the performance by reducing the number of false alarms.

4.4 chapter summary

Despite the plethora of methods and long-lasting research on time series
anomaly detection, we discussed the few challenges of the task for system
metric data. They include the high noise, several frequencies and distribu-
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tions that reflect the normal system behavior, and recognition of patterns of
anomalies.

To mitigate these challenges, we presented Metano, an approach that com-
bines several deep learning models with pre- and postprocessing modules.
We demonstrated the advantages of combining GRUs with VAEs, two deep
learning models, for learning both stochastic and sequential properties of the
time series data generated by distributed software systems. This is a part
of the core anomaly detection model. Furthermore, we discussed the impor-
tance of the false alarm reduction logic together with the description of the
recognized anomaly patterns. All proposed parts of Metano are designed to
improve the administration with a small number of hyper-parameters. Our in-
vestigation on experimental and real-world production data showed that the
approach reaches comparable to state of the art F1-scores with an average of
0.85, prediction time smaller than 10 ms, and robust classification of detected
anomalies. The data were generated by two experimental microservice appli-
cations and planet-scale cloud infrastructure. Overall, we find comparable to
state-of-the-art results on time series data.

Nevertheless, the largest drawback for metrics is that they contain only a
limited view of the system and are system/service-scoped, which hinders
the understanding except inside a particular system/service on a high level.
Moreover, metrics do not provide semantic information about the anomalies,
which can be found in logs and traces. Therefore, in the next chapters, to
provide a complementary and unified anomaly detection, we also analyze
and present solutions in anomaly detection from log and trace data.
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In this chapter, we analyze the detection of system anomalies from log data.
A plethora of methods exist to address some of the challenges posed by log
data and complex systems ( [22, 23, 38, 146]). A common characteristic is
that they follow similar pipelines, depicted in Figure 21. (1) Owing to the
unstructured nature of logs, the first crucial step is to parse log messages
into structured more abstract data (e.g., templates, activities) for a subsequent
analysis. (2) Vectorization of the parsed logs (i.e., the templates) is performed
where they are converted into a vector form (e.g., one-hot encoding [26] or
term frequency encoding [147]). (3) The logs are utilized for training of the
detection models (e.g., DeepLog [38]).

The traditional log anomaly detection pipelines suggest that the log parsing,
log vectorization, and detection model directly impact the effectiveness [21,
23].

Figure 21: Overview of traditional log anomaly detection approaches.

60
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1. Even small errors, such as 4%, in parsing could cause a performance
reduction of one order of magnitude in log anomaly detection (from
40% to 3.7%) [148].

2. The vector representation of the log messages (log vectors) particularly
affects the generalization of the models on unseen log messages, which
is of importance in systems with frequent updates [22, 23].

3. The models need to be sufficiently powerful and expressive to extract
patterns from the potentially high-dimensional log vectors.

This chapter presents methods that cover these aspects in support to an
effective anomaly detection.

We summarize the contributions in this chapter below 1.

• Novel neural log parser for log anomaly detection, denoted as Nu-
Log [9], which not only parses the log messages, but also provides log
vector representations.

• We illustrate two use cases using NuLog variants, for supervised and
unsupervised anomaly detection. However, we observe a large gap be-
tween the supervised and unsupervised anomaly detection methods ow-
ing to the imperfect log representations.

• To bridge the gap between the supervised and unsupervised methods,
we present Logsy [8], a novel method with a spherical classification loss
function for log anomaly detection.

• We demonstrate the key features of Logsy including utilizing log vec-
tor representations in related methods and adding expert knowledge, if
available.

5.1 log parsing

The content of a log record is semi-structured text, which contain tags (e.g.,
timestamp and service name) and free-text written by software developers.
Often, the tagged data are relatively simple to parse, while the free-form text
is challenging [21, 109]. The free text is a composition of constant string tem-
plates and variable values. The template is the logging instruction (e.g., print(),
log.info()) from which the log message is produced. The objective of a log
parser is the transformation of the unstructured free text into a structured log

1 Parts of this chapter are published in [8, 9, 19, 149].
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template and associated list of variables. For example, the template "Attempt-
ing claim: memory x˚y MB, disk x˚y GB, vcpus x˚y CPU" is associated with the
variable list ["2048", "20, "1"], where x˚y denotes the position of each variable
and is connected with the positions of the values within the list. The variable
list can be empty if the template does not contain variable parts. We illustrate
the log parsing task in Figure 22.

Figure 22: Examples of system logs and their templates.

Traditional log parsing techniques rely on regular expressions designed and
maintained by human experts. This manual task is difficult to achieve in large
systems consisting of diverse software and hardware components. Addition-
ally, frequent software updates necessitate constant checking and adjustment
of these statements, which is a tedious error-prone task. Related log pars-
ing methods [29, 48, 59, 109, 150] depend on manual human interventions,
parse trees, heuristics, and domain knowledge. Analyses of the performances
of existing log parsing methods on various systems reveal their lack of ro-
bustness to produce consistently good parsing results [21]. This implies the
necessity to choose a parsing method for the application or system at hand
and incorporate domain-specific knowledge. In such case, operators of large
distributed software systems are faced with overhead of managing different
parsing methods for their components whereof each need to be accordingly
understood and tuned.

Notably, log parsing methods have to be accurate on log data from various
systems, from applications on mobile operating systems to cloud infrastruc-
ture management platforms, with minimal human intervention.

After parsing, the parsed templates are transformed to log vectors for
anomaly detection. The described procedures to generate log template vec-
tors may introduce additional uncertainty and complexity. Therefore, it is
desirable to incorporate the task of generating log vectors into the parsing
procedure. Such a log parsing approach would meet the requirements of re-
cent log analysis methods [22, 23, 151], avoid the additional external log vector
generators, and provide new possibilities for log analysis tasks.
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To this end, we present NuLog. We formulate the learning task on the obser-
vation that the presence of a word on a particular position in a log message is
conditioned on its context. Inspired by the Cloze procedure [152], the task is
carried out by masking the word that the model needs to learn to predict. In
this manner, the model is forced to learn the appearance of the word within its
context. The key idea for parsing is that the correct prediction of the masked
word implies that the word is a part of the log template. Otherwise, it is a
parameter (variable). The advantages of this approach are that it can produce
both log template and numerical vector sumarization and enable downstream
tasks such as anomaly detection. With the introduction of NuLog, we mod-
ify the traditional log anomaly detection pipeline illustrated in Figure 21 to
include the log parsing and vectorization within the same block. We describe
NuLog in detail below.

5.2 nulog : neural log parsing

In this section, we define the terminology, present the model, and demonstrate
an approach to extract log templates and numerical log vector representations.
In addition, an evaluation of the parsing method is presented.

We define a log as a sequence of temporally ordered unstructured text mes-
sages L = (li : i = 1, 2, ...), where each message li is generated by a logging
instruction within the software source code and i is its positional index within
the sequence.

The smallest inseparable singleton object within a log message is token.
Each log message consists of a finite sequence of tokens, ri = (wj : w P V, j =
1, 2, ...,msi), where V is a set (vocabulary) of all tokens, j is the positional
index of a token within the log message, and msi is the total number of
tokens in li. We use |ri| instead of msi in the following analysis. For different
li, |ri| can vary. Depending on the concrete tokenization method, wj can be
a word, word piece, or character. Therefore, the tokenization is defined as a
transformation function T : li Ñ ri, @i.

The notions of context and numerical vector representation (embedding
vector) are additionally introduced. For a token wj, its context is defined
by preceding and subsequent sequences of tokens, i.e., tuple of sequences:
C(wj) = ((w1,w2, ...,wj´1), (wj+1,wj+2, ...,w|ri|

)), where 0 ď j ď |ri|. Each to-
ken is represented through an embedding vector in a d-dimensional space
xj P Rd of either token or log message. Therefore, we define the log message
xi = tx0, x1, . . . , x|ri|u, where each token is represented as a vector.
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Figure 23: Overview of the NuLog architecture.

5.2.1 Parsing with Transformers

NuLog is composed of preprocessing (tokenization and masking), modeling,
and template extraction. The overall architecture based on an example log
message input is depicted in Figure 23. The raw log messages are tokenized,
where an EMBEDDING token is inserted at the first position. Using a dictionary,
each token is then replaced with an index. As the last step, the masking of
the tokens is performed, where the masked token is used as a target for pre-
diction. As each token in the model is represented in vector form (indices are
mapped to vectors), the EMBEDDING token is later used to summarize the log
message from the respective token embeddings. The tokens are fed into the
model, where parameters are optimized by minimizing the cross entropy loss
between the target and predicted masked token. Finally, the trained model is
used to extract log templates and numerical vector representation z.

Tokenization. Tokenization transforms each log message into a sequence of
tokens. For NuLog, we utilize a simple filter-based splitting criterion (e.g., on
a white space) to perform a string split operation. In Figure 23, we illustrate
the tokenization of two log messages. In contrast to related approaches [21]
that utilize additional hand-crafted regular expressions to parse IP addresses,
numbers, and URLs, NuLog does not change the original log messages at this
stage. Such approaches are error-prone and require manual adjustments in
different systems and updates within the same system. NuLog utilizes the ap-
pearance of the tokens within a context. These parameters (e.g., IP addresses)
are assigned with a low probability as they are not constant within a particu-
lar context.
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Figure 24: Model architecture of NuLog for parsing of the logs.

Masking. The concept behind the proposed parsing method is to learn a
general semantic representation of the log data by analyzing occurrences of
tokens within their context. We apply an approach referred to as masked
language modeling (MLM). Our masking module uses the output of the to-
kenization step as an input, which is a token sequence of a log message. A
percentage of tokens from the sequence are randomly chosen and replaced
by the special xMASKy token. If the percentage suggests replacing two tokens
with masks, the masking module will create two samples, where each of the
words will be masked once. In Figure 23, the masking is performed only on
one token. Therefore, one masked log message is created. The masked token
sequence is used as an input for the model, while the masked token acts as
the prediction target. Furthermore, we apply padding with PAD tokens. The
padding is applied to the maximal number of tokens across all log messages
in the dataset to create evenly sized inputs.

Model. The method has two operation modes, offline and online. During
the offline phase, log messages are used to tune all model parameters through
back-propagation. During the online phase, every log message is passed for-
ward through the model. This generates the corresponding log template and
embedding vector for each log message.

Figure 24 depicts the complete architecture. We base the model’s architec-
ture on the Transformer model [153]. The Transformer network obtains word/-
token vectors as a weighted sum of the vectors produced by the others tokens.
It attends to tokens that are similar and combines them to obtain a new repre-
sentation. The model applies two operations on the input token vectors, token
vectorization and positional encoding. The subsequent encoder structure uses
the result of these operations as an input. It is composed of two elements,
a self-attention layer and feedforward layer. The last model component is a
single linear layer with a softmax activation over all tokens appearing in the
logs. We provide a detailed explanation of each model element below.
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As all subsequent elements of the model expect numerical inputs, we ini-
tially transform the tokens into randomly initialized numerical vectors x P Rd.
These vectors are referred to as token embeddings and are a part of the train-
ing process, which implies that they are adjusted during the training to repre-
sent the semantic meaning of tokens depending on their context. These numer-
ical token embeddings are passed to the positional encoding block. In contrast
to, e.g., recurrent architectures, attention-based models do not contain any no-
tion of input order. Therefore, this information needs to be explicitly encoded
and merged with the input vectors to consider their position within the log
message. This block calculates a vector p P Rd representing the relative posi-
tion of a token based on sine and cosine functions,

p2k = sin

(
j

10000
2k
v

)
, p2k+1 = cos

(
j

10000
2k+1

v

)
, (19)

where k = 0, 1, . . . ,d´1 is the index of each element in p and j = 1, 2, . . . ,M
is the positional index of each token. The parameter k describes the exponen-
tial relationship between each value of vector p. Additionally, sine and cosine
functions are interchangeably applied. Both enable a better discrimination of
the respective values within a specific vector of p. Furthermore, both func-
tions approximately linearly depended on the position parameter j, which
was hypothesized so that the model can easily attend at the respective posi-
tions. Finally, both vectors can be combined as x 1 = x + p. The values for the
frequency of the sine and cosine functions were obtained empirically, as in
[153].

The encoder block of our model starts with a multi-head attention element,
where a softmax distribution over the token embeddings is calculated. Intu-
itively, it describes the significance of each embedding vector for the predic-
tion of the target masked token. We summarize all token embedding vectors
as rows of a matrix X 1 and apply the following formula,

X2l = softmax

(
Ql ˆK

T
l?

w

)
ˆ Vl, for l = 1, 2, . . . ,L, (20)

where L denotes the number of attention heads, w = d
L , and dmodL = 0.

The parameters Q, K, and V are matrices, which correspond to the query, key,
and value elements in Figure 24, respectively. They are obtained by applying
matrix multiplications between the input X 1 and respective learnable weight
matrices WQ

l , WK
l , WV

l ,

Ql = X
1
ˆW

Q
l , Kl = X 1 ˆWK

l , Vl = X 1 ˆWV
l , (21)
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where WQ
l , WK

l , WV
l P RMˆw. The division by

?
w stabilizes the gradients

during the training [153]. The softmax function is then applied and the re-
sult is used to scale each token embedding vector Vl. The scaled matrices X2l
are concatenated to a single matrix X2 with a size of Mˆ d. As depicted in
Figure 24, a residual connection between the input token matrix X 1 and its re-
spective attention transformation X2 exists, followed by a normalization layer
norm. These are used to improve the performance of the model by address-
ing different potential problems during the learning such as small gradients
and covariate shift phenomena. In this manner, the original input is updated
by the attention-transformed equivalent, X 1 = norm(X 1 +X2).

The last element of the encoder consists of two feed-forward linear layers
with a ReLU activation between them. It is applied individually on each row
of X 1. Thereby, identical weights for every row are used, which can be de-
scribed as a convolution over each attention-transformed matrix row with a
kernel size of one. This step serves as an additional information enrichment
for the embeddings. A residual connection followed by a normalization layer
between the input matrix and output of both layers is employed. This model
element preserves the dimensionality X 1.

The final element of the model consists of a single linear layer. It receives the
encoder result X 1 and extracts the token embedding vector of the EMBEDDING

token. As every log message token sequence is prepadded by this special
token, it is the first row of the matrix, i.e., x 10 P X 1. The linear layer maps this
vector with a size of d to a vector whose size corresponds to the total number
of tokens |T| in the dataset. The subsequent softmax is utilized to calculate
the probability distribution over each element of T. During the training with
a cross-entropy loss function, the masked token is used as the target to be
predicted. As the last vector embedding of the EMBEDDING token is used for
prediction, it summarizes the log message. We hypothesize that the constant
part of log templates will constraint the model to learn similar EMBEDDING

vectors when log messages are from the same template. This leads to mapping
of the log messages to their vector representation, which can enable other
downstream log analysis tasks.
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5.2.2 Log template and vector extraction

After the model is trained, the extraction of all log templates within a log
dataset is executed online. Each log message is used as an input and the
masking module is configured such that every token is masked consecutively,
one at a time. We measure the model’s ability to predict each token, and thus
decide whether the token is a constant part of the template or variable. A
high confidence in the prediction of a specific token indicates a constant part
of the template. A low confidence is interpreted as a variable. We employed
the following procedure. If the prediction of a particular token is in the top
ε predictions and does not contain numbers, we consider it a constant part
of the template; otherwise, we considered it a variable. For each variable, an
indicator x˚y is placed on its position within the log message.

Once the templates are obtained, to perform anomaly detection, we follow
the traditional log anomaly detection pipeline described above.

Another contribution of NuLog is that we enable generation of a vector
representation of the log messages. The EMBEDDING token attends over all to-
kens in the log. Hence, it embeds information of all of them without being
biased toward any of the original log tokens. Moreover, it encodes semantic
information inside the logs. This leads to one-to-one mapping between the
log message type and vector representation of the EMBEDDING token.

5.2.3 NuLog: Evaluation

To quantify the effectiveness of NuLog in the task of log parsing, we evaluate
it on 10 presented datasets and compare it to 12 existing log parsing methods.
We reproduce the results of the parsing benchmark [21] for all log parsers
and include NuLog’s results. All parsers and their parameters are tuned to
achieve their best performances.

5.2.3.1 Datasets

The log datasets employed in our experiments consist of: (1) supercomputer
logs, Blue Gene L (BGL) and HPC, (2) distributed system logs, Hadoop dis-
tributed file system (HDFS), OpenStack, and Spark, and (3) standalone soft-
ware logs, Apache, Windows, Mac, and Android. To enable reproducibility,
we follow the guidelines of Zhu et al. [21] and utilize a random sample of
2000 log messages from each dataset, where the ground truth templates are
available.
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5.2.3.2 Evaluation metrics

For comparability of NuLog to the previous methods [21], we utilize the
benchmark PA metric. It is defined as the ratio of correctly parsed log mes-
sages to the total number of log messages. A log message is considered cor-
rectly parsed if its log template corresponds to the same group of log mes-
sages as that of the ground truth. For example, if a log sequence [e1, e2, e2]
is parsed to [e1, e4, e5], we obtain PA = 1

3 as the second and third messages
are not grouped together. The parsing accuracy does not measure the string
matching between the template and ground truth. Therefore, we enrich the
evaluation with an additional metric, the edit distance. This can be used to
quantify the dissimilarity between two log templates by counting the mini-
mum number of operations required to transform one into the other.

Table 8: Comparisons of log parsers and our method NuLog in terms of PA.
Dataset SLCT AEL LKE LFA LogSig SHISHO LogCluster LenMa LogMine Spell Drain MoLFI BoA NuLog

HDFS 0.545 0.998 1.000 0.885 0.850 0.998 0.546 0.998 0.851 1.000 0.998 0.998 1.000 0.998

Spark 0.685 0.905 0.634 0.994 0.544 0.906 0.799 0.884 0.576 0.905 0.920 0.418 0.994 1.000
OpenStack 0.867 0.758 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213 0.867 0.990
BGL 0.573 0.758 0.128 0.854 0.227 0.711 0.835 0.690 0.723 0.787 0.963 0.960 0.963 0.980
HPC 0.839 0.903 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824 0.903 0.945
Windows 0.697 0.690 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989 0.997 0.406 0.997 0.998
Mac 0.558 0.764 0.369 0.599 0.478 0.595 0.604 0.698 0.872 0.757 0.787 0.636 0.872 0.821

Android 0.882 0.682 0.909 0.616 0.548 0.585 0.798 0.880 0.504 0.919 0.911 0.788 0.919 0.827

HealthApp 0.331 0.568 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440 0.780 0.875
Apache 0.731 1.000 1.000 1.000 1.000 1.000 0.709 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5.2.3.3 Parsing results

Parsing accuracy results are presented in Table 8. Each row contains the
datasets while the compared methods are presented in the table columns. The
penultimate column contains the highest value of the first twelve columns, re-
ferred to as best of all, while the last column contains the results for NuLog.
The values in bold indicate the best of the methods per dataset. HDFS and
Apache datasets are most frequently parsed with a PA of 100%, because HDFS
and Apache error logs have relatively unambiguous event templates, which
are simple to identify. For them, NuLog achieves comparable results. For the
Spark, BGL, and Windows datasets, the existing methods already achieve high
PA values above 96% (BGL) or above 99% (Spark and Windows). Our method
can slightly outperform these methods. For the rather complex log data from
OpenStack, HPC, and HealthApp, the baseline methods achieve a PA between
78% and 90%, which are significantly outperformed by NuLog by 4–13%.
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Figure 25: Robustness evaluation of the PA of the log parsers.

With the proposed method, we explicitly aim to support a broad range of
diverse log data types. Therefore, the robustness of NuLog is analyzed and
compared to those of the related methods. Figure 25 shows the accuracy dis-
tribution of each log parser across the log datasets within a boxplot. From
left to right in the figure, the log parsers are arranged in ascending order of
the median PA. LogSig has the lowest, while NuLog has the highest median
PA. Although most log parsing methods achieve high PA values of 90% for
specific log datasets, they have large variances when applied across all given
log types. NuLog outperforms the other baseline methods in terms of PA ro-
bustness with a median of 0.99, which is even above the best of all medians
of 0.94.

Table 9: Comparisons of log parsers and our method NuLog in terms of edit distance.
Dataset LogSig LKE MoLFI SLCT LFA LogCluster SHISHO LogMine LenMa Spell AEL Drain BoA NuLog

HDFS 19.1595 17.9405 19.8430 13.6410 30.8190 28.3405 10.1145 16.2495 10.7620 9.2740 8.8200 8.8195 8.8195 3.2040
Spark 13.0615 41.9175 14.1880 6.0275 9.1785 17.0820 7.9100 16.0040 10.9450 6.1290 3.8610 3.5325 3.5325 12.0800

BGL 11.5420 12.5820 10.9250 9.8410 12.5240 12.9550 8.6305 19.2710 8.3730 7.9005 5.0140 4.9295 4.9295 5.5230

HPC 4.4475 7.6490 3.8710 2.6250 3.1825 3.5795 7.8535 3.2185 2.9055 5.1290 1.4050 2.0155 1.4050 2.9595

Windows 7.6645 11.8335 14.1630 7.0065 10.2385 6.9670 5.6245 6.9190 20.6615 4.4055 11.9750 6.1720 5.6245 4.4860
Android 16.9295 12.3505 39.2700 3.7580 9.9980 16.4175 10.1505 22.5325 3.2555 8.6680 6.6550 3.2210 3.2210 1.1905
HealthApp 17.1120 14.6675 21.6485 16.2365 20.2740 16.8455 24.4310 19.5045 16.5390 8.5345 19.0870 18.4965 14.6675 6.2075
Apache 14.4420 14.7115 18.4410 11.0260 10.3675 16.2765 12.4405 10.2655 13.5520 10.2335 10.2175 10.2175 10.2175 11.6915

OpenStack 21.8810 29.1730 67.8850 20.9855 28.1385 31.4860 18.5820 23.9795 18.5350 27.9840 17.1425 28.3855 17.1425 21.2605

Mac 27.9230 79.6790 28.7160 34.5600 41.8040 21.3275 19.8105 17.0620 19.9835 22.5930 19.5340 19.8815 17.062 2.8920

Edit distance scores are listed in Table 9. The table structure is the same
as that of the PA results. The value in bold indicates the best edit distance
across all tested methods per dataset. In terms of edit distance, NuLog out-
performs the existing methods on the HDFS, Windows, Android, HealthApp,
and Mac datasets. Its performance is comparable on the BGL, HPC, Apache,
and OpenStack datasets. It achieves a larger edit distance on the Spark log
data.

We verify the robustness in terms of edit distance across the different log
datasets. Figure 26 shows a box-plot of the edit distance distribution of each
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log parser for all log datasets. From left to right in the figure, the log parsing
methods are arranged in descending order of the median edit distance. Again,
although most log parsing methods achieve minimal edit distance scores un-
der 10, most of them have large variances over different datasets and are thus
not generally applicable for diverse log data types. MoLFI has the largest me-
dian edit distance, while Spell and Drain exhibit small median edit distances
for multiple datasets. NuLog outperforms the state-of-the-art models, with
the smallest edit distance values with a median of 5.00, which is smaller than
the best-of-all median of 7.22.

These results show that NuLog parses the log messages accurately, while
preserving the string structure of the message.
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Figure 26: Robustness evaluation of the edit distance of the log parsers.
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5.3 from log representations to log anomaly detection

The improvement in the log parsing has a large impact on the subsequent
log anomaly detection task in the traditional pipeline for a log analysis [21].
As described above, the next step in the log anomaly detection pipeline is
to obtain log vectors. In previous unsupervised approaches, the log vectors
are obtained by one-hot encoding of the templates or combination of word
vectors using, e.g., word2vec [99]. In NuLog, these log vectors were directly
produced together with the parsed log template.

We perform an additional analysis to compare the performances of (1) one-
hot encoding of the templates, as they are utilized in the state-of-the-art log
anomaly detection method, DeepLog [38], (2) DeepLog with log vectors ob-
tained from NuLog, instead of one-hot encoding, and (3) NuLog with an
additional layer to perform supervised log anomaly detection.

We depict the unsupervised anomaly detection use case of NuLog in Fig-
ure 27. The log vectors from NuLog obtained from the EMBEDDING token are
utilized by the modified DeepLog method instead of one-hot encoding to per-
form anomaly detection. DeepLog requires a sequence of h log messages and
learns to predict the next log message. If it successfully predicts the next log
message, the message is classified as normal; otherwise, it is classified as an
anomaly.

In the supervised case, we learn the log message embeddings in a super-
vised manner. First, NuLog is trained on the parsing task. Second, we replace
the last softmax layer by a linear layer, which maps the EMBEDDING vector to
0 or 1 (normal or anomaly), i.e., optimizes the model’s parameters, as well as
the log representations (the EMBEDDING vector) to perform binary classification.

𝑙1, 𝑙2, … , 𝑙ℎ)
𝑧1 = [0.62, 0.32, … , 0.59
𝑧1 = [0.62, 0.32, … , 0.59
𝑧1 = [0.62, 0.32, … , 0.59
𝑧ℎ = [0.62, 0.32,… , 0.59

𝑙ℎ+1

𝒛 = [0.22, 0.43, … , 0.119

Figure 27: Unsupervised (top) and supervised (bottom) methods for downstream
anomaly detection.



5.3 from log representations to log anomaly detection 73

Table 10: Scores for the anomaly detection use cases.

Method
BGL 10%

80%-20% train-test
BGL 100%

80%-20% train-test

DeepLog 0.24 0.18

DeepLog with NuLog vectors 0.99 0.28

Supervised NuLog 0.99 0.98

Table 10 shows the results of the analysis. The vectors obtained from NuLog
from the parsing task provided a higher performance in the anomaly detec-
tion than that of DeepLog. However, a large gap to the supervised learning
scenario exists, where log vectors are learned using the available labels.

The provision of better log vector representations increases the perfor-
mances in the anomaly detection tasks. To show the importance of the log
representations, we provide an example in Figure 28. We illustrate three log
messages when they are represented with one-hot encoding. The vectors are
orthogonal and do not have similarity in-between. Therefore, when a new log
message is observed, the model will recognize it as an anomaly, not similar
to the learned log messages. This scenario of imperfect representations occurs
also when word vectors pretrained on other domain are used. In an ideal
case, "VM create finished" and "VM create completed" should be represented
closely in the space, while "VM fatal error" should be distant from them. The
normal samples should have compact representations, i.e., close distances in
the representational space, while anomalies should be distant.

This, in the ultimate case, is shown with the supervised learning scenario
of NuLog. When each log message is labeled, the method can identify compo-
sitions of words that signal normal and anomaly system states. Furthermore,
it utilizes the semantic meaning of the log message to create better log vectors

→ 𝑡1 = [0,1,0]

→ 𝑡0 = [1,0,0]

→ 𝑡2 = [0,0,1]

→ 𝑡1 = [0.05,0.95,0.03] → 𝑡0 = [0.1,0.97,0.04]

→ 𝑡2 = [0,0,1]

Figure 28: Log vectors of three log messages, represented with one-hot encoding (in-
dices, left) and desired representation (right).
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Log message (log template T in bold) Class Index

total of 77 ddr error(s) detected and corrected normal x0

instruction cache parity error corrected normal x1

floating point unavailable interrupt anomaly x2

critical input interrupt (unit=0x0b bit=0x06) normal x3

Table 11: Examples of log messages.

that are robust and produce accurate predictions even on unseen log messages.
However, the provision of labeled data from specific systems in production is
often prohibitive costly.

Supervised learning can be related to detection of anomalies in the log
data by operators. They often analyze the semantic information from the logs
and decide whether the message represents a severe system threat or failure.
This semantic information is narrow and domain-specific. For example, in
Table 11, x2 and x3 contain similar semantic meanings when observed without
domain-specific knowledge. Therefore, both of them would be classified in the
same class. However, if observed by a domain-expert knowing that a "floating
point" interruption is considerably more severe than an "input" interruption,
it would be able to recognize them correctly.

In the following sections of this chapter, we present a method, which ad-
dresses these challenges, and bridges the gap in effectiveness from unsuper-
vised to supervised log anomaly detection.
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Figure 29: Logsy replacing the traditional pipeline of log anomaly detection.

5.4 log anomaly detection

The normal log messages ideally should have vector representations with
small distances between each other, e.g., concentrated within a tight
sphere [86]. In this section, we present an anomaly detection method denoted
as Logsy, which directly addresses the challenge of obtaining compact numer-
ical log vectors. We train a neural network to learn log vectors to separate the
normal log data from the system of interest (target system) and log messages
from auxiliary log datasets from other systems, easily accessible through the
internet. The concept of such a classification approach to anomaly detection
is that the auxiliary dataset helps learn a more accurate representation of
the normal data while regularizing against over-fitting. This leads to a better
generalization for unseen logs. For example, for a target system of interest
T where anomaly detection needs to be performed, as auxiliary data, one or
more datasets from an open-source log repository could be employed ( [154]).
To model the data, we reuse the same transformer architecture as in NuLog.
Additionally, we propose a hyperspherical, instead of the traditional hyper-
plane classification decision boundary, learning objective, to learn compact
log vector representations of the normal log messages. This enforces the nor-
mal samples to have concentrated (compact) vector representations around
the center of a hypersphere. Small distances from the center correspond to
normal samples, while large distances correspond to anomalies. The method
enables a direct log-to-vector transformation, which can be used to improve
the performances of previous related methods.

In this regard, we shift from the traditional log anomaly detection pipeline
(Figure 29). With Logsy, we learn the anomaly score end-to-end from raw log
messages. The method does not depend on log parsing and does not utilize
a module for obtaining log vectors. The log parsing and log vectorization in
Logsy are learned implicitly during the training procedure.
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5.4.1 Importance of the auxiliary data

To elucidate the importance of using the auxiliary data, we relate the anomaly
detection task to the task of density level set estimation [155]. Steinwart et
al. [85] stated that this can be interpreted as a binary classification between
the normal and anomalous distributions and that the prior on the anomalous
distribution is essential for an improved detection. Thus, if we provide infor-
mation to the model regarding the distribution of the anomalous data, it will
increase its performance. For example, we may interpret the class assumption
in semi-supervised anomaly detection that a small number of anomaly data
points are available and labeled as such prior knowledge or bias [86]. More-
over, specific types of data can have inherent properties, which enables more
informed prior assumptions such as the word representations in texts [90],
where it is assumed that each word meaning depends on its context.

We assume that drawing realistic samples from some auxiliary easy-access
corpus of log data can be considerably more informative for an added descrip-
tion of normal data and anomalies compared to the sampling noise. These
samples are replacements for real anomalies used, e.g., in semi-supervised
learning approaches.

5.5 logsy: classification-based anomaly detection on logs

In this section, we explain the proposed method in detail. We describe the
data preprocessing, neural network model, log vector representations, and
their utilization in the modified objective function for anomaly detection.

To formally define the task, we consider D = t(x1,y1), . . . , (xn,yn)u as train-
ing logs from the system of interest where xi is a log message whose tokens
are represented in d ´ dimensional space (the log message is represented
by dˆ |r| matrix, where |r| is the maximum number of tokens in all log mes-
sages) and yi = 0; 1 ă i ď n, assuming that the data in the system of interest
are composed mostly of normal samples. A = t(xn,yn), . . . , (xn+m,yn+m)u,
where m is the size of the auxiliary data and yi = 1;n ă i ď n +m.
φ(xi,yi, θ) : Rdˆ|ri| Ñ Rp Ñ [0,a],a P R is a function represented by a neu-
ral network, which maps the input log message token embeddings to vector
representations in Rp (log vectors), and then to an anomaly score. The task is
to learn the parameters θ, and then, for each incoming instance in the predic-
tion phase Dt = t(xt

1), (xt
2), . . . , (xt

j), . . . u, predict whether it is anomalous or
normal based on the anomaly scores, where t indicates the test sample.
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5.5.1 Logsy

The method is composed of two main parts, the tokenization of the log mes-
sages and neural network model.

Tokenization. The tokenization transforms the raw log messages into a se-
quence of tokens, as shown in Figure 30. The same tokenization module as in
NuLog is used. In addition, in the tokenization module, we perform cleaning
of the log messages. For this purpose, we utilize the standard text preprocess-
ing library NLTK [156]. The message is initially filtered for HTTP and system

Target-system Training 
data (class 0, normal)

New log data from 
target system

Tokenization

Examples
1. imprecise machine check                    2. machine check interrupt

1. [[EMBEDDING], imprecise, machine, check] 
2. [[EMBEDDING], machine, check, interrupt]

1. [0, 1, 2, 3]
2. [0, 2, 3, 4]

[EMBEDDING] : 0
imprecise : 1
machine : 2

check : 3
interrupt ; 4

Auxiliary data (class 1, 
anomaly)

Encoder of the transformer architecture

Positional encoding: of each word within 
the log message for preserving the 

sequential order

z = Numerical vector of the [EMBEDING] token 
(summarizes the log message)

For test data
Anomaly score:  

‖𝐳‖2

Word embeddings (examples)
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Figure 30: Overview of the architecture and component details of Logsy.
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path endpoints (e.g., /p/gb2/stella/RAPTOR/). Every capital letter is con-
verted to the lowercase letter. All ASCII special characters are removed. The
log message is split into word tokens. We remove every token that contains
numerical characters, as they often represent variables in the log message and
are not informative. Additionally, we remove the most commonly used En-
glish words that are in the stop word dictionary of NLTK (e.g., the and is).
Similar to the case of NuLog, to the front of the tokenized log message, a spe-
cial EMBEDDING token is added. In the model, the EMBEDDING token attends over
all original tokens from the sample, which enables the model to summarize
the context of the log message in the vector representation. All tokens from
every log message form a dictionary V with a size of |V|, where each word is
represented with an integer label i P 0, 1, . . . , |V| ´ 1. An advantage of Logsy
over previous log anomaly detection approaches is that it does not depend
on log parsers as a preprocessing step (only cleaning). We consider the tok-
enized log message as a direct input to the model. As an advantage, no loss
of information from the log message exists, owing to the imperfections in the
log parsing methods.

Model. Logsy has two operation modes, offline and online. During the
offline phase, log messages are used to tune all model parameters through
back-propagation and optimal hyperparameters are selected. During the on-
line phase, every log message is passed forward through the saved model.
This generates the respective log vector representation z and anomaly score
for each message.

The core model architecture is the Transformer encoder, similar to NuLog.
As a detailed description of the transformer encoder was already presented
in Section 5.2.1, we describe only the major parts. The model applies two
operations on the input tokens, token vectorization (word embeddings) and
positional encoding. The subsequent structure is the encoder of the trans-
former [153] module with a multi-head self-attention, which uses the result
of these operations as an input. At the output of the encoder, the transformed
vector representation from the initial tokens exists. The EMBEDDING token has
its transformed representation z, which is used as a final log vector repre-
sentation. The final element of the model consists of a single linear layer. It
receives the vector z from the EMBEDDING token and uses it for optimizing the
model. Based on the loss function, gradients are back-propagated to tune the
parameters of the model.
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5.5.2 Objective function

To ensure learning of the intrinsic differences between normal and anomaly
log samples, we propose a spherical loss function. It is designed to integrate
the previously mentioned assumption that normal data are often concen-
trated, with small distances between the normal samples, while also learning
properties to distinct from anomalous samples. This is carried out by em-
ploying a radial classification loss, which enforces a compact hyperspherical
decision region for the normal samples.

To derive the loss, we start with the standard binary cross entropy. D =

t(x1,y1), . . . , (xn+m,yn+m)u is the concatenation of the training logs from the
system of interest and auxiliary data with xi P Rdˆ|ri|, where |ri| is the num-
ber of tokens in the log message and each token is a vector represented in
d´ dimensional space. yi P t0, 1u; yi = 0 denotes normal samples (target
system), while yi = 1 denotes an anomaly (auxiliary data). φ(xi, θ) : Rd Ñ Rp

is our encoder architecture, which maps the |xi| word embeddings form the
log message to a p´ dimensional vector. l : Rp Ñ [0, 1] is a function that
maps the output to an anomaly score. Using φ(xi, θ) and l(¨), the standard
binary cross-entropy loss can be expressed by

´
1

n

n
ÿ

i=1

(1´ yi) log l(φ(xi; θ)) + yi log(1´ l(φ(xi; θ))). (22)

For the standard classifier function, the p´ dimensional representation is
transformed through a linear layer followed by the sigmoid activation func-
tion,

´
1

n

n
ÿ

i=1

(1´ yi) log((1+ exp(´wTφ(xi, θ)))´1)

+yi log(1´ (1+ exp(´wTφ(xi, θ)))´1)

. (23)

In the standard binary classifier with the sigmoid function, the decision
boundary is half-space, as depicted in gray in Figure 31. The representation
of the log messages is not guaranteed to be compact in this case. It is very
likely that the normal samples are scattered throughout the space with vary-
ing potentially very large distances between them. To enforce compactness of
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the representations of the log messages, we utilize the Gaussian radial basis
function, l(¨),

l(z) = exp(´}z}2). (24)

By replacing the function into the loss function, we obtain the hyperspheri-
cal classifier,

´
1

n

n
ÿ

i=1

(1´ yi) log(exp(´}φ(xi; θ)}2))

+yi log(1´ exp(´}φ(xi; θ)}2))

=
1

n

n
ÿ

i=1

(1´ yi)}φ(xi; θ)}2

´yi log(1´ exp(´}φ(xi; θ)}2)).

(25)

.
This ensures compactness of the normal samples, which are enforced to be

around the center of a sphere c = 0. For normal samples, i.e., yi = 0, the loss
function minimizes the distance to c. This leads to low values for the left term
in Equation 25. In contrast, the right term of the loss function favors large
distances for the anomalous samples. As shown in Figure 32, the radial basis
function has a spherical (circle in 2D) decision boundary, located between the
gray and black areas. The center of the sphere c could be any constant value,
which is not relevant during the optimization.

However, for such spherical classifiers [86], the model may be prone to
learn trivial solutions by mapping the inputs to output a constant vector, c.
However, the proposed loss function will not find the trivial solution because
of the second term in the equation, which represents the auxiliary data or
anomalies. To formally demonstrate this statement, we consider φ(¨) as an
encoder network, which maps every log message to c (trivial solution). Thus,
φ(¨) = 0. In this case, the second term in Equation 25 for yi = 1 will be infinity
or very large value, which acts as a regularizer and prevents learning c as a
trivial vector representation,

´ log(1´ exp(´}0}2)) = ´log(0). (26)
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Decision boundary
Sigmoid

Figure 31: Hyperplane classi-
fier with sigmoid.

Figure 32: Hypersphere classifier us-
ing the radial function in-
stead of sigmoid.

5.5.3 Anomaly score and detection of anomalies

Considering that the assumption of the objective function enforces compact,
close to the center of the sphere c = 0, representations, we define our anomaly
score as the distance of the log vectors (obtained from the EMBEDDING token)
to the center c of the hypersphere,

A(xi) = }φ(xi; θ)}2. (27)

We attribute low anomaly scores A(xi) to normal log messages, while large
scores to anomalies. To decide whether the sample is anomalous or normal,
we use a threshold E. If the anomaly score A(xi) ą E, the sample is an
anomaly; otherwise, we consider it as normal. This concludes the explanation
of the method. We describe two properties of the model below.

5.5.4 Learning with an additional expert input

Most computer systems are, to some extent, supervised and operated by an
administrator. Over time, the administrator can manually inspect a small por-
tion of the events and provide labels. As an additional option, Logsy allows
incorporation of such labels from the target system. The second term in Equa-
tion 25, used for the auxiliary data, could be also utilized for the inclusion of
operator-labeled samples. This enables the addition of even more realistic, but
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costly anomaly samples, which help learn the anomaly distribution and im-
prove the performance. The labeled samples can be added together with the
auxiliary data and the model needs to be retrained or the following procedure
should be utilized:

1. Train the model with the auxiliary data.

2. Replace the auxiliary data with the labeled samples.

3. Continue the training of the model only with the labeled sample until
convergence.

The replacement of the auxiliary data with the labeled samples allows the
model to only fine-tune its parameters in a few epochs. This preserves the
already learned information from the larger auxiliary dataset as a bias to the
fine-tuning procedure. In the experiments, we show that the inclusion of a
small portion of labeled samples improves the performance of the model.

5.5.5 Vector representations of the logs

Logsy can also be utilized to obtain numerical log representations as they
are used in the traditional log anomaly detection pipeline. These representa-
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Figure 33: Provision of the log vector embedding using the special ’EMBEDDING’
token that summarizes the context of the log message.
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normal
anomaly

Figure 34: Ideal distribution of the log vector representations in space.

tions, as described above, are used by the objective function and to obtain
anomaly score in Logsy, but could be also used to replace other less powerful
representations, e.g., term-frequency inverse document frequency (TF-IDF) in
previous log-based anomaly detection methods such as the PCA [110]), to
enhance their anomaly detection.

In Figure 33, we illustrate the process of obtaining the log embeddings.
The transformer encoder transforms each of the vectors of the input tokens
x1, x2, . . . , x|ri| to an abstract representation xt1, x

t
2, . . . , x

t
|ri|

. As only the vec-
tor of the first EMBEDDING token is used for optimizing the loss function, it
summarizes the context of the log message. In Figure 34, we illustrate a
lower-dimensional plot of the ideal log representations. A decision boundary
(dashed line) can be drawn to optimally separate the classes. We demonstrate
such behavior in the evaluation section on real data with Logsy, where we
show the normal and abnormal sample distributions in a low-dimensional
space.
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5.6 evaluation

We perform various experiments to quantify the performance of Logsy. We
compare the method against two publicly available baselines, DeepLog and
PCA, on three real-world HPC log datasets. We describe the main properties
of the datasets and experimental setup and present the results. We empiri-
cally and qualitatively evaluate the log vector representations from Logsy. We
utilized them in the PCA method, which provided an improved performance.

5.6.1 Experimental setup

We select three open real-world datasets from HPC systems for the evaluation
as target systems, Blue Gene/L (BGL), Spirit, and Thunderbird [154]. Table 12

summarizes the main characteristics of the datasets. They share an important
characteristic associated with the appearance of numerous new log messages
in the timeline of the data, i.e., the systems change over time. Furthermore,
as an additional dataset for enriching the auxiliary data in all experiments,
we use the HPC RAS log dataset [157]. Owing to the absence of labels, this
dataset cannot be used for evaluation purposes; it cannot be a target dataset.

For each target dataset, as auxiliary data to represent the anomaly class, we
use logs from the remaining datasets. Notably, the target vs. auxiliary splits
ensure that no leak of information from the target system into the auxiliary
data exists. The auxiliary logs consist only of easily accessible logs from other
systems through the internet. The nonanomalous samples from the target sys-
tem are the target dataset. For example, when Blue Gene/L is our system
of interest (i.e., the target system), percentages of the negative samples of
Thunderbird, Spirit, and RAS are used as an auxiliary dataset to represent the
anomaly class. These auxiliary samples could be also error messages obtained
from online code repositories (e.g., GitHub). We perform anomaly detection
on the test samples from the target dataset to determine the scores. The setup
is illustrated in Figure 35.

Table 12 shows that Thunderbird and Spirit are quite large datasets of more
than 200 million log messages. For a computation time reduction, we restrict

System Vendor #Processors Days #Messages Data Size (GB) #Anomalies #Anomalies (5m)

Blue Gene/L IBM 131072 215 4747963 1207 348460 348460

Thunderbird Dell 9024 244 211212192 27367 3248239 226287

Spirit HP 1028 558 272298969 30289 172816564 764890

Table 12: Target datasets.
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Figure 35: Illustration of the target and auxiliary data split.

the data size on the first 5 million log messages, sorted by timestamp. We
ensure that the 5 million log lines preserve the properties of the dataset. Ta-
ble 13 shows the number of unseen logs in the test data split. The Blue Gene/L
dataset has less than 5 million messages; thus, we keep all of them. #Anoma-
lies (5m) shows the number of anomalous log messages in the 5 million mes-
sages.

To evaluate the robustness and generalization of Logsy in detail, we carry
out several experiments with different train–test splits on the target dataset.
To ensure that the test data contain new log messages previously unseen in the
training, we always split the data sorted by the timestamp of the log messages.
We perform five different data splits to cover as many scenarios as possible:
10% training – 90% test data, 20% training – 80% test, 40% training – 60% test,
60% training – 40% test, and 80% training – 20% test.

The number of unique log messages after the tokenization is presented in
Table 13. Every split contains unseen log messages in the test data, which do
not exist in the train split. The evaluation of the method on such splits demon-
strates the model generalization. The decrease in the size of the training data
increases the number of novel log messages in the test split.

System
#Unique log messages in

test and not present in train for every split
#Total unique

messages
10% 20% 40% 60% 80%

Blue Gene/L 2679 2621 2256 2231 465 4486

Thunderbird 334 127 71 27 12 3279

Spirit 1091 1028 297 129 73 3441

Table 13: Number of new log messages in the test in every train/test split.



5.6 evaluation 86

5.6.2 Baselines

We compare Logsy against two publicly available baseline methods,
PCA [110] and Deeplog [38]. Industry related studies showed that
LogAnomaly [23] has a state-of-the-art performance. However, it has no pub-
licly available implementation. LogAnomaly provides an improvement com-
pared to DeepLog with an F1 score of 0.03. The results of both methods are
comparable. The parameters of these methods are tuned to produce their best
F1 scores.

5.6.3 Implementation details

Every log message during the tokenization is truncated to a maximum of
max(|ri|) = 50 tokens. Logsy has two layers of the transformer encoder. The
words are embedded with 16 neural units. The higher-level vector representa-
tions obtained with the transformer encoding have the same sizes. The size of
the feed-forward network that uses the output of the multi-head self-attention
mechanism is also 16, which provides the ’[EMBEDDING]’ vector with the
same size. For the optimization procedure for every experiment, we use a
dropout of 0.05, Adam optimizer with a learning rate of 0.0001, and weight
decay of 0.001. We address the imbalanced number of normal versus anomaly
samples by adding weights to the loss function for the two classes, 0.5 for the
normal and 1.0 for the anomaly class. The models are trained until conver-
gence and later evaluated on the respective test split.

5.6.4 Results and discussion

We show the overall performance of Logsy compared to the baselines in Fig-
ure 36. Generally, Logsy achieves the best scores, with an averaged F1 score
in all splits of 0.448 on the Blue Gene/L dataset, 0.99 on the Thunderbird
dataset, and 0.77 on the Spirit data. DeepLog and PCA have lower F1 scores
in all performed experiments. The baselines have a very high recall, but low
precision. This implies that they can find the anomalies. However, they will
produce large numbers of FP predictions.

Logsy preserves the high recall across the datasets and evaluation scenarios.
In addition, it exhibits a large improvement in the precision scores, owing to
the correct classification of new unseen log messages and reduction in the FP
rate. For example, on the Blue Gene/L dataset, DeepLog and PCA exhibit 2–4

times lower precisions than that of Logsy. Overall, Logsy is the most accurate
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Figure 36: Comparison of the evaluation scores against the two baselines DeepLog
and PCA on three different datasets.

method with an average of 0.9. If a log anomaly detection method gener-
ates too many false alarms, it will add a too high overhead to the operators
and large amount of unnecessary work. Therefore, high-precision methods
are favorable. DeepLog leverages the indices of log templates, which ignore
the meaning of the words in the log messages, to learn the anomalous and
normal patterns. However, different templates having different indices can
share common semantic information and both could be normal. Ignoring this
information leads to the generation of FP for DeepLog compared to Logsy.
Notably, the increase in the training size also increases the F1 score for almost
all methods, except for the last two splits in Spirit. These splits have very
small numbers of anomalies. Notably, Logsy outperforms the baselines even
when only 10% of the data are training data. For example, in Blue Gene/L, we
obtain an F1-score of 0.32 on 10% training data, while the largest F1-score of
the baselines is 0.24. In Thunderbird, this difference is even more noticeable,
where an F1-score of 0.99 is already achieved with the first 10%. This shows
that even with a small amount of training data from the target system Logsy
extracts the needed information on the reason responsible for the log mes-
sage to be normal or anomalous. Logsy produces accurate predictions even in
unseen samples.
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Figure 37: Effect of the size of the auxiliary dataset. The target systems are Blue
Gene/L, Thunderbird, and Spirit (left, middle, and right, respectively);
20% train – 80% test split.

5.6.4.1 Effect of the auxiliary data on the evaluation scores

In this experiment, we perform an analysis of the Logsy performances with
various sizes of the auxiliary data. We evaluate the same target vs. auxiliary
data split for all datasets. We evaluate the approach on the 20%–80% train/test
split. The results are shown in Figure 37 for all datasets. The auxiliary data
size increase from 1 to 250000 led to increases in all evaluation scores. With
the increase in the size of the auxiliary data from 100000 to 250000, the scores
do not change in both cases. This shows that the amounts of information
present in the auxiliary data are similar and that all cases are already present
in 100000 random samples. Notably, only one auxiliary sample, which may
be even artificially generated, sufficiently acts as a regularizer to the hyper-
sphere loss function. This prevents the model from learning trivial solutions.
Increasing the variety of data (e.g., including more diverse log datasets) fur-
ther improves the performance, owing to the increased number of samples
representing abnormality.
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Figure 38: Effect of the increase in the size of the labeled anomaly data in the Blue
Gene/L dataset (20% train – 80% test).
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5.6.4.2 Inclusion of expert labeling

Often, systems are operated by humans, experts with system-specific knowl-
edge. Sometimes, they could provide or manually label samples to improve
the performance of the model. We experiment with the incremental inclusion
of anomaly labels of the target dataset to test the model behaviour. We ex-
periment on the 20%–80% split of the Blue Gene/L dataset. Figure 38 shows
the results. The increase in the number of labelled anomaly samples improves
the performance. For as few as 2% labelled data, we already obtain the best
F1-score of 0.8. This shows that the addition of few percentages of anoma-
lies as labelled samples to Logsy largely improves the performance. This
only strengthens the hypothesis where the log anomaly detection must be
addressed by understanding the reason responsible for the log message to be
normal or anomalous. The labelled anomalies from the target system provide
information utilized by Logsy to learn the differences between the normal
and anomalous logs on the target dataset.

5.6.4.3 Utilization of the learned log embeddings in related approaches

Representation learning is fundamental to obtain good performances of the
machine learning methods [90]. In this experiment, we extract the learned

normal
anomaly

Figure 39: Visualisations of the log vector representations of Blue Gene/L with T-
SNE [158].
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Figure 40: Distance of the log vector representations to the center of the hypersphere
c = 0. The threshold is represented by the dashed line.
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Figure 41: F1 score comparison of the standard PCA [110] and PCA using the embed-
dings extracted from our method (80%–20% split).

log message vector representations from the already trained Logsy. To illus-
trate the vector representations of the logs, in Figure 39, we show their lower-
dimensional representation of the test split through the T-SNE dimensionality
reduction method [158] on the Blue Gene/L dataset. We show that the log
vector representations are structured in a manner following the definition of
our spherical loss function (see Section 5.5.5). The normal samples are concen-
trated around the centre of a hypersphere, which is a circle in two dimensions.
Most of the anomalies are dispersed in the space outside the sphere. By assign-
ing a threshold on the anomaly score A(xi), i.e., the distance from the centre
of the sphere (circle), we can obtain a good performance. The same effect is
observed on the Thunderbird dataset illustrated in Figure 40, where we plot
the distances of the test log vector representations to the centre of the sphere.
The dashed line represents the optimal threshold for anomaly detection.

To illustrate the importance of the log embeddings, we perform experi-
ments where we replace the original TF-IDF log representations in PCA [110],
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as the lowest-performance method, with the extracted embeddings from
Logsy. We show the results in the bar plot in Figure 41. The replacement of the
log representation improves the performance of the PCA. Improvements in F1

score of 0.09, 0.11, and 0.01 were obtained for Blue Gene/L, Thunderbird, and
Spirit, respectively. This demonstrates that the log representation learning has
an impact, not only in Logsy, but also in previous approaches that could be
adapted to use the new log embeddings. The relative improvement in F1 score,
on average, is 28.2%.
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Figure 42: Speed performances of Logsy: training (left) and test (right) times.

5.6.4.4 Logsy: speed performance analysis

To show that Logsy can be used in production in near-real-time settings, we
evaluate its speed performance. The experiments were performed on a GPU
NVIDIA 1660Ti (6GB) and CPU Intel(R) Core(TM) i7-9750H CPU at 2.60 GHz.
Figure 42 shows the times needed for training and testing as functions of the
data size. The figures show linear dependencies on the size of the log data. To
analyze 3 million log lines, Logsy requires approximately 850 s for training
and approximately 12 s for prediction. The prediction time is important in
production settings, where less than 4µsperlogline is required to predict each
log line (obtained by dividing 12 s by 3 million log lines).

5.7 related work

Extensive studies on the research and development of automated log analysis
methods have been published in both industry and academia [21, 148, 159].
We provide an overview of the related studies on log parsing and log anomaly
detection tasks.
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5.7.1 Log parsing

Parsing techniques can be distinguished by various aspects, including tech-
nological, operation mode, and preprocessing. In Figure 43, we present an
overview of the existing methods.

Figure 43: Taxonomy of log parses according to the underlying technology.

Clustering The main assumption in these methods is that the message types
coincide in similar groups. Various clustering methods with proper string
matching distances have been used. Methods in this group include SHISO,
LenMa, LogMine, LKE, LogSig [37, 59, 160–162]. Other parsing methods such
as POD-Discovery [29], are found in process mining, which utilize regular
expressions and leverages the Levenshtein distance to separate variable and
constant parts of the logs.

Frequent pattern mining assumes that a message type is a frequent set
of tokens that appear throughout the logs. The procedures involve creating
frequent sets, grouping the log messages, and extraction of message types.
Representative parsers for this group are SLCT, LFA, and LogCluster [110,
163, 164].

Evolutionary. Its member MoLFI [165] uses an evolutionary approach to
find the Pareto optimal set of message templates.

Log-structure heuristic methods produce the best results among the dif-
ferent used techniques [21, 148]. They usually utilize different properties
that emerge from the structure of the log. The state-of-the-art algorithm
Drain [109] assumes that, at the beginning of the logs, the words do not largely
vary. It uses this assumption to create a tree with a fixed depth, which can be
easily modified for new groups. In this group there are as well other related
parsers such as IPLoM, and AEL [110, 166].

Longest common subsequence uses the longest common subsequence al-
gorithm to dynamically extract log patterns from incoming logs. The most
representative parser is Spell [48].

The proposed method NuLog belongs to a new category referred to as
Neural in the taxonomy of log parsing methods. Different from the current
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state-of-the-art heuristic-based methods, our method does not require any
domain knowledge. Through empirical results, we show that the model is
robust and applicable to various log types in different systems.

5.7.2 Log anomaly detection

Similarly to the log parsing, extensive studies have been published on the
research and development of methods for log anomaly detection in both in-
dustry and academia [9, 22, 23, 36, 38, 59, 110, 162, 167–171]. Out of those,
the older methods utilize traditional statistical and machine learning models,
and human intervention in the model creation, while the current studies fo-
cus on utilizing the large amounts of log data and mostly apply deep learning
models.

Numerous supervised methods have been applied to address the log
anomaly detection problem. For example, Liang et al. [170] applied a support
vector machine (SVM) classifier to detect failures, where both normal and
anomalous samples are assumed to be available. Similarly, Chen et al. [168]
utilized the decision tree to model the logs from the targeted application.
Brier et al. [172] provided an overview of these supervised and more tra-
ditional approaches to log anomaly detection. Recently, LogRobust [22] and
HitAnomaly [151] provided supervised methods on sequences of log data
and state-of-the-art results. However, as explained above, obtaining system-
specific labeled samples is costly and often practically infeasible. Therefore,
we discuss unsupervised methods below.

Several unsupervised learning methods have been proposed. Xu et al. [110]
proposed using the PCA method, where they assumed different sessions in a
log file that can be easily identified by a session-id attached to each log entry.
It groups log keys by session, and then counts the appearances of each log
key value inside each session. A session vector has a size of n, representing
the number of appearances for each log key in K in that session. A matrix
is formed where each column is a log key, while each row is one session
vector. PCA detects an abnormal vector (a session) by measuring the projec-
tion length on the residual subspace of a transformed coordinate system. The
publicly available implementation enables a TF-IDF representation of the log
messages, which is utilized in our experiments as a baseline. Lou et al. [67]
proposed invariant mining (IM) to mine the linear relationships among log
events from log event count vectors.

Log anomaly detection methods based on one-class classification [173, 174]
learn a model that describes the normal system behavior, usually assuming
that most of the unlabeled training data are not anomalous and that anoma-
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lies are samples outside the learned decision boundary. The massive log data
volumes in large systems have renewed the interest in the development of one-
class deep learning methods to extract general patterns from nonanomalous
samples. We classify these methods into the traditional group of methods,
which leverage log parsing [9, 109] and follow the traditional log anomaly
detection pipeline described in Figure 21. The formulated task is to predict
the next index of the log template in the sequence xh+1 by utilizing the
history of template vectors (count, one-hot encoding) H = x0, . . . , xh, as for
DeepLog [38].

Some studies have leveraged NLP techniques to analyze log data based on
the fact that log is a natural language sequence. Zhang et al. [173] proposed
to use the LSTM model and TF-IDF weight to predict the anomalous log
messages. Bertero et al. [175] used word2vec and traditional classifiers, such
as SVM and Random Forest, to evaluate whether a log event is an anomaly.
Similarly, LogAnomaly [23] incorporates pretrained word vectors for learning
of a sequence of logs; they trained an attention-based Bi-LSTM model.

Furthermore, in the process-based modelling literature there are number
of methods that also consider anomaly detection from log data as sequen-
tial problem. Xu et al. [171] use log data to extract operational activities such
as upgrade, redeployment, and on-demand scaling and perform anomaly de-
tection to increase the system dependability. The authors proposed Process
Oriented Dependability (POD)-Diagnosis, an approach that explicitly mod-
els these sporadic operations as processes. These models allow to determine
orderly execution of the process, use the process context to filter logs, trig-
ger assertion evaluations, visit fault trees, and perform on-demand assertion
evaluation for online anomaly detection. In the same direction, several other
studies from process-based anomaly detection [29, 171, 176–181] make use of
sequential log events to mine processes and detect anomalies. In these stud-
ies, log data is often associated with having trace ID, where log events are
related, and activities are extracted to bridge the gap from raw log events to
the process mining methods. On the other hand, we view the log events as
independent samples, and analyze them from the point of natural language
processing, and text anomaly detection. We draw more concrete comparison
to these methods in the trace analysis chapter.

The learning of the sequence of template indices and enhanced log mes-
sage embedding approaches still have large limitations in terms of generaliza-
tion for previously unseen log messages. They tend to produce false predic-
tions owing to the imperfect log vector representations. For example, learning
sequence of logs represented by indices cannot correctly classify newly ap-
pearing log messages, as the new log will be an out-of-boundary index. The
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domain where the word vectors are pretrained (e.g., Wikipedia) has essen-
tial differences from the language used in computer system development. To
partly mitigate some of these limitations in unsupervised approaches, one ap-
proach is to incorporate labeled data from operators and perform life-long
learning [103]. However, it still requires frequent periodical retraining, up-
dates, and costly expert knowledge to label the data, without addressing the
problem of generalization on unseen log messages that appear between re-
training epochs.

Different from the above methods, we used the interpretation of the
anomaly detection as binary classification between normal and anomalous
points. We utilized the concept reported by Steinwart et al. [85] that the bias
on the anomalous distribution is crucial for an improved detection. We pro-
vided such bias by employing easily accessible log datasets as an auxiliary
data source.

5.8 chapter summary

Logs are an important data source for anomaly detection in computer sys-
tems [21, 22, 38]. In this chapter, we described the traditional pipeline for
log anomaly detection. Most methods utilize log parsing as the first step to-
ward anomaly detection. We identified limitations in existing parsing meth-
ods, including the use of regular expressions, heuristics (e.g., the variable
parts of the log message appear near the end of the log message [109]), and
multiple hyperparameters for tuning [21, 48, 59]. As the anomaly detection
depends on the parsing, the accuracy of the log parsing directly affects the
effectiveness of the log anomaly detection. Therefore, we presented a method,
NuLog, to mitigate these limitations and improve the overall effectiveness of
the methods. NuLog addressed the log parsing problem by deep language
modelling. Words appearing at a constant position of a log record implies
that their correct prediction can be directly used to produce a log message
type. An incorrect prediction indicates that a token is a parameter. We car-
ried out experiments on 10 real-world log datasets and evaluated the method
against 12 log parsers from a public benchmark. The experimental results
showed that NuLog outperforms the existing log parsers in terms of accuracy,
edit distance, and robustness. In addition to the parsed templates, NuLog
produces log vectors. We analyzed the effectiveness of using the log vectors
directly for anomaly detection. In the analysis, we compared the NuLog log
vectors with the state-of-the-art log anomaly detection method and anomaly
detector trained in a supervised manner. The NuLog’s log vectors improve the
anomaly detection. However, we identified a large gap between the efficiency
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scores, favoring the supervised learning. The unsupervised approaches still
led to large numbers of FPs.

To bridge the gap between supervised and unsupervised anomaly detec-
tion methods, we identified the log vectors as a main issue in previous meth-
ods [22, 23, 38, 48, 109]. The main drawback is the prediction of unseen log
messages owing to the evolution of logging statements, system updates, and
processing noise.

To overcome this problem, we presented a new anomaly detection ap-
proach, Logsy. Logsy shifts from the traditional log anomaly detection
pipeline and does not utilize an external log vector computation. In contrast,
it learns end-to-end log vectors and predicts anomaly scores. It is based on
a self-attention encoder network with a new hyperspherical classification ob-
jective. We formulated the log anomaly detection problem in a manner to
discriminate between normal training data from the system of interest and
samples from auxiliary easy-access log datasets from other systems, which
represent an abnormality.

We presented an experimental evidence that our classification-based
method Logsy exhibits a high performance for deep anomaly detection. Logsy
outperformed the baselines by an F1 score margin of 0.25. Logsy can effi-
ciently include available expert labels. Furthermore, the log vector represen-
tations from Logsy are meaningful and generally can be utilized in other
methods. Using PCA to utilize the log vectors from Logsy, we obtained an
improvement in the F1 score of 0.07 (28.2%).

The preference for unsupervised learning in previous log anomaly detec-
tion studies is reasonable for the traditional settings, which often lack access
to out-of-distribution samples that are representative examples of anomalous
data. Owing to the large amount of easily obtainable log data, it is reasonable
to assume that access to anomaly data informative for detection is available.
We hypothesize that future research on deep log anomaly detection should
focus on classification with anomalous auxiliary data and development of ap-
proaches to incorporate domain bias for the diversity of normal and anomaly
data.
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Distributed traces contain information about the execution workflow and
performance at a service level within the system. The trace representation,
noise, large number of services, complex service relationships between them,
arbitrary lengths, and lack of labels pose difficulties for the anomaly detec-
tion methods [182]. In this chapter, to address these challenges, we introduce
a sequential representation of the trace. This helps utilize various methods for
anomaly detection in sequential data. We describe a baseline approach based
on sequence prediction with LSTMs to perform anomaly detection 1. This
modeling approach has several advantages and limitations, identified in this
chapter. We reformulate the learning task from sequence prediction to predic-
tion of missing parts of the trace. This helps preserve the major advantages of
sequential trace representation and increase the robustness to previous limi-
tations such as the noise and degraded performance on larger traces. Finally,
we demonstrate the ability of the method for root-cause localization, i.e., find-
ing the contribution of each of the services within the trace to the decision
whether the trace is anomalous.

This chapter includes the following contributions 2.

• We compile the trace structure as a text sequence, which provides possi-
bilities for applications of deep learning methods.

• We introduce a baseline deep learning approach based on LSTMs.

1 Based on our early study on trace anomaly detection using deep learning [18]
2 Parts of this chapter are published in [14, 18, 19, 40] and a patent is filed in [183].
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• We present a problem formulation for anomaly detection in distributed
tracing and method based on self-supervised learning, denoted as Tracy.

• We demonstrate an approach to utilize the model to track the differences
between the normal and abnormal traces. This leads to an improved
reasoning for the root cause analysis and localization of the services
with downgraded performances.

6.1 sequence learning for trace anomaly detection

In this section, we start with transformation of the trace to a textual repre-
sentation and describe the preprocessing steps needed for the model learning
phase. We present a baseline LSTM-based approach and derive key benefits
and drawbacks. These insights are utilized to reformulate the autoregressive
problem definition and design Tracy, a self-supervised trace anomaly detec-
tion method.

6.1.1 Trace preprocessing

Traces are produced by a program that executes a set of logic and control
functions, following certain patterns and grammar rules on which the system
operates. If the spans of the trace are sorted by time, the graph-like trace
structure can be expressed as a finite sequence, T = (S1, . . . ,Sm). We transform
and compile the trace to such representation and provide an analogy to the
natural language. A trace can be related to a sentence, the events/spans inside
a trace to words, and the causal relationship between events to a language
grammar (e.g., relations between words).

Transformer encoder with multi-
head dot-product self-attention

> δ

Ti

Nl

T1
T2

TN

T1,
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… ,
TN

Figure 44: Preprocessing of the trace.
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As the spans contain an additional meta-information, they have to be
parsed to obtain a uniform structure, before they can be effectively used for
anomaly detection [14]. The parsing, similar to that for logs, uses raw spans
as an input and generates a template. Thus, the trace can be represented as a
sequence of template indices.

In Figure 44, we show the parsing procedure of the trace’s spans. Depend-
ing on the span type (e.g., initiated from RPC or HTTP request), we select
only the most important part properties. They, in the example of HTTP re-
quest, are the name of the method (e.g., GET), HTTP status code, URL, and
service name. The importance of the properties is related to their informative-
ness. Properties that are different in each span, e.g., the ID of the span, are
not considered as informative properties.

Considering the large variability of the URLs, owing to mostly the IDs in-
side them, the number of different spans can be very large, leading to diffi-
culties in modeling. As most of these span’s URLs representing one service
differ solely in the identifiers (e.g., the ID 12939fd is ID of the image), we
replace them with x˚y through parsing and extract span templates or groups.
To this end, we use a log parsing method (NuLog). At this point, the trace is
represented as a sequence of span templates. As traces can contain repetitive
spans, to preserve the start and end of the trace, we add two additional spans
to the beginning and end of the trace ([START] and [STOP]).

The third step in the prepossessing is the creation of a lookup table where
the templates that are output from the parser are mapped to a specific index.
Thus, each span is mapped to an index and the trace is a sequence of indices.
To consider the possibly different lengths of the traces, the traces are padded
up tomax_len. This parameter represents the maximum allowed trace length.
This makes the traces equally sized. The data format at the output of the
preprocessing has a shape of D1 = (Nt,max_len), where each row is a trace
Ti = tx

i
1, x

i
2, . . . , xmax_lenu, Nt is the number of all recorded traces, and xij P V

are indices from the dictionary.

6.1.2 Autoregressive LSTM-based method for anomaly detection

To perform anomaly detection, we start by modeling the normal system be-
havior. We model the transition probability from a sequence of spans into the
next in-sequence span

P(xt = li|txt´h, . . . , xt´2, xt´1u), (28)

where P is the conditional probability of the next span for given input recent
sequence of h spans within the trace and li P L = tl0, l1, . . . , lNl

u is the index
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Figure 45: LSTM network architecture for trace anomaly detection. [18]

from the dictionary of spans. The conditional probability can be modeled
with an RNN, e.g, LSTM/GRU. We show the architecture of the approach in
Figure 45.

The input to the model are the indices from the spans. Each xt is fed as an
input in the corresponding timestep t. The output at t, for the current inputs
txt´h, . . . , xt´2, xt´1u, is a probability distribution over the Nl unique labels
from L. Every LSTM block at t is composed of H LSTM cells. It has a memory
state that encodes all information from the previous timesteps together with
the input fed at the same timestep.

The vertical stacking of layers is a common practice to achieve better results
by extracting highly-abstract features [142, 184]. The model’s parameters are
optimized by minimizing the categorical cross-entropy loss between the pre-
dicted span and ground truth.

During the prediction time, if we are unable to successfully predict a certain
number of next spans (more than a specified threshold), the trace is consid-
ered anomalous; otherwise, it is normal.

6.1.3 Limitations of autoregressive approaches

The LSTM-based method belongs to the autoregressive approaches. Thus, it
has several inherit limitations including (1) forward context is not considered
during the modeling phase [185]. Thus, the model does not utilize the full
trace information. (2) Lack of robustness to noise and trace length variability,
owing to the inability of autoregressive models to preserve long interdepen-
dencies between the services (e.g., the span on the first position is related to
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Figure 46: Long term interdependencies.

the span on the 100-th position of the trace). Moreover, as mentioned above,
the sequential representation of the trace is obtained using the initially graph-
like trace structure. Therefore, this representation does not preserves all initial
information.

A desired behavior of the model would be to learn additional interdepen-
dencies between the spans in the trace, other than the sequential. The model,
to preserve the graph information within the sequence, needs to extract de-
pendencies between distant spans in the sequence. For example, as depicted
in Figure 46, the model needs to be able to infer that span A is related to
span K, which have long-term dependencies. To address these limitations of
autoregressive models, we reformulate the learning task and present a novel
method, Tracy.

6.2 tracy : self-supervised anomaly detection in distributed

traces

Each span’s position within the trace is dependent on the other spans (can be
located at any position) in the trace [39, 60, 186]. The contextual information
is related to the likelihood of occurrence of a particular span on a position
within that trace. The set of spans used to pinpoint the location of another
span is referred to as context of the span. Intuitively, it is reasonable that
deep models, e.g., Bi-LSTM [187]), are strictly more powerful than either a
left-to-right (autoregressive) model or shallow concatenation of left-to right
and right-to-left models. However, standard conditional models can only be
trained left-to-right or right-to-left, as bidirectional conditioning would allow
each word to indirectly "see itself" and the model could trivially predict the
target word in a multi-layered context, which would lead to over-fitting.
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Figure 47: Overview of Tracy.

To train a contextual representation of the spans and trace from both for-
ward and backward contexts, in Tracy, we mask a percentage of the input
spans at random, and then predict the masked tokens (see Figure 47). To this
end, Tracy learns the likelihood of appearance of particular span with given
context spans. We utilize this as a proxy task for anomaly detection, which we
refer to as masked span prediction (MSP), similar to MLM in Section 5.1. With
such a learning task, we model the traces representing the normal behavior
of the system. In the prediction phase, if a trace is normal, the success rate
of correct prediction of the masked spans with given context spans will be
high; otherwise, the success rate will be low, suggesting an anomalous trace.
Thus, introducing a threshold on top of the success rate of correctly predict-
ing the masked spans within the trace is utilized to decide whether the trace
is anomalous or normal.

To solve the MSP task, we use the transformer encoder neural network ar-
chitecture. It is based on the attention learning concept, which, in the context
of traces, relates the input spans to given target (masked span). The underly-
ing learning mechanism (self-attention [153]) enables the target to be selective
on which spans are relevant. In the case of traces, this allows a sparse repre-
sentation. It enables the trace to be represented with only the spans that are
core and must appear in normal traces, minimizing the effects of the noisy
spans. In other words, it builds abstract span representations that contain in-
formation for short and long interdependencies. Formulating the problem of
trace anomaly detection as MSP enables to capture the complete end-to-end
execution path among all involved components of the system.

The step after preprocessing is to perform masking. We illustrate the mask-
ing of an example trace in Figure 48. In the bottom line of the image, the
POST /v3/auth/tokens/ span is replaced by the [MASK] span. A masked span in
a trace can be any randomly chosen span that during the learning procedure
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GET / POST /v3/auth/tokens POST /v2.0/networks/ GET /auth/tokens/ DELETE /networks/

GET / [MASK] POST /v2.0/networks/ GET /auth/tokens/ DELETE /networks/

Figure 48: (Top) Example of network create and delete trace. (Bottom) Example of the
context of the POST /v3/auth/tokens/ span used for the input of the self-
attention mechanism. POST /v3/auth/tokens/ is denoted as masked span.

is labeled with a special [MASK] span from the input. During the learning pro-
cedure, the true value of the masked token is used as a target and predicted by
the remaining spans that construct the context (used as an input). This enables
the masked span to "score" the relevance of the spans from the context for its
prediction. With the span masking procedure, we produce training samples
for every masked span. For example, if we mask two spans of a trace T , the
masking module will produce two traces, each having one masked span. This
enables one trace to be replicated multiple times and different contexts for the
spans of traces from different workloads to be learned. Moreover, such mask-
ing of the spans that leads to various contexts for prediction of a span acts as
a regularization technique to improve the robustness [185]. Intuitively, noisy
spans that appear infrequently will be masked only few times, in contrast to
spans that are frequent. Whenever a previously unseen normal trace from a
known user request is presented to the method, according to the described
property, the self-attention mechanism will be less sensitive to the changes
that appear owing to noisy spans. Thus, the masking and self-attention mech-
anism enforce the model to focus on learning to attend core spans that appear
in the trace.

After the masking procedure, the trace is modified to

T
preprocessed
i = ([START ],Si1,S

i
2, [MASK], . . . ,SiTmax_len

, [STOP]), (29)

and as such is utilized as an input to the neural network.
Figure 49 depicts the model’s architecture. It is an encoder–decoder struc-

ture that maps the input spans in a vector format, learns higher-level abstract
representations, and projects them to a probability distribution over the vo-
cabulary of spans. The encoder uses a multi-head self-attention mechanism
as a basic building block.

The processed inputs are fed into the network. To preserve the sequential
information, each span is encoded with an additional position value. Formally,
this block calculates a vector that maintains the relative position of a span
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Figure 49: Neural network architecture used to solve the MSP task.

within a trace. Similar to the positional encoding in the log data (Section 5.1),
the positional encoding block implements this by adding periodic functions
(e.g., sine and cosine) to the vector representations of the spans in the trace.

The multi-head attention block is a neural network architecture, which im-
plements the self-attention mechanism [153]. It operates by projecting the in-
put context for the masked span into various subspaces and aggregating them.
Each projection is controlled by one of the L heads of the multi-head attention.
The multi-head block uses three vectors, key, query, and value, as an input. It
uses the key and query of the current input representation to assign scores for
the context spans from the trace to the current masked span. Intuitively, this
part learns the influence of the context spans on the prediction of the masked
spans.

The next part of the network consists of two feed-forward layers. They pro-
vide a richer representation of the underlying output of the multi-head atten-
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tion mechanism. The outputs are fed through a one-layer network with soft-
max at the end, which serves as a decoder. The softmax is used as a function
to generate probabilities over the whole dictionary of spans. These probabili-
ties suggest the likeliness of the current masked span to be associated with a
symbol within the vocabulary of symbols conditioned on the context.

6.2.1 Detecting anomalies

The MSP is a proxy task for anomaly detection. As a standalone task, it can-
not be used for anomaly detection. To this end, we introduce an additional
postprocessing of the predictions of the MSP model to detect anomalies. The
output from the MSP for a particular trace and masked span is an ordered
list of predictions as possible spans for the masked position in the trace. The
lists are ordered according to their relevance (probability) to be the particu-
lar masked span. During the anomaly detection, each of the ordered lists on
the particular position in the trace is analyzed in the following manner. If the
observed value on a particular position of the trace is not in the first top´ k
elements of the list generated by the MSP task module for that position, we
consider the span as incorrect. We count the errors for each trace and divide
their number by the trace length forming the ratio of misclassified examples
or span error rate per trace. The span error rate serves as an anomaly score.
If a model leads to many mistakes, the anomalous score is higher, and thus
the trace is anomalous. Setting a decision threshold on the anomaly score can
be used to decide whether the trace is normal or anomalous. The span error
rate is another key characteristic of the method that addresses the noise in
the traces. In the following section, we empirically demonstrate the validity
of these claims.
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6.3 evaluation

In this section, we describe the data utilized for the evaluation. We describe
the learning scenarios (LSs) used to evaluate the performance of our method
and present the results. We investigate the differences in the attention scores
between the normal and anomalous traces and their utilization to infer char-
acteristic differences between the normal and anomalous traces.

6.3.1 Experimental data

We evaluated the presented method on two separate datasets, a dataset from
a planet-scale industry system (referred to as production data) and dataset
generated from our testbed deployment. The experiments were performed on
a GPU NVIDIA 1660Ti (6GB) and CPU Intel(R) Core(TM) i7-9750H CPU at
2.60 GHz.

OpenStack [188] testbed. It is based on a microservice architecture, running
in a dockerized environment Kolla-Ansible [189]. OpenStack was deployed on
four compute and one control nodes.

The normal and anomalous data are generated by the execution of three
workloads. (1) Create and delete server uses a task from Rally [190] to create
and delete a VM. The fault is injected in a compute node, which restarts the
API container that runs on the compute nodes. (2) Create and delete image uses
the glance project of OpenStack to create and delete an image. The faults are
injected by restarting the glance-API, which runs on the controller node. (3)
Create and delete network is a an operation that provides a network interface.
The anomaly is injected by disruption of one of the neutron services (e.g.,
neutron metadata agent, neutron server) during the creation of a network.

To represent a scenario close to the real world, the workloads are executed
concurrently. As some operations are faster than others (e.g, we need more
time to boot a machine than to create a network), the workloads are performed
with different numbers of iterations. 2000, 3000, and 6000 iterations for create
and delete server, create and delete image, and create and delete network were
carried out, respectively. The injections of the faults were carried out at every
250 iterations for create and delete server and create and delete image and every 500

iterations for create and delete network. After the execution of the sequence of
workloads, reports for the conducted experiments are generated. The reports
contain details for the successful execution of the workload. They are used to
induce the ground truth label for a particular user request. This is needed to
separate the normal from anomalous traces to perform the evaluation.
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Production data. Even in small controlled experimental setups, the noise
is high and the traces change over time. This already poses challenges for
the anomaly detection. However, testing the approach on large-scale produc-
tion cloud data is required to show the viability of the approach. It covers
traces from the creation of a VM upon request from the user. A characteristic
property of production traces is their significantly larger length than those
of the experimental testbed. The production data available in this experiment
contained 200 traces with different lengths.

Figure 50: Anomaly injection scenarios in trace data.

6.3.2 Learning scenarios

To evaluate and compare the performances and robustness of the proposed
attention method and state of the art in anomaly detection from tracing data,
we consider three LSs (see Figure 50). To test the ability of Tracy to preserve
the global and local properties within the traces, we grouped our experiments
into three groups (short, long, and combined (short and long) traces). The
definition of these categories is data-driven, which implies that short traces
are considered those that are concentrated around the lower values of the
trace lengths (ď median). The remaining traces belong to the category of
long traces.

Real anomalies (LS1). In this LS, in the test set, the anomalies generated
by the deployed testbed were used. The aim of this scenario is to evaluate the
performances of the methods for anomaly detection from tracing data in the
presence of anomalies generated by the system.

Artificial anomalies (LS2). The anomalies in the traces are usually reflected
by shortened traces, according to the procedure that generates the anomalies.
Restarting a service interrupts the trace at particular span. The anomalies can
be injected at every span in the trace as every span represents a service that
can be malfunctioning. To evaluate the generalization and robustness of the
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method scaling to different types of anomaly, a set of artificial anomaly tests
is created. The creation of this set is carried out in a manner that L traces from
the normal test set are selected at random. The selected traces are truncated at
random position. These traces are labeled as anomalous and are joined with
the remaining normal traces to create the test set.

Span permutation (LS3). Owing to various reasons (e.g., an increased num-
ber of user requests or caching), some of the traces may have different orders
of appearance of the spans, but still complete the whole operation, which
implies that the trace is normal. In this LS, the test data are constructed as
follows. First, a random selection of a normal trace is carried out. Second, a
random span is permuted with its right neighbour, if existing. Third, this pro-
cedure is repeated for L randomly selected traces composing the test set. In
the test set, only normal traces exist.

We selected the best parameter configuration in LS1 and used it to evaluate
the method in all LSs, LS1, LS2, and LS3. This enables to directly evaluate the
changes in the performances of the methods to novel anomalies and random
permutation in the neighbours, which reflects the ability of the method to han-
dle traces with noise. To demonstrate the independence of the performance
of the method on the position of the injected anomaly, we carry out an addi-
tional robustness test. During this test, 500 randomly selected traces among
the normal traces are sampled. In each trace at each position, one of the spans
is replaced by a randomly chosen span, while treating the changed trace as
an anomaly. The experiments are repeated five times to obtain estimates for
the expected performance score and its confidence intervals.

6.3.3 Baselines

We compare Logsy against two publicly available methods, (1) LSTM-based
trace anomaly detection [18], proposed in our earlier study and explained
previously, and (2) TraceAnomaly [182], a state-of-the-art method based on
deep Bayesian networks with posterior flows. TraceAnomaly processes each
trace as a whole to construct a service trace vector that encodes the invocation
path. It then learns the overall normal trace patterns for a service during
offline training. Lastly, in online anomaly detection, for each new trace, an
anomaly score is computed, and accordingly traces with small anomaly scores
are considered anomalous. As TraceAnomaly largely outperforms other more
traditional methods such as string matches or finite state machines, we discard
direct comparisons to these methods in our evaluation. The parameters of the
LSTM-based method and TraceAnomaly are tuned to produce their best F1

scores.



6.3 evaluation 109

F1 Score Recall Precision0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.99 0.99 0.990.98 0.99 0.970.99 0.99 1.0
Short

F1 Score Recall Precision

0.54
0.46

0.67
0.73

0.96

0.59

0.88 0.86 0.89

Long

F1 Score Recall Precision

0.99 0.98 1.00.97 0.99 0.951.0 0.99 1.0
Short + Long

LSTM TraceAnomaly Tracy

Figure 51: Results of the experiments for LS1.

6.3.4 Results

We present the results of the three LSs, including the precision, recall, and F1

score.
Figure 51 shows the results of LS1 for the best-selected models from the op-

timization. When the long traces are considered, higher scores are obtained
for the attention mechanism than those of the previous state-of-the-art meth-
ods, LSTM and TraceAnomaly, in all three cases. The attention mechanism
can prioritize specific spans of the trace owing to the sparsity characteristic.
Thus, the attention mechanism utilizes the most salient spans that form the
trace. On the contrary, the LSTM-based method focuses on local properties of
a trace owing to the autoregressive assumption. TraceAnomaly leads to prob-
lems in noise handling (e.g., changes in few spans), responsible for most false
predictions. The comparable performances on the short traces are obtained as
all methods utilize the locality in the traces. The largest advantage of Tracy
over the state-of-the-art methods originates from the log traces. The perfor-
mance of Tracy remains high even when traces are long. The precision for
long traces outperforms the baselines by 0.3 owing to the reduction in num-
ber of false positive predictions. The good performance on the combination
of the long and short traces for all methods (F1 above 0.9) is attributed to the
imbalance dataset, where the number of short traces is considerably larger.

Figure 52 shows the results of LS2. We observe a notable decrease in the
recall for both small and long traces in LSTM and TraceAnomaly. This im-
plies that, in this scenario, the baselines tend to produce an increased number
of false negatives. This can be explained as the anomalous trace differs from
the normal only in its length, owing to the inability of the methods to extract
global patterns from the trace. The methods exhibit good performances for
short traces and lower performances for longer traces. Long traces are more
common in large distributed systems as they contain hundreds of services [14].
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Figure 52: Results of the experiments for LS2.
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Figure 53: Sensitivity analysis of Tracy vs. LSTM.

Executing one operation in a microservice architecture includes invoking mul-
tiple services not necessarily only HTTP calls for the communication between
the services. Hence, the ability to handle long traces is imperative for applica-
bility in tracing data from real-world systems.

LS3 evaluates the generalization ability of the method. Figure 53 shows the
results of LS3. As it is a one-class prediction scenario, only the accuracy of
correctly predicting the normal iterations is presented. This LS can be inter-
preted as testing the ability of the method to correctly predict novel normal
traces that occur owing to the noise. The attention method is more robust
than TraceAnomaly and LSTM. The cases of wrong classification in Tracy
are mostly due to swapping of one of the "core" spans in the trace. Thus,
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Figure 54: Performance score estimates with respect to the position of the injected
anomaly. The solid line represents the mean value of the F1 score, while
the shaded region is the confidence interval of one standard deviation.

Table 14: Results for the production data from a global service provider.

Dataset Accuracy Precision Recall F1

Production data 0.92 0.91 0.95 0.93

the attention method cannot correctly predict the masked span. Neverthe-
less, on average, across all traces, the number of core spans for given trace
is small, and thus the presented method exhibits a better score. LSTM and
TraceAnomaly detect almost every change, which limits their noise robust-
ness. However, TraceAnomaly has a higher noise tolerance than that of LSTM,
achieving higher scores.

To further evaluate the robustness of Tracy, in Figure 54, we show the F1-
score with respect to the position of the injected anomaly. For the short traces
(until 12 spans), the performances of the attention and LSTM-based methods
are high and they are robust regarding the position of the inserted change.
However, for long traces, a higher sensitivity of the LSTM-based method to
small local changes within the trace is observed. This leads to a lower per-
formance. These results show that the position of inserting a swap does not
influence the performance of Tracy. The larger variance observed in the figure
for the long trances is attributed to the small number of long traces in the
training data. TraceAnomaly exhibits comparable performances to those of
Tracy, as it also utilizes the global trace information.

Table 14 summarizes the results for the production data. The method eval-
uation was performed by a global service provider to reduce the evaluation
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bias. Therefore, the experiments for the baselines were not performed. Tracy
exhibits a high F1 score of 0.93, consistent with the results of the testbed eval-
uation. It demonstrates the usability of the proposed method for long noisy
traces from a production setting. The analysis of the missclassified traces
showed only small changes toward the last spans.

6.3.5 Explanation of decisions

The attention scores in the context of the MSP task are weights indicating the
influence of each span of the trace on the prediction of the current masked
span. These scores can be plotted in a heatmap and form a fingerprint. The
spans that have the largest influence form a trace identifier. Figure 55 shows
the distribution of Euclidean distances of attention scores between normal
traces (in black) and distribution of distances between the normal and abnor-
mal traces (in red). A separation between the distributions can be observed.
The distances between the normal and abnormal score matrices are larger.
This suggests that observing the anomalous and normal self-attention scores
can be utilized to indicate anomalous spans, which point out to anomalous
services.

Figure 56 shows the squared errors of the self-attention scores between nor-
mal and anomalous traces, where positions 2 and 4 are corrupted, respectively.
An increased error at the particular position within the attention score matrix
where the span was corrupted was observed. This indicates that the cross com-

Figure 55: Distributions of the distances of attention scores between the normal–
normal (black) and normal–abnormal (red) traces.
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Figure 56: Squared difference between the attention scores of normal and abnor-
mal traces when an anomaly is injected at position 2 (left), 4 (right). The
brighter color indicates larger scores.

Table 15: Results of the correct localization of the inserted positional anomalies.

Position 1 2 3 4 5

Correct prediction [%] 0.93 0.95 0.94 0.90 0.88

parison between the normal and anomalous attention scores provides insights
into the potential causes of the anomaly. In these examples, the deviations in
the attention scores from the normal traces are emphasised at positions 2 and
4 of the trace. This shows that these positions are very unlikely to be occupied
by the corrupted span. The operator can track the properties of this span and
relate them to a potential cause.

Furthermore, we replaced each position of the trace obtained by the execu-
tion of a create and delete network request by random span. We computed the
accuracy of correct span localization. Table 15 summarizes the results. The
attention scores can indicate the positional differences between normal and
anomalous executions of a trace and thus locate the anomalous span.

6.4 related work

Recently, extensive studies have been carried out on anomaly detection us-
ing tracing data. The straightforward approach for trace anomaly detection
is based on string matching. For example, if a distributed system handles a
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user request by generating the sequence events/symbols S1 = [M,N,O, Y,P],
this sequence can be compared to a set of known sequences Si, @i P t0, . . . ,Nu,
which represents the valid behavior of the system. If the sequence is found, the
request is processed successfully. If sequence S1 is not found, we can assume
that a failure or anomaly occurred during the handling of the user request.
However, the underlying volatility of the distributed system, as described in
Section 3.1.3, makes the problem more complex than simple matching.

Three important requirements for anomaly detection from distributed
traces exist. As described in Section 3.1.3, the methods should handle traces
under the assumption of presence of noise, arbitrary lengths, and absence of
labels.

Figure 57: Caching and its effect on traces.

For example, noise can be caused by caching in distributed systems. It leads
to suppression of symbols in traces as some instructions are not executed
when the result is cached (see Figure 57). Thus, a model can contain the fol-
lowing observed traces, [M, N, P, Q], [M, P, Q], and [M, N, Q]. When a new
trace [M, Q] needs to be tested, it is intuitive that it is an anomaly as it was not
seen in the past. Nonetheless, if we assume that the system under analysis can
generate traces with noise, it is not obvious whether [M, Q] is an invalid trace
or valid trace containing noise. The existing approaches, such as that in [39],
use finite state machines (FSMs) to model the correct behaviors of systems.
These approaches exhibit high performances when the traces do not contain
noise. However, the introduction of noise scales the number of potential tran-
sitions exponentially. Thus, modeling noise using FSM-based approaches is
not feasible as it will be possible to only model the already observed noise.

Approaches relying on LSTMs, e.g., those in our early study on an LSTM-
based trace anomaly detection [14, 18], can process only traces up to a certain
length of k. These approaches are referred to as autoregressive as they use
previous symbols of a trace to predict the following symbol. For example, the
developed techniques test the trace [M, N, P, Q, R, S] by predicting which
symbol is after C according to a behavioural model, [M, N, P, Q, R]. If the pre-
diction is correct (Q), the trace is classified as normal. Otherwise, it is anoma-
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lous. However, as traces become long, LSTMs are not capable of establishing
a correlation between head symbols (M, N) and tail symbols (R, S). The first
symbols of traces in a behaviour model are forgotten. This implies that the
predicted symbol does not depend on all previous symbols. To address this
limitation, approaches have been refined to use a sliding window with a size
ă k over long traces. This strategy may improve the results but does not solve
the problem that the symbols of a head trace are not considered by the predic-
tion. The second drawback in these approaches is related to the production
of more erroneous predictions because they observe only a fixed number of
previous events to predict the upcoming event. Such models do not utilize
the existing relation between distant spans in the trace. They learn the normal
system behaviour from partial and limited data from previous events, which
might affect the overall performance.

Recently, a new method denoted as TraceAnomaly [182] uses deep Bayesian
networks to automatically learn the overall normal patterns of traces during
periodic offline training. In online anomaly detection, a new trace with a small
anomaly score (computed based on the learned normal pattern) is consid-
ered anomalous. TraceAnomaly, similarly to Tracy, utilizes global properties
of the traces using variational inference. We identify the noise handling as the
strongest drawback of TraceAnomaly owing to the lack of mechanism that
prioritizes particular spans of the traces.

Lastly, methods from process-based anomaly detection [29, 171, 176–181]
are related similarly. Weber et al. [29] describe two systems. The first, POD-
Discovery, simplifies the creation of such an abstract process model (related
to model of a trace) from operations logs. The proposed approach performs
large amount of previously manual steps automatically, drastically reducing
the time needed for obtaining the process model. Using the discovered model,
the second system, PODViz, provides operators with the ability to visualize
the current state of an operations process in near-real-time, and to replay a set
of events to understand how the process context changed over time. There are
several differences to the presented method–Tracy, namely, PODViz involves
human interaction and obtains abstract representation from event logs into ac-
tivities, which are related into a trace. On the other hand, Tracy performs end-
to-end learning and detection of anomalies from the raw trace events. Nolle
et al. [176, 178–180] proposes process anomaly correction. This approach com-
bines the benefits of conformance checking and process anomaly detection.
Given a trace, the process anomaly correction detects anomalous executions,
indicates where the anomaly has occurred during the execution, and sug-
gests possible corrective measures. Similar to Tracy, the proposed approach
employs deep learning. It defines the task of understanding the processes via
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learning to predict the next activity in a process. The resulting machine learn-
ing model thus represents an approximation of the real process that created
the data. Therefore the approach is closely related to the LSTM based method
presented in above, and the TraceAnomaly, which are part of the evaluation
in this thesis. To that end, the drawn differences about these methods are as
well aligned for the process-based anomaly detection methods.

6.5 chapter summary

This chapter addressed the problem of anomaly detection in large-scale dis-
tributed systems as an essential task for their security and reliability. We ad-
dressed the problem by introducing a new learning task, MSP, for the problem
of execution-path anomaly detection from tracing data. The novel definition
of the problem enables to include information from the entire trace, directly
utilizing the existing service relations. It provides higher predictive perfor-
mances in the problem of structural anomaly detection, particularly for the
long traces, than those of other existing approaches for tracing data based
on LSTM. Empirically, we showed that the proposed approach is more ro-
bust against small permutations in the normal traces, a scenario frequently
occurring in practice. The experiments showed that the method has a high
performance for experimental testbed data and in real production settings for
a large cloud provider. Lastly, through the self-attention scores, we showed
an approach to visualize and explore traces, showcasing important spans and
differentiation from normal to anomalous traces.
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In the previous chapters, we presented methods for anomaly detection re-
lated to each of the observability components. However, as standalone detec-
tors from the corresponding data source, they have a limited view on the sys-
tem. In this regard, insights gleaned from a combination of different observ-
ability signals are necessary to properly troubleshoot distributed systems [16].

In this chapter, we analyze whether the full observability of the system, i.e.,
recording metrics, logs, and traces, provides exposure of the broader spectrum
of anomalies. The contributions presented in this chapter are summarized
below 1.

• We provide an analysis of complex anomalies in distributed software
systems and their reflection in the observability components.

• A heuristic for detection of one of three system health states (normal,
degradation, and failure state) is described by utilizing the data sources
affected by an anomaly.

• By presenting case studies of complex anomalies, we show that a rule-
based integration of the anomaly detectors helps broaden the spectrum
of possible anomalies that can be detected.

• We open-source the testbed and multi-source data, available on Zen-
odo 2.

1 Parts of this chapter are published in [19, 191, 192].
2 https://zenodo.org/record/3549604
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7.1 complex anomalies in distributed systems

Often referenced reasons in various failure analysis studies on distributed
software systems are attributed to deployments, exceeding scaling limits, in-
frastructure changes, and various system and software failures [15]. We relate
them with the properties of the distributed systems, particularly with the het-
erogeneity, scalability, and concurrency.

The heterogeneity in the distributed systems implies complex pieces of code
that stick together different resources, written in potentially different pro-
gramming languages. Consequently, software bugs are unavoidable. Often,
in software upgrades, a small configuration change in a system component
can be overlooked. This can lead to failures of the system component. As the
components (e.g., services) in a distributed system communicate through the
network, it is highly likely that the anomaly will affect other system compo-
nents.

Prior to the system deployment in production, numerous tests are executed
to evaluate the functionality of the system, e.g., under various loads. However,
particular limits of the system are infeasible to be tested. Exceeding the scaling
limits is one of the causes for failures in the systems. Examples include the
rapid increase in the number of concurrent user requests. It can be to a point
where a component of the system is not scalable or a system may exhaust
available resources, which implies a resource leak. Thus, the concurrency and
scaling of distributed software systems can strongly influence the appearance
of complex anomalies.

The analyzed complex anomalies are anomalies that do not reflect in each
of the observability data. For example, a possible anomaly could not be (or
hardly) observed in metrics, but easily found in the logs. In the following use-
case, we perform an experiment where specific anomalies are reflected only
in different data sources. We consider a scenario as in Figure 58, where the
anomaly is originated from the failure in the networking infrastructure on a
hardware level, which eliminates the access to the compute host. This anomaly
propagates on a application level, where services are affected. Mainly the com-
pute host is responsible for the creation of VMs. Depending on the severity of
the problem of the networking infrastructure, the system will be in a degraded
or failure state of operation, i.e, the compute service will have a decreased
performance or will not be reachable. The right panel shows the metrics, logs,
and traces. The top right image presents a model of a trace generated during
the normal operation of the system and serves as a nominal value for compar-
ison to the rest of the scenarios (degraded and failure). The plots in the center
in gray show the normal distributions of the duration for performing the op-
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•

•

Figure 58: Complex anomalies in the Openstack use case.

eration. The anomalous distribution times are presented in black. We assume
that the operator has trained anomaly detectors available for all system data
sources.

Over time, the client experiences a time of creation of VM longer than usual.
However, the client files the first report stating "Longer time for performing
an operation". The operator analyzes this report, consults the anomaly detec-
tor on the response time, and finds that the response time is larger. However,
the observed response time value is in the overlap of the distributions of nor-
mal and abnormal duration times. The operator is not sure if he/she should
implement further actions. If trace anomaly detection is available to the oper-
ator, he/she can immediately observe that the trace is structurally different,
compared to the structure when the trace is normal. These differences can be
visually observed in Figure 58. The timely observation allows the operator to
notice and react to an anomaly during the degraded state of the system. If
the operator at this point in time consults the logs, no issue will be reported.
This anomaly is not reflected in the structure of the logs, as the operation fin-
ishes successfully. Therefore, having the multiple perspectives of the system
at disposal provides a higher visibility and supports the correction of false or
uncertain predictions reported by a single model. In this case, the trace sug-
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gests an anomaly, while the anomaly is not easily observed in the logs and
metrics.

In second case, the client issues another report stating "Cannot execute any
operation". The consulting of the three modalities then clearly shows a failure,
compared to the previous case of degraded state. In addition, according to the
trace, most likely, the problem is in the api service as it cannot be contacted.
This problem is also reflected in the log data, as shown in L1 and L2 in the
figure. We confirm that particular anomalies in complex systems do not reflect
in all data components.

7.2 triano : integration of the anomaly detectors

To address the problem of detection of complex anomalies, we introduce a
rule-based integration of the detectors, denoted as Triano (see Figure 59).

We consider three trained anomaly detectors, presented in the previous
chapters, fm(xm), fl(xl), and ft(xt) for the metrics, logs, and traces, respec-
tively. The input data in (1) fm(xm) are a time series representing a system
metric xm = xwm

m , xwm
m , . . . , xwm

m , where wm is the window size, in (2) fl(xl)

Figure 59: Triano overview.
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are a system log message xl = x
1
l , x

2
l , . . . , x

m
l , where xil are d´dimensional rep-

resentations of the words in the log message and m is the number of words,
and in (3) ft(xt) are a trace xt = x1t , x

2
t , . . . , x

k
t , where xit is a span and k is the

number of spans in the trace.
Each of the separate methods for anomaly detection in metrics, logs, and

traces outputs its predictions, either 0 (normal) or 1 (anomaly), in the follow-
ing format.

• Metano, the metric anomaly detector fm(xm), outputs (start time, end time,
prediction, description. The start and end time are the timestamps of the
start and end of the window from the metric time series, while the pre-
diction and description are related to the state of the system (normal or
anomalous) and recognized anomaly pattern, as presented in Chapter 4,
respectively.

• Logsy, the anomaly detection method for log data fl(xl), outputs (times-
tamp, prediction) whether the observed log message is normal or anoma-
lous, as presented in Chapter 5.

• Tracy, the anomaly detection method for trace data ft(xt), outputs (start
time, end time, prediction) where the start and end times are the times-
tamps of the start and end of the analyzed trace, as presented in Chap-
ter 6, respectively.

On top of the outputs of the anomaly detection methods, a time window w

is utilized to aggregate the predictions for a final decision, whether a possible
anomaly exists in the observed system. Formally, the final output at a time
t is gt(fm, fl, ft,w), which is 0 or 1. As we observe different frequencies of
predictions, first, the data from all data sources are aligned according to the
start of the trace.

An example of forming the final prediction is described. The tracing data
contain information about multiple services, and thus the trace anomaly detec-
tor is prioritized. If this method reports an anomaly, the result is an anomaly is
present. If anomaly is not present in the traces, logs are checked (log anomaly
detector). If the log module does not generate an anomaly, the metric module
is consulted. However, as depicted in Figure 59, the approach is modular and
any improvement in each of the detectors will improve the overall framework.
Moreover, it enables flexibility of assessments of the order of the data sources,
as the operator may have an additional knowledge on the type of anomalies
that may arise in the system of interest. The knowledge can originate from
either experience or availability of other informative sources such as source
codes and configuration files.
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We additionally designed a more complex multimodal deep learning
method for automatic integration, however there were only negligible differ-
ences to the rule-based approach (see Appendix A).

7.3 evaluation

In this section, we analyze the performance of Triano against single methods.
We describe the experimental testbed, data, three anomaly cases, and evalua-
tion.
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Figure 60: Experimental testbed.

7.3.1 Experimental testbed

For the generation of the data, we deployed an OpenStack [188] testbed based
on a microservice architecture running in a dockerized environment denoted
as Kolla-Ansible [189]. OpenStack is a cloud operating system, which controls
large pools of computing, storage, and networking resources throughout a
data center. All of them are managed and provisioned through APIs with
common authentication mechanisms. The experimental testbed is shown in
Figure 60. For the generation of the data, it consists of one control node and
four compute nodes. It was deployed on bare-metal nodes of a cluster. Each
node has a RAM of 16 GB, three 1-TB disks, and two 1-Gbit Ethernet NICs.
Three hard disks were combined to a software RAID 5 for data redundancy.

To generate user workload and inject faults into the system, we used
Rally[190]. To evaluate the approach in scenarios close to real-world work-
loads, we used a series of user actions: create user -> create image -> create
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network -> start VM -> stop VM -> delete VM -> delete network -> delete
image -> delete user.

For monitoring and data collection, we utilized Prometheus for the metric
data [193]. Elasticsearch, Logstash, and Kibana (ELK) were used to aggregate
logs from all services running across the physical nodes. To export logs from
Elasticsearch into CSV, a CLI tool, es2csv, was utilized. To collect the traces,
we utilize OSProfiler [57], which is used by all OpenStack projects and their
Python clients to generate traces. It generates one trace per request.

To enable evaluation of the framework and methods, labeled data are re-
quired. Different data types require different labeling types. To label the data,
we use the standard procedure of employing domain expert. (1) For traces,
we consult a domain expert to label whether the trace is an anomaly. The
trace may be either completed or not. We investigate its structure if it differs
in many events, compared to the normal before providing it with a label. (2)
For the logs, we analyze each log message using regex searches and label it
to produce a labeled set of data. Anomalous log messages may appear out-
side the period of injection of anomalies. It is also important to label those
instances. For the metrics, we perform the labeling in a similar manner. All
models are trained by utilizing data from the time intervals when the system
is in a normal state.

Table 16: Description of complex anomalies.

Type Description

Network failure
Networking failure in the host node eliminated the access
to the host, leading to multiple failures (system hardware)

Service update
Configuration change in system A led to failures in A’s
calls to system B (deployment)

Service failure
Failure in the message queue left several queues locked,
blocking messages (system software)

7.3.1.1 Anomaly scenarios

To evaluate the combined approach against the single methods, we injected
the anomalies described in Table 16. The first considered anomaly is a network
failure anomaly. This anomaly eliminates the access to a host, which leads to
multiple failures. The second anomaly arises during deployment. Changes in
configuration of system A led to failures in A calls to system B. We resolve this
problem with deployment with a correct configuration. The third anomaly is
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Table 17: Network failure multi-source anomalies; log data.
Type Log message

Normal
L1. 130.149.249.132 POST /v2.1/os-server-external-events HTTP/1.1 status: 200 len: 582 time: 0.0948207.
L2. [instance: f2adf232-3c39-477f-af0c-db25c9e4b4d6] During sync_power_state the instance has a pending
task (spawning). Skip.

Degraded

L1. DHCP configuration for ports {’451c037f-83d7-4fa7-86df-0b8afdbab99c’} is completed“.
L2. 130.149.249.132 GET /v2.0/ports?device_id=3322a8e7 b233-4115-96e1-f98450f1c2d0 HTTP/1.1
L3. failed to flush the buffer. retry_time=2 next_retry_seconds chunk=error_class=Fluent::Plugin::
ElasticsearchOutput::RecoverableRequestFailure read timeout reached“.

Failure
L1. failed to flush the buffer. retry_time=1 next_retry_seconds chunk error_class=Fluent::Plugin::
connect_write timeout reached“.
L2. Function “nova.servicegroup.drivers.db.DbDriver._report_state’ run outlasted interval by 0.25 sec“.

11

Figure 61: Network failure multi-source anomalies. Normal metric distribution (left),
two degraded states (middle), and failure state (right).

a service failure. The anomaly is injected into the message queue (MQ) and
leaves several queues locked, which blocks the message flow. We resolve it by
cleaning the queue and restarting the service.

7.3.2 Results

Network anomaly. Figures 61 and 62 show the metrics and traces, while Ta-
ble 17 shows the logs, for the normal and abnormal executions of the opera-
tions. We carry out a simultaneous analysis of the three sources.

Figure 61 shows the distributions of the response time durations during the
normal and abnormal executions of the operations. The durations are repre-
sented as distribution plots of the duration of the normal (blue) and duration
of the anomalous (orange) operations. During the normal state, the duration
has a bimodal distribution, with one mode around 450 s and another mode
around 500 s. We observe normal traces and logs. However, cross compari-
son of the durations during the small degradation (the second column for the
metrics and first row for the traces) shows that the structures of the trace are
similar, but the response times are different. Suspicious logs are not observed.
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Figure 62: Network failure multi-source anomalies. Normal trace (top), degradation
(middle), and failure state (bottom).

This degradation is a problem reflected in the duration time, but not in other
modalities. Hence, the duration serves as a good indicator of potential prob-
lems in the system. In this case, the metric method detects this anomaly, while
the log and trace anomaly detectors are not able to detect this problem, as it is
absent in the data. The combined approach detects this degradation problem
as it is reflected in the metric data. On the contrary, if the decision is based
solely on the logs or traces, the degradation will be missed out. This could
lead to potential failures.

Increasing the severity of the anomaly leads to a significant increase in the
response time (the third column in Figure 61). In addition, the trace anomaly
detector detects an anomalous trace and a structurally different trace is ob-
served, while the logs are still unable to record anything. Triano detects the
anomaly in the traces and metrics simultaneously.

Finally, when the network of the host has failed, the trace cannot be com-
pleted. In addition, the response time is very large and timeout log messages
appear. Furthermore, the trace anomaly detector and analysis of the scores
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Table 18: Service failure due to an update, multi-source anomalies, and log data.
Type Log message

Normal
L1. [instance: 5d616cd-5689-44a0-8466-cf9290bff684] Instance spawned successfully.
L2. 130.149.249.132 - - [28/Sep/2020 20:02:13] GET /v2/images HTTP/1.1 200 16916 0.028519.

Degraded

L1. Traceback (most recent call last): File /usr/lib/python3/dist-packages/eventlet/
wsgi.py line 597,
BrokenPipeError: [Errno 32] Broken pipe“.
L2. 0.6783.0 closing AMQP connection <0.6783.0“.

Failure
L1. A recoverable connection/channel error occurred, trying to reconnect: [Errno 104]
Connection reset by peer“.
L2. Error from libvirt while getting description of instance-00000199: [Error Code 42]

per span show that the major issue is in nova-api (Figure 62), which is hosted
on the failed host. The Triano framework can detect all degraded and failed
states.

Configuration change in service A leads to a failure in service A calls to
service B. Another common type of anomaly appears when a change in the
configuration file of one service A leads to failures in the service A call for
service B. Different such cases exist. The results of the analysis of this scenario
are presented in Figure 63, Figure 64, and Table 18.

Such changes can appear in the configuration when all appears normal
from the response time and trace perspectives. The center–top image shows
that the durations for both normal and abnormal response times have an over-
lap in the distributions. However, the log anomaly detector report problems.
The degradation phase is present only inside the logs.

11

Figure 63: Service failure due to an update, multi-source anomalies, and metric data.
Normal metric distribution (left), two degraded states (middle), and failure
state (right).
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Figure 64: Service failure due to an update, multi-source anomalies, and trace data.
Normal state (top) and failure state (bottom).

Severe cases of this anomaly lead to a failure. The duration in this case is
very small for the failed operations and the traces are out of order. In addition,
anomalous log messages exist.

Failure in MQ left several queues locked, blocking messages The results
of the analysis of this scenario are presented in Figure 65, Figure 66, and
Table 19.

A limitation in the MQ, not exposed during testing, can bring it to a de-
graded state, for example, due to an increased traffic. During this period, the
times needed for execution of an operation during the normal and abnormal
periods may not differ significantly, as shown in Figure 65. The middle image
shows that the response times for both normal and abnormal behaviours have
an overlap in the distributions. Although insignificant, as in the previous case,
it can lead to FP reported by the metric module. The trace is not affected as
the requests are executed. In this scenario, the log messages report problems
in the form of "Recoverable Connection Error".

The failure state has a similar structure to those in the previous two use
cases. The duration in this case is very small for the failed operations and the
traces are completely out of order. In addition, anomalous log messages in the
form of "timeouts" exist. The neutron cannot perform specific requests. The
queues are locked and all messages are blocked.
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Table 19: Anomaly in the MQ; log data.
Type Log message

Normal
L1. "130.149.249.132 GET /v2.0/ports?device_id=3be3c024-d97e-448a-a30d-015e82571606 HTTP/1.1
L2. "Security group member updated {’cad0f51f-3235-4ec2-9b8a-97761195cc5c’}”.

Degraded

L1. AMQP server on 130.149.249.132:5672 is unreachable: <RecoverableConnectionError: unknown error>.
Trying again in 1 seconds.: amqp.exceptions.RecoverableConnectionError
L2. AMQP server on 130.149.249.132:5672 is unreachable: Too many heartbeats missed. Trying again
in 1 seconds.: amqp.exceptions.ConnectionForced: Too many heartbeats missed“.\

Failure

L1. AMQP server on 130.149.249.132:5672 is unreachable: Too many heartbeats missed.
Trying again in 1 seconds.: amqp.exceptions.ConnectionForced: Too many heartbeats missed“.
L2. AMQP server on 130.149.249.132:5672 is unreachable: timed out.
Trying again in 8 seconds.: socket.timeout: timed out“.

11

Figure 65: Anomaly in the MQ; metric data. Normal (left), degraded (middle), failure
(right).

Figure 66: Anomaly in the MQ; trace data.
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Table 20: Results of the detection of the complex anomalies.
Type Description Metrics (D,F) Logs (D,F) Traces (D,F) Triano (D,F)

Network failure
Networking failure in the host node
eliminated the access to the host, leading
to multiple failures (system hardware)

+ + 0 + 0 + + +

Service update
Configuration change in system A
led to failures in A’s calls to
system B (deployment)

0 + + + 0 + + +

Service failure
Failure in the MQ
left several queues locked,
blocking messages (system software)

0 + + + 0 + + +

7.3.3 Results summary

Table 20 shows the three scenarios of complex anomalies presented in the
previous section. For each observability component, the two states (degra-
dation D, failure F) are shown. Some of the anomalies are not reflected in
all three modalities, while in some cases, they are reflected in all of them
(mostly degraded-state anomalies). We denote the F1-scores of Metano (met-
rics), Logsy (logs), and Tracy (traces) with plus (+), if greater than 0.9, and
minus (-) less than 0.1. This reflects if the method can successfully detect the
anomaly in the particular case. From the table, it can be concluded that the
methods can detect anomalies which are found in the data, and not detect
anomalies which are hidden. For example, during the networking anomaly,
the degradation phase in the system does not appear in the logs but appears
in the traces. Thus, Logsy is not able to detect any anomaly, while Tracy man-
ages to capture all of them. Similarly, the service update and service deploy-
ment anomalies during the degradation stage do not appear in the traces and
metrics but appear in the logs.

Full observability implies a considerably higher probability to detect all
anomalies than that in the single-model scenario. To successfully address the
problem of complex anomalies, full observability of the system is required.
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7.4 related work

A limited number of studies in the academia that combined multiple data
sources for anomaly detection in distributed systems exist. Most claimed so-
lutions are from the industry, where companies provide various services for
automation in the IT domain. These solutions are predominantly patented.

Farshchi et al. [194] addressed the problem of monitoring cloud applica-
tion operations through log and metric analyses. Their contributions include
a novel approach that assists in finding the subset with the most relevant
monitoring metrics. It further includes employing those metrics for the reli-
able assurance of the correct execution of sporadic cloud operations, partic-
ularly in staged upgrading of clusters of VMs. The core of the approach is
a domain-agnostic regression-based correlation analysis technique that corre-
lates operations’ event logs and resource metrics. Based on this correlation,
it can identify which monitoring metrics are significantly affected by opera-
tion’s activities and how. In Weber et al [195], the authors proposed the POD
framework, which targets the dependability of cloud application deployment
specifically. At the core, it uses cloud metrics and logs from operations tools.
During normal system behaviour of such operations processes, the framework
collects logs and metrics. These are used in the offline training phase, where
a process model for the operation from the logs is obtained through process
mining techniques and human interaction. In the online phase, the framework
uses current logs and metrics in combination with the created process model.
They present two POD-Detection services for this purpose. First, the confor-
mance checker tracks if the behavior and timing of the current execution is
in line with the model. Second, assertion evaluation tracks the effects of the
current execution on the metrics, and uses hand-coded additional assertions
to check against the cloud API if process steps have the desired effect. If any
errors are detected, diagnosis and recovery are triggered. This approach is
related to Triano, however, it models the correlation between the operational
logs and metrics, whereas in Triano, we consider metrics, logs, and traces, in-
dependently. Moreover, the POD framework aims to detect process anomalies,
where Triano is focused on analyzing various data sources on more granular
level.

In our work on multimodal anomaly detection [191], following previous
studies from Ikeda et al. [196], we utilized the joint representation from the
distributed traces and system log data for the task of anomaly detection in
distributed systems. We found that this approach of learning the joint infor-
mation of logs and traces into one more complex model yields insignificant
differences when compared to the independent detectors.
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The Splunk [197] software platform allows its users to analyze and visu-
alize the data gathered by the IT components. Data are collected from var-
ious sources and indexed. The indexed data are then presented in a series
of events, from where they can be searched as well as viewed. Key features
of Splunk include searching from the data, calculating metrics, predictions,
event retrieving, alerting whenever a configured search condition is met, and
reporting. This allows to save searches as reports. The user can later add them
to dashboards and even schedule them for generating alerts under particular
conditions.

AppDynamics [198–200] is an application performance management and IT
operation platform, which provides automated anomaly detection. From the
publicly available information, AppDynamics utilizes thresholds on KPIs and
comparisons to baselines to perform the anomaly detection.

Moogsoft [201, 202] is a provider of AIOps solutions. In the Moogsoft AI
platform, real-time data are collected through various sources and the events
associated with the data are correlated. The obtained insights are thereafter
shared with operation teams, which help improve the mean time to repair.
The main features include real-time monitoring of systems, providing alerts as
soon as they are detected based on setting thresholds for KPIs and generating
accurate incident reports that help the recovery of the system.

Loom System is an AIOps solution, which helps the prediction and elimi-
nation of the issues that arise while migrating to clouds. The AIOps solution
by Loom systems is capable of preventing IT issues before customers are af-
fected. Its operation can be described as follows. Data Collection: Log and
metric data are collected from various sources and are later divided accord-
ing to their purposes. The collected data are classified with the required mea-
surement methods. Anomaly Detection: With machine learning algorithms,
the approach sets a certain measurement in real time to detect the emerging
issues at the initial stages. Root Cause Analysis: With the help of cognitive
reasoning, cross-application issues are detected, providing information about
the digital environment.

Other similar solutions from the industry are listed in Gartner reports [61,
62].

In the literature, to the best of our knowledge, we rarely identify solutions
for unsupervised anomaly detection of metrics, logs, and traces as fundamen-
tally complementary data sources in one framework.
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7.5 chapter summary

In this chapter, we utilized the previously described methods in Chapter 4,
Chapter 5, and Chapter 6 to perform anomaly detection. Through the empir-
ical evaluation, we showed that the proposed approach detects the various
complex anomalies that manifest in distributed software systems in unpre-
dictable manners, e.g., propagation of the anomaly between components of
the system or hidden from specific observability tools. Owing to the modu-
larity of the approach, improvements in the anomaly detection methods for
metrics, logs, and traces lead to overall improvements. In addition, we de-
signed and evaluated a method that learns joint representations from logs
and traces. We showed that even by increasing complexity to process the data
types in one model, the multimodal method exhibits negligible differences
to independent detectors. A reason for such behavior can be that the data
sources as they are (e.g., logs and traces) they contain orthogonal information.
Lastly, through discussions we demonstrated that full observability increases
the chances of timely detection of broader spectrum of anomalies.



8
C O N C L U S I O N

The thesis presented methods for anomaly detection to improve the develop-
ment, operation, and reliability of distributed software systems.

For metric data, we presented an unsupervised anomaly detection method
based on a variational autoencoder with an RNN as the encoder and decoder
to capture both stochastic and sequential properties. In addition to the model,
we described a dynamic error threshold approach and tolerance module for
false positive reduction. The detected anomaly patterns were then enriched
with a corresponding pattern description. We demonstrated the efficiency of
the method for both experimental and real-world production data, where we
reached an average F1 score of 0.85, prediction time smaller than 10 ms, and
robust classification of detected anomalies.

The thesis further contributes to the analysis of log data in log parsing
and log anomaly detection. We presented a novel parsing technique, NuLog,
which utilizes a self-supervised learning model and formulates the parsing
task as MLM. The parsing performance of NuLog evaluated on 10 real-world
log datasets outperformed those of existing methods in PA reaching an av-
erage PA of 99% and smallest edit distance to the ground truth templates.
Furthermore, we demonstrated the ability of NuLog to extract summariza-
tions from the logs in the form of log vectors. This enabled coupling of the
model with a downstream anomaly detection task. We showcased two down-
stream tasks for log-based anomaly detection in supervised and unsupervised
learning scenarios. This showed a large gap between the supervised and unsu-
pervised scenarios. We identified that learning expressive log vector represen-
tation is a major factor that helps bridge the gap. In this regard, we presented
a new anomaly detection approach, Logsy, a self-attention encoder network
with a new hyperspherical classification objective. It learns log vectors and
predicts anomaly scores in an end-to-end learning. We elaborated the core
principle of the method, aiming to represent normal log samples with small
distances in-between (close to the center of a hypersphere), while mapping
easily accessible anomalies in the distant space. Due to a large amount of
easily obtainable log data, it is reasonable to assume that access to anoma-
lous samples is available. The efficiency of the method was demonstrated on
benchmark datasets where it outperformed the baselines by an F1 score of
0.25. Furthermore, we evaluated several properties of Logsy including utiliza-
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tion of expert knowledge input, effect of the auxiliary data, and transfer of
the learned log vector representations in other methods, e.g., in PCA, where
we obtained an improvement in the F1 score of 0.07 (28.2%). We show that
incorporating richer domain bias to emphasise the diversity of normal and
anomaly data, such as the inclusion of auxiliary data, proves to be beneficial
for the anomaly detection.

To cover the request-centric information in distributed systems that contain
information on numerous components, we addressed the anomaly detection
from the tracing data. We presented Tracy, which aims to model the normal
traces by learning to predict a masked span on a particular position in the
trace utilizing the remaining nonmasked information from the trace. The de-
cision for the normality of a trace is carried out with a threshold procedure
on top of the masked event prediction procedure. Through the evaluations,
we demonstrated that the method outperforms the state of the art on ex-
perimental testbed data and achieves high scores on data from the global
cloud provider. The self-attention mechanism and MSP learning task enable
the method to not depend on the length of the trace. This reduced the effect
of the noise and improved the generalization of the method.

Lastly, we analyzed complex anomalies in distributed software systems.
Through several empirical studies, we demonstrated that the combination of
the presented methods broadens the spectrum of detected anomalies and im-
proves the anomaly detection compared to the single methods.

Although this thesis already addressed central aspects of anomaly detection
in distributed software systems, several directions for further investigation ex-
ist. These directions can be derived from the key limitations of the current
methods. In metric anomaly detection, a possible extension is to adopt Trans-
formers [153] instead of RNNs, which could further improve the effectiveness,
particularly by capturing long-term patterns. In log anomaly detection, a pos-
sible extension to the anomaly detection method, which operates per log mes-
sage, is to correlate the detected anomalies on the temporal axis. This may
help mine important sequences and processes in the systems, relate them to
the trace data, create situation reports, and provide even a larger reduction in
the number of FPs. In distributed traces, learning better span representations
by direct inclusion of the full span’s information may improve the effective-
ness of the presented method. Regarding the combination of all detectors and
data sources, a possible extension is to integrate the metrics, logs, and traces
on a logical level with the use of domain knowledge and system topology.
This still remains a challenge that if addressed may enable better modeling
and anomaly detection. Overall, the thesis presented a set of methods, which
support the development of fully autonomous systems.
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Figure 67: Multimodal LSTM.

a.1 multimodal anomaly detection by learning joint repre-
sentations

To check if there are possibly abstract correlations that are not captured with
rule based logic between the independently trained methods, we designed a
multimodal method, described as follows.

We present a multimodal method based on LSTMs [191], which can learn
from logs and traces jointly. The purpose of the method is to check whether
the learning of joint representations in one model that could possibly utilize
the nonlinear correlations between the data types can produce better results
than those of independently trained detectors.

We depict the method in Figure 67. Sequences of logs and spans are simul-
taneously provided as inputs to each of the two encoders. The outputs of both
encoders are concatenated and fed through an additional linear layer. It uses
both representations learned from the encoder to extract joint representations.
The shared information from the concatenation is then passed through two
linear layers, one for the traces and the other for the logs. The anomaly detec-
tion is performed by comparing the predicted output to the observed input,
which is used to decide whether an anomaly exists.
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To train the model end-to-end for both modalities, we minimize a cost func-
tion that is calculated as an addition of the cross-entropy losses for the predic-
tion of the next span and log message to appear.

L(joint) = L(logs) + L(traces). (30)

Table 21: Results: multimodal LSTM [191].

score Logs-multimodal Trace-multimodal Single logs Single traces

accuracy 0.976 0.990 0.974 0.955

precision 0.904 0.992 0.897 0.992

recall 0.996 0.984 0.996 0.909

f1 0.948 0.988 0.944 0.949

a.2 results

Table 21 summarizes the results of the experiments. The joint utilization of
traces and logs produced comparable results to those of the single-modality
anomaly detection methods. The F1-scores of the log data of the multimodal
and single methods differed by 0.004, while those for the traces differed by
0.039. The multi-modal LSTM exhibited negligible differences, compared to
the independent use of the methods. Therefore, we only evaluated the inte-
gration of independently trained detectors and compare to single data source
methods.
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